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Observability of stochastic resonance in neutron scattering
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~Received 7 June 1999!

The observability of the stochastic resonance phenomenon in a neutron scattering experiment is investigated,
considering that the scatterer can hop between two sites. Under stochastic resonance conditions scattered
intensity is transferred from the quasielastic region to two inelastic peaks. The magnitude of the signal-to-noise
ratio is shown to be similar to that arising in the corresponding power spectrum. Effects of potential asymmetry
are discussed in detail. Asymmetry leads to a reduction of the signal-to-noise ratio by a factor of 12j2, where
j is an asymmetry parameter which is zero for symmetric problems and equal to unity in a completely
asymmetric case.@S1063-651X~99!50710-1#

PACS number~s!: 05.40.2a, 61.12.Bt
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The last few years have seen the publication of a la
body of work dealing with the phenomenon of stochas
resonance~SR! @1–3#. In this phenomenon the presence
noise amplifies the response of a nonlinear dynamical sys
to an input signal. Theoretical studies have usually conc
trated on the analysis of the power spectrum, i.e., the t
Fourier transform of the position-position correlation fun
tion. The power spectrum is the natural function to analy
due to its direct relation to the dynamical susceptibility. A
though stochastic resonance has been predicted to occu
manifold of dynamical systems, the paradigmatic exampl
that of a periodic signal acting on a particle moving in
two-well potential and under the influence of noise. A si
plified version, thetwo-statesystem, has been shown to co
tain the main ingredients necessary for the discussion
SR @4#.

For some systems, however, other experimental tools
be profitably used. Such is the case with glasses and prot
whose dynamic properties can be advantageously inv
gated using neutron scattering techniques@5#. The purpose of
this work is to investigate the signature of the SR pheno
enon in a measurement of the incoherent neutron scatte
cross section. Since this cross section is proportional to
dynamic structure factor~DSF!, we will investigate the prop-
erties of the DSF for a two-state dynamical system subjec
periodic forcing and noise. Because two-well potentials
glasses and proteins are often asymmetric@6#, we will also
analyze how asymmetry modifies the SR effect. In this c
nection, we remark that the influence of asymmetries on
phenomena is a topic of current interest. For instan
Marchesoni, Apostolico, and Santucci have recently cha
terized the effects of asymetry in a low-noise Schm
trigger @7#.

In the absence of external forcing, stochasticity causes
transfer of part of the elastic intensity to a quasielastic~QE!
line. The main results of this paper can be summarized
follows: Due to the external forcing, part of the QE intens
is transferred to inelastic, resonant lines, yielding a la
signal-to-noise ratio. Asymmetry strongly reduces both
transfer to the QE region and the fractional transfer to
resonant lines.

To describe the dynamics of the scatterer center we c
sider a two-state model whose statesx1 and 2x2(x1 ,x2
PRE 601063-651X/99/60~4!/3467~4!/$15.00
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.0) are occupied with probabilitiesn1 andn2 respectively
@2,4#. The master equation forn6 reads

ṅ6~ t !52W7~ t !n6~ t !1W6~ t !n7~ t !, ~1!

whereW6(t) is the transition rate out of the6 state. Fol-
lowing McNamara and Wiesenfeld@4#, we choose periodi-
cally modulated, Arrhenius-type transition rates,

W6~ t !5r 6 expS 6
A0x6 cos~Vt !

D D , ~2!

wherer 6 is the Kramers’ rate andD is the noise strength.
Equations~1! can be solved by assuming that the mod

lation amplitude is small@2,4#, (x6A0 /D)!1. We obtain,

n1~ tux0 ,t0!5e2a(t2t0)F12
A0b

DV
@sin~Vt !2sin~Vt0!#G

3dn1n0
1

r 1

a
~12e2a(t2t0)!

3S 12
A0b

DV
sin~Vt ! D2

b

2V2x1

3@K̇~ t !2e2a(t2t0)K̇~ t0!#

1
1

2
@K~ t !2e2a(t2t0)K~ t0!#, ~3!

wherea5r 11r 2 , b5r 1x12r 2x2 , and

K~ t !5
2r 1a

a21V2 S A0x1

D D Fcos~Vt !2
V

a
sin~Vt !G . ~4!

The dot over the functionK(t) denotes its time derivative
and the factordn1n0

is equal to 1 if the scatterer is initially

(t5t0) at site x1 . To obtain Eq.~3! we have made two
approximations:~i! as mentioned above, the modulation am
plitude must be small, (x6A0 /D)!1, and ~ii !, due to the
time-integrated accumulation of asymmetry effects for ve
small values ofV, we must also introduce an additional co
dition: (bA0 /DV)!1. Of course, this second conditio
does not apply for symmetric (b50) problems. We remark
that if it were necessary to keep higher orders in the mo
R3467 © 1999 The American Physical Society
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lation amplitude, it may be useful to expand the transit
rates in terms of modified Bessel functions@8#.

The probability distribution at timet is given by

P~x,tux0 ,t0!5n1~ t,t0!d~x2x1!1n2~ t,t0!d~x2x2!.
~5!

In general the dynamic correlation function associa
with the dynamic variablef @x# is given by

1

2p
ReE

2`

1`

dt e2 ivt^ f * ~ t1t! f ~ t !& , ~6!

wheref (t)[ f @x(t)#. The angular brackets represent a sta
tical average, while the overbar stands for an average o
the initial conditions, that is, over the phase of the inp
signal,

^ f * ~ t1t! f ~ t !&5
V

2pE0

2p/V

dtF E dxE dy f* ~x! f ~y!

3P~x,t1tuy,t !P~y,tux0 ,t0→2`!G .
~7!

It should be noted that we are considering the station
limit, i.e., t0→2`. By choosing f (t)5x(t) in expression
~6! we obtain the power spectrum, while by takingf (t)
5eikx(t) we get the DSF,S(k,v), wherek is the momentum
transferred to the scatterer.

A direct generalization of the McNamara-Wiesenfeld fo
mula is

^ f * ~ t1t! f ~ t !&5@ f ~x1! f * ~x1!2 f ~2x2! f * ~x1!#n1
1n1

1@ f ~x1! f * ~2x2!2 f ~2x2! f * ~2x2!#

3n1
21@ f ~2x2! f * ~2x2!2 f ~x1!

3 f * ~2x2!n1
2n11@ f ~2x2! f * ~x1!

2 f ~2x2! f * ~2x2!#n1

1 f ~2x2! f * ~2x2!. ~8!

Here n1
1[n1(t1tu1,t) is the conditional probability tha

the particle is atx1 at timet1t, given that it was at state1
at time t. Since the most complicated part of the calculati
is the evaluation of the averagesn1

1n1, etc., Eq.~8! implies
an important simplification: once these averages are ca
lated, we can evaluate an arbitrary autocorrelation func
with minimum work.

The signal-to-noise ratioR is a suitable indicator of the
intensity of the SR effect.@2# We generalize the definition in
Ref. @2# and write

R52F lim
e→0

E
V2P

V1e

S~v, . . . !dvG Y SB~V, . . . !, ~9!

whereS(v, . . . ) is theFourier transform of the correlatio
function under consideration andSB(V, . . . ) is thevalue of
the background component evaluated at the frequencyV of
the output signal.
n
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Next we present the results for the symmetrical two-st
problem and compare them with the well known predictio
for the power spectrum, which was studied by McNama
and Wiesenfeld@4#. Under these conditions,x25x15xm
and r 25r 15r , i.e., b50. A straightforward evaluation o
the averages in Eq.~6! leads to the following expression fo
the power spectrum:

S~v!5@12M ~V!#
2rxm

2

p~4r 21v2!

1
M ~V!xm

2

2
@d~v2V!1d~v1V!#, ~10!

where

M ~V!5S rA0xm

D D 2 2

4r 21V2
.

If there is no forcing,S(v) is simply a Lorentzian, due to
the interstate jumps generated by the noise. Forcing trans
power from the noisy background to the spikes. The to
output power, obtained by integrating overv, equalsxm

2 ,
while the signal-to-noise ratio~SNR! is

R5pr S A0xm

D D 2

1OS A0xm

D D 4

. ~11!

Using the prescription~8! for f (t)5eikx(t) the DSF is easily
obtained,

S~k,v!5cos2~kxm!d~v!

1
2r

p~4r 21v2!
@12M ~V!#sin2~kxm!1

M ~V!

2

3@d~v2V!1d~v1V!#sin2~kxm!. ~12!

The SNR obtained from the DSF is exactly the same
that corresponding to the power spectrum. Therefore,
DSF exhibits the SR effect as strongly as the power spect
does. In both cases the inelastic intensity emerges dire
from a decrease in the quasielastic component. The D
contains, however, a purely elastic component which is
affected by the external forcing. This elastically scatter
intensity is independent of noise strength, as long as the
some noise: if we take ther→0 limit, the quasielastic com-
ponent disappears andS(k,v)→d(v). This is in agreement
with the older proof of the nonexistence of a quasielas
component for motion in nonstochastic potentials@9#.

The wave-vector dependence of the DSF is obvious fo
expression~12!. If kxm5np, for any integern, an integer
number of wavelengths fits exactly between the two sta
and there is only a strong elastic line. Therefore, the mo
lation cannot affect neutron scattering. Ifkxm5(n1 1

2 )p, the
elastic line disappears, the whole intensity emerges a
quasielastic component and is available for transferenc
the inelastic lines, i.e., for the stochastic resonance phen
enon.

The asymmetric problem, for whichx1Þx2 and r 1

Þr 2 , is much more involved. To properly understand t
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effects of asymmetry we first review the solution to the pro
lem in the absence of the periodic excitation@5#. Since the
stronger asymmetry effects are naturally those arising fr
having different jump rates, we introduce an asymmetry
rameter,

j5
r 12r 2

r 11r 2
, uju<1. ~13!

In terms of this asymmetry parameter, of the intersite d
tanceD5x11x2 , and of the ratea5r 11r 2 , which is a
measure of noise strength, the DSF is given by

S~k,v;A050!5F12~12j2!sin2S kD

2 D G
3d~v!1

a~12j2!

p~a21v2!
sin2S kD

2 D . ~14!

The main effect of the asymmetry is to reduce the to
quasielastic intensityI Q ,

I Q~A050!5~12j2!sin2~kD/2!. ~15!

Since intensity can be transferred by the input signa
the inelastic peak solely out of the quasielastic~QE! region,
the resonance effect will be correspondingly weakened. N
that in the completely asymmetric case,uju51, the particle is
localized in one of the sites and there is only elastic scat
ing. The DSF for theA0Þ0 problem is,

S~k,v!5F12~12j2!sin2S kD

2 D Gd~v!1sin2S kD

2 D
3H S A0D

4D D 2 ~12j2!2

11~V/a!2
@d~v2V!1d~v1V!#

1
12j2

pa@11~v/a!2#
1S A0D

D D 2

H~v!J , ~16!

where H is a complicated function. Since the last term
only a small correction to the QE background, we omit
full expression. The integral ofS(k,v) over all frequencies
satisfies the sum rule

E
2`

`

S~k,v!dv51. ~17!

The signal-to-noise ratio is decreased by the asymme

R5paS A0D

4D D 2

~12j2!. ~18!

The strong reduction@;(12j2)2# of the resonant inten
sity I R due to the asymmetry~see Fig. 1! arises from two
causes: the smaller QE intensity and the weaker tran
from the QE region to the resonant line. The relative tra
ferred intensity is

I R~V!

I R~V!1I Q~V!
52S A0D

4D D 2

~12j2!
1

11~V/a!2
. ~19!
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The preceding results deserve a few remarks.

~i! The SR effect itself has nok dependence. Thek de-
pendence in the output signal is due exclusively to the va
ing size of the QE component whenA050.

~ii ! The total intensity in the QE component whenA0

50 does not depend on the noise, but the amount transfe
to the inelastic output signal grows with increasinga.

~iii ! The magnitude of the SR effect increases with t
square of the intensity of the output signal, and with t
square of the intersite distance.

In the case of a glass, the periodic modulation can
introduced by using either an acoustic wave or a microw
field @6# ~techniques for generating ultrasonic waves w
V ’s of the order of the hundreds of GHz are currently sta
dard @10#!. A measurement of the intensity of the SR lin
would give us information about the strength of the coupli
between the modulation and the scatterer. In a given sam
we will usually have a distribution of parameters charact
izing the potential where the scatterer oscillates, but all s
tering centers will contribute constructively to the same
line. In a future publication we will discuss how the detaile
distribution of scatterer potential parameters influences
intensity of the SR effect.

The Kramers’ rates are of the form r 6

5r 0 exp@(2V6d)/D#, whereD5kBT, and V and d are the
barrier height and asymmetry, respectively. For vitreo
silica, r 0'531013 Hz, V5570 K, andd has been taken to
be up to half the barrier height@11#. We can easily estimate
the size of the asymmetry parameters: by assuming thadd
'D'100 K and thatx1'x2'0.025 nm, we obtainj
'0.76 andb'10 m/s. Finally, let us remark that the rang
of frequencies and momentum transfers available for neu
scattering experiments is extensive: values ofk up to several

FIG. 1. Resonant intensity as a function of the asymmetry
rameterj5(r 12r 2)/(r 11r 2) for the values of (kD/2) specified
in the box.
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(Å) 21 and values ofv ranging from the hundreds of MH
well into the THz range are usual. The effective ranges
accuracies of several instruments are described in deta
Ref. @5#.

In summary, we have shown that the stochastic resona
phenomenon can be observed in neutron scattering, and
v.

f
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the corresponding signal-to-noise ratio is similar to the o
predicted for the power spectrum. We have also determi
how potential anisotropies reduce the SR effect.
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