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Observability of stochastic resonance in neutron scattering
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The observability of the stochastic resonance phenomenon in a neutron scattering experiment is investigated,
considering that the scatterer can hop between two sites. Under stochastic resonance conditions scattered
intensity is transferred from the quasielastic region to two inelastic peaks. The magnitude of the signal-to-noise
ratio is shown to be similar to that arising in the corresponding power spectrum. Effects of potential asymmetry
are discussed in detail. Asymmetry leads to a reduction of the signal-to-noise ratio by a factogofvihere
& is an asymmetry parameter which is zero for symmetric problems and equal to unity in a completely
asymmetric casdS1063-651X99)50710-1

PACS numbd(s): 05.40—a, 61.12.Bt

The last few years have seen the publication of a large>0) are occupied with probabilities, andn_ respectively
body of work dealing with the phenomenon of stochastic[2,4]. The master equation for. reads
resonancéSR) [1-3]. In this phenomenon the presence of .
noise amplifies the response of a nonlinear dynamical system N2 ()= =Wz (On. () + W (O)n=(1), (1)
to an input signal. Theoretical studies have usually concenyhere W, (t) is the transition rate out of the: state. Fol-
trated on the analysis of the power spectrum, i.e., the timgowing McNamara and Wiesenfeld!], we choose periodi-
Fourier transform of the position-position correlation func- cally modulated, Arrhenius-type transition rates,
tion. The power spectrum is the natural function to analyze
due to its direct relation to the dynamical susceptibility. Al- W. ()=t exp( | Aoz COS{Qt))
though stochastic resonance has been predicted to occur in a - * B D '
manifold of dynamical systems, the paradigmatic example is . , . .
that of a periodic signal acting on a particle moving in awherertlls the Kramers’ rate anB is the.n0|se strength.
two-well potential and under the influence of noise. A sim-I _Equat|ons(1) can be solved by assuming that the_modu—

i : ation amplitude is small2,4], (x-Ay/D)<1. We obtain,
plified version, thawo-statesystem, has been shown to con-
tain the main ingredients necessary for the discussion of Ao . _
SR[4]. n+(t|Xo,to):e_a(t_t°)[1_ DO [sin(Qt) —sin(Qtg)]

For some systems, however, other experimental tools may
be profitably used. Such is the case with glasses and proteins,
whose dynamic properties can be advantageously investi-
gated using neutron scattering technigliEgs The purpose of
this work is to investigate the signature of the SR phenom- Ao . B
enon in a measurement of the incoherent neutron scattering X\ 1= msm(ﬂt)) - 202

. X : o . Xy

cross section. Since this cross section is proportional to the
dynamic structure factqiDSF), we will investigate the prop- X[K(t)—e 0K (tg)]
erties of the DSF for a two-state dynamical system subject to
periodic forcing and noise. Because two-well potentials in
glasses and proteins are often asymmdisic we will also
analyze how asymmetry modifies the SR effect. In this con-
nection, we remark that the influence of asymmetries on SR Wherea=r,+r_, g=r.x,—r_x_, and
phenomena is a topic of current interest. For instance,

@

r
X 8y gt —(L—e (1)

+ %[K(t)—ew(“")K(to)], ()

Marchesoni, Apostolico, and Santucci have recently charac- (t)= 2y (A0X+) cod Qt)— Esin(m) (4)
terized the effects of asymetry in a low-noise Schmitt a?+02\ D a )
trigger[7].

In the absence of external forcing, stochasticity causes th&he dot over the functioiK(t) denotes its time derivative,
transfer of part of the elastic intensity to a quasielaghe)  and the factos, , is equal to 1 if the scatterer is initially
line. The main results of this paper can be summarized ag&=t,) at sitex, . To obtain Eq.(3) we have made two
follows: Due to the external forcing, part of the QE intensity approximations(i) as mentioned above, the modulation am-
is transferred to inelastic, resonant lines, yielding a largeplitude must be small,x.A,/D)<1, and (i), due to the
signal-to-noise ratio. Asymmetry strongly reduces both thdime-integrated accumulation of asymmetry effects for very
transfer to the QE region and the fractional transfer to thesmall values of), we must also introduce an additional con-

resonant lines. dition: (BA,/DQ)<1. Of course, this second condition
To describe the dynamics of the scatterer center we cordoes not apply for symmetrig=0) problems. We remark
sider a two-state model whose states and —x_ (x, ,X_ that if it were necessary to keep higher orders in the modu-

1063-651X/99/6(1)/346714)/$15.00 PRE 60 R3467 © 1999 The American Physical Society



RAPID COMMUNICATIONS

R3468 C. A. CONDAT AND PEDRO W. LAMBERTI PRE 60

lation amplitude, it may be useful to expand the transition Next we present the results for the symmetrical two-state

rates in terms of modified Bessel functioi@. problem and compare them with the well known predictions
The probability distribution at timéis given by for the power spectrum, which was studied by McNamara
and Wiesenfeld4]. Under these conditionss_ =X, =X,
P(X,t|X0,to) = N4 (t,t0) S(X— X4 ) +N_(t,to) S(X—X_). andr_=r,=r, i.e., 3=0. A straightforward evaluation of

®)  the averages in Ed6) leads to the following expression for

In general the dynamic correlation function associatec}he power spectrum:
with the dynamic variabld[ x] is given by

Stw)=[1- M2
1 oo o w)=1L 2. 2
s-Re| dre X(f*(t+nf(1), (6) m(4r°+ %)
o M(Q)x3, N 0
wheref(t)=f[x(t)]. The angular brackets represent a statis- * 2 [olo=D)+ o0+ D)], (10

tical average, while the overbar stands for an average over
the initial conditions, that is, over the phase of the inputwhere
signal,

rAgXm\2 2
M(Q):< D )4r2+02'

O (2@
<f*(t+7)f(t)>zﬁfo dt“'dxf dy f*(x)f(y)

If there is no forcingS(w) is simply a Lorentzian, due to
the interstate jumps generated by the noise. Forcing transfers
power from the noisy background to the spikes. The total

) output power, obtained by integrating over, equalsxﬁq,
while the signal-to-noise raticSNR) is
It should be noted that we are considering the stationary

X P(x,t+ 7|y,t) P(y,t|Xg,tg— — oo)}

limit, i.e., tp— —. By choosingf(t)=x(t) in expression R=mr AoXm|? AgXm|* (11
(6) we obtain the power spectrum, while by takirigt) D D
=M we get the DSFS(k,w), wherek is the momentum _
transferred to the scatterer. Using the prescriptiori8) for f(t)=e**® the DSF is easily
A direct generalization of the McNamara-Wiesenfeld for- obtained,
mula is
S(k, w)=cog(Kxy) 8( )

(F* (t+ ) F () =[F(x) F* (x4) = F(=x)F* (x;)InTn, M(Q)

FLFOC) P (=X ) = F(=x )P (=x)] it o LM sim (k) + =

_ B oo
XN+ (=X )P (=x) = 1(x) X[ 80— Q)+ 8w+ Q) ]siF(kxy). (12)

Xf*¥(=x_)n;n, +[f(—x_)f* _ .
Pxnen =X ) () The SNR obtained from the DSF is exactly the same as

—f(=x)f*(—=x_)]n, that corresponding to the power spectrum. Therefore, the
. DSF exhibits the SR effect as strongly as the power spectrum
HI(=x ) (=x). (8)  does. In both cases the inelastic intensity emerges directly

from a decrease in the quasielastic component. The DSF
= - - ) contains, however, a purely elastic component which is not
the particle is ak, attimet+ 7, given thatitwas at stat¢  affected by the external forcing. This elastically scattered
at timet. Since the most complicated part of the Ca|CU|at'°nintensity is independent of noise strength, as long as there is
is the evaluation of the averagesn,, etc., Eq.(8) implies  some noise: if we take the—0 limit, the quasielastic com-
an important simplification: once these averages are calciponent disappears ar&{k,w)— 8(w). This is in agreement
lated, we can evaluate an arbitrary autocorrelation functioith the older proof of the nonexistence of a quasielastic
with minimum work. component for motion in nonstochastic potentigs

The signal-to-noise rati® is a suitable indicator of the The wave-vector dependence of the DSF is obvious form
intensity of the SR effec{2] We generalize the definition in expression(12). If kx,=nm, for any integem, an integer
Ref. [2] and write number of wavelengths fits exactly between the two states
and there is only a strong elastic line. Therefore, the modu-

Heren=n,(t+7|+,t) is the conditional probability that

Rzz{ lim Q“S(w' . )de / Sy(Q,...), (9 lationcannot affect neutron scatteringkbfmz_(n+%)rr, the

0 JO—¢ elastic line disappears, the whole intensity emerges as a
quasielastic component and is available for transference to

whereS(w, . ..) is theFourier transform of the correlation the inelastic lines, i.e., for the stochastic resonance phenom-

function under consideration arg(€2, . ..) is thevalue of  enon.

the background component evaluated at the frequéhof The asymmetric problem, for whicl,#x_ and r,

the output signal. #r_, is much more involved. To properly understand the
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effects of asymmetry we first review the solution to the prob-
lem in the absence of the periodic excitatid]. Since the 1 4
stronger asymmetry effects are naturally those arising from
having different jump rates, we introduce an asymmetry pa-
rameter,

)
T 1 13 3
= <1. o
= I w2
In terms of this asymmetry parameter, of the intersite dis- “’ST
tanceA=x, +x_, and of the ratex=r _+r_, which is a g
measure of noise strength, the DSF is given by =
[aV]
KA -
S(k,w;Ag=0)= 1—(1—§z)sin2(7)
a(l-§) (kA)
X 8(w)+ —————sir?| —|. (14
(@) m(a?+ w?) 2 (14

The main effect of the asymmetry is to reduce the total
quasielastic intensityq,,

Asymmetry parameter

o . FIG. 1. Resonant intensity as a function of the asymmetry pa-
lo(Ag=0)=(1—¢&)sir’(kA/2). (15 rameteré=(r, —r_)/(r,+r_) for the values of KA/2) specified

. . . . . in the box.
Since intensity can be transferred by the input signal to

the inelastic peak solely out of the quasiela$@E) region,
the resonance effect will be correspondingly weakened. Note

that in the completely asymmetric caggl,= 1, the particle is The preceding results deserve a few remarks.

!ocalized in one of the sites and the_re is only elastic scatter- (j) The SR effect itself has nk dependence. Thk de-

ing. The DSF for theA,#0 problem is, pendence in the output signal is due exclusively to the vary-
KA KA ing size of the QE component whexy=0.
S(k,w)= 1—(1—§2)sin2(7> 5(w)+sin2(7) (ii) The total intensity in the QE component whég
=0 does not depend on the noise, but the amount transferred
AGA\2 (1—¢2)2 to thﬂe inelastic ou'tput signal grows with ipcreasi:mg .
( D 2[5(w—Q)+ S(w+Q)] (i) The magnitude of the SR effect increases with the
1+(QYa) square of the intensity of the output signal, and with the
1-¢2 JWNE square of the intersite distance.

ma[1+ (wla)?] +< D ) H(“’)]' (16) In the case of a glass, the periodic modulation can be

introduced by using either an acoustic wave or a microwave
whereH is a complicated function. Since the last term isfield [6] (techniques for generating ultrasonic waves with
only a small correction to the QE background, we omit its{2's of the order of the hundreds of GHz are currently stan-
full expression. The integral d8(k,w) over all frequencies dard[10]). A measurement of the intensity of the SR line

satisfies the sum rule would give us information about the strength of the coupling
between the modulation and the scatterer. In a given sample

f Sk, w)dw=1. (17) we will usually _have a distribution of para.meters character-

—w izing the potential where the scatterer oscillates, but all scat-

_ _ o tering centers will contribute constructively to the same SR
The signal-to-noise ratio is decreased by the asymmetryjine. In a future publication we will discuss how the detailed
AA\2 distribution of scatterer potential parameters influences the
0T (g2 intensity of the SR effect.

(1-£9). (18)
4D The Kramers' rates are of the formr.
Lo v . =rgexg(—V=9)/D], whereD=kgT, andV and é are the
. The strong reductiofi~(1—¢7) ].Of the r.esonant INten- o rrier height and asymmetry, respectively. For vitreous
sity Iz due to the asymmetrysee Fig. 1 arises from two silica, rg~5x 101 Hz, V=570 K, ands has been taken to

; . i He up to half the barrier heigt1]. We can easily estimate
;:a?:gdﬂzﬁtg]Esi{e?slon to the resonant line. The relative ranSine size of the asymmetry parameters: by assumingdhat
Yy ~D~100 K and thatx,~x_=~0.025 nm, we obtain¢
1(0) A A2 ~0.76 andB~10 m/s. Finally, let us remark that the range
R :2( 0 ) (1—&2) (190  of frequencies and momentum transfers available for neutron
IR(Q)+1(0) 4D

1+(Q/a)? scattering experiments is extensive: valuek ap to several

R=ma
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(A) 1 and values ofw ranging from the hundreds of MHz the corresponding signal-to-noise ratio is similar to the one

well into the THz range are usual. The effective ranges angpredicted for the power spectrum. We have also determined

accuracies of several instruments are described in detail iRowW potential anisotropies reduce the SR effect.
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