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Response function including collisions for an interacting fermion gas
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The response function of an interacting fermion gas is considered in the ektisy $épace. Applying a
generalized linear response theory, it is expressed in terms of determinants of equilibrium correlation functions,
which allow for a systematic perturbative treatment. The relation to dynamical local-field factors is given. As
a special case, the dielectric function is evaluated for two-compdhgdtogen plasmas at arbitrary degen-
eracies. Collisions are treated in Born approximation leading ﬁ)a)edependent collision integral. The link
to the dynamical conductivity is given in the long-wavelength limit. Sum rules are discussed.
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The response of an interacting fermion system to an exing the polarization function in zeroth order with respect to
ternal force is of interest in different fields of physics. In casethe interactiorn 2],
of small deviations from equilibrium, linear response theory . g2 f s ok
can be used to describe the reaction to a time and space H(O)(k,w)=4—gf d3pE P = P T
dependent perturbation. As an application we will consider . p+i2” Ep—2z” N =17
the response of a two-component plasma to an external fielghe well-known RPA expression for the dielectric function is

The many-patrticle systiam is mygstlgated 9under the influpptained. Herefpz[exp(BEp—B,u)Jrl]*l denotes the Fermi
ence of the potentiall o, (r,t)=€'® " “YU (k,w) + c.c.  distribution function,3=1/(kgT) the inverse temperaturg,
The total HamiltoniarH (t) = H + He,(t) contains the sys- the chemical potential fixed by the density and E,
tem HamiltonianH and the interaction with the external po- =#2p?/(2m). The limit —0 is to be taken after the ther-

()

tential modynamic limit.
_ , The static limit (w=0) can be improved by using the
Hext(t)zz Uext(k,w)e"“’tng,"_kwL c.c., (1) concept of local-field factor$3]. This treatment has been
po

extended to finite frequencies by introducing dynamical
local-field factorsG(lZ,w) according to

Ok, )
1+G(K,0)ITO(K, 0)/(€5k?)

Wheren‘p’yk=cg,k,zyacmk,zyg is the Wigner transform of the
single-particle density given in terms of creation and annihi- .
lation operators in momentum representation. The inaex Ik 0)=
indicates spin, but can also be extended to further character-

istics such as specigslectrons, ionsso thatU,; could also  pifferent approximative methods to determiGgk, ») have

depend orv-. _ , been developed such as perturbation expansion$4$esnd
As a consequence of the external perturbation, an induceghe parameterization of the dielectric function via sum rules

density will arise. In linear response theory, see, €1d,the  [5_7]. A study of the dynamical local-field factors within a
response functiory(k,w) relates the induced density to the time-dependent mean-field theory neglecting damping ef-
potentialU (K, w). It can be expressed in terms of equilib- fects was reported if8].
rium correlation functions. In particular, the fluctuation-  In this Rapid Communication, we consider a systematic
dissipation theorem relates the response function to the dyuantum statistical approach to the dynamical local-field fac-
namical structure factoiS(K,») according to Iny(K,»)  tOrs at finite temperatures performing a perturbation expan-
= — [ 1—exp( Bhw)|SK w)lh. sion forI1~*(k,w). Sum rules for the dielectric function are

Considering the special case of the response of an ele€ecked. Our approach gives a direct link to the theory of
tron system(massm, charge—e) to an electrical field, the Cconductivity in Coulomb systems; s¢@]. Evaluating corre-
dielectric function e(k,»)=[1+ x(K, w)/(e,k?)] L is re- lation functions, ak, w)-dependent collision term is derived.
lated to the polarization functiohl(k,w) and the dynamic A generalized linear response theory has been given re-

. o - ! cently, sed10], leading to the following expression for the
electrical conductivityo(k,w) according to response functioil1] or density-density correlation func-
i tion, respectively,

4

. i . 1 .
e(k,w)=l+—a'(k,w)zl—?l_[(k,w). (2 A
€o® €o B, ik28Q, 0 Mon(K, @)

, W)= = R R .
The elaboration of a many-particle theory for these quan- X oM (K, )| [ M o(K, ) M (K, @)
tities is an essential problem in quantum statistics. Evaluat- (5)
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The elementaM (K, ) of the determinants are given by 2

equilibrium correlation functions of an appropriately chosen x(k,w)=—i ;BQO(JK;JQWW (13
set of relevant operatof$h; Ay, ... Ap, ...} the Kubo formula[12], can be shown using partial integra-
Different choices for the set of relevant observables suchions [11]. Being formally equivalent, different results are
as finite sets of moments of threparticle distribution func-  obtained within finite order perturbation theory for the cor-
tions are possible. In the present Rapid Communication weelation functions. On one hand, the perturbation expansion
will restrict ourselves to the current operator of the Kubo expression &=0, »— 0 to obtain the dc con-
efh ” ductivity is involved because divergences arise. On the other
Je=- mQ, > PzNp « 6)  hand, the Chapman-Enskog method or the Grad method
yielding the conductivity as a ratio of two determinaf®3
of the electron system only. We consider an isotropic syster@'® exactly reproduced within the generalized linear response

so that the polarization function is a scalar. The vedtor theory, Eq.. (5), using a finite number of moments of the
- : o single-particle distribution function as relevant observables.
=Kke, is taken in thez direction.

e For exploratory calculations, we consider a two-
In this first-moment approadi 1], Eq. (5) reads component hydrogen plasma in adiabatic limit, where the

k? (Ji;J0)? interacting electrons are moving under the influence of the
x(K,w)=—i ;:390 MK, )’ (7) potential of pointlike ions with charge, fixed at positions
ﬁj . The HamiltonianH=T+V contains the kinetic energy
where the denominator contains the collision term T=3, ngCEUCpg and the interaction

M3k, )= —i(I ;) + (I I e R
JJ( ) ( k 1Yk < k k> +iny V:_j’qu’(r V(q)e iq RJC:;Jrq(GC(r

. 1 .
(i I wrin— (I I wtin-
< k k> +”7<‘]k1‘]k>w+ir;< k k> +iny +E Z y , , y
2 (Q)Cp+q(fcp'—qrr’cp’tf’cp(r' ( )

(8 app’ oo’
The correlation functions are defined as V(q) =e%/(€,Q0q?) denotes the Coulomb potential. The ex-
tension to an impurity model accounting for the ion dynam-
(A;B)= ifﬁdr T e—,8H+,BMNA(_iﬁT)BT] ics via a dynamical structure factor is straightforward. In
' BZJo ' order to generalize for more complex ions, the Coulomb in-

" (9)  teraction has to be replaced by pseudopotentials.
<A;B>Z:J dté?(A(t):B), Within the perturbation expansion dfl ;;(k,w)=M{)
0 +MEB+M@+ .. higher powers o¥ arise due to the ex-

. e ion inJ.=JM 1 3V I =j
with A(t) = exp(Ht/A)Aexp(iHt/4), A=i[H,Al/%, and Z pllcq (lvn)ter_actlon inJy . Je '+ Whe.reJk. i[T,J ]/,
=Trexp(—BH+BuN). They can be expressed in terms of andJi” =1LV, JJ/7. Higher-order contributions are also due

thermodynamic Green functions, to the pertl_erative expansion of the correlf'ition functions,
e.g., by using a Feynman diagram analysis of the Green
1(=dwl . functions according to Eq10).
(A’B):_E o MGast(@—in), Whereas in Eq.(12) the zeroth-order contribution
_ (10) M@ (k,w) is compensated by the terggk?/T1(V(k, w), the
(A:B) =_'_J°° d_“’ 1 i IMG agt(@—i7) first-order contributions contain terms from reducible dia-
T Bl wT Z-w w AB - grams compensating the 1. The remaining first-order contri-

butions ofM{})(k,w) are due to the explici¥ in J{ and to

terms fromJ{", expanding the correlation functions up to
first order(self-energy and vertex correction§ he evalua-
tion of the corresponding Feynman diagrams gives for arbi-
trary temperatures the result

The relation to the thermodynamic Green functions
Gast(z,), z, being Matsubara frequencies, permits us to
perform systematic perturbation expansions.

The correlation function Ji;Ji) can be related to the
commutator of position and linear momentuai. [9]),

(J;d) =€2n/(mBQy). (11) m2e*
GU(k,w)=
() = S TTO (ko) 2

The evaluation oM ;;(k,w) using perturbation theory will
be given below.

. The dynamical local-field factorﬁ;(k,w)., Eq. (4), are X f d3pf d®p’ f‘”'ilz;:p;k/z(fp,wz
directly related toM ;;(k, ), Eq. (8), according to (p—p")
. 60,8m290w €0k2 _ , 1
G(k,a)):lTMJJ(k,a))—m 1. fp *k/2) pz—mw/(ﬁk)—in

(12) 1 2
) (15

Note that the equivalence of Eq§) and(8) with p;— M/ (hk)—in
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At zero temperature, an analytical expression@t(k, w) 10" — —
can be found, seft], and[13] for the static limitG(!)(k,0). T N T e voncy asymplofcs
The limiting cases are in accordance with the compressibility T N ofEa.{18)

. . 5 ~ — — - Drude rormula
sum rule, ||WRA)OG(1)(|(,O): k2/(4k|2:), and the relation to the 10" \\ ------ ~ high frequency asymptotics |

of the Drude formula

pair distribution at zero distance, lim..G™M(k,0)=1/3,

which are correct within the order of perturbation theory

considered here, i.e., comparing with properties of the uncor-_ 10°

related fermion gag14]. In higher orders of perturbation &

theory, the static limit has been investigated by different au-g¢

thors[3]. We will not go in this direction since we are inter- 10°

ested in the long-wavelength limit at arbitrary frequencies to

give the link to the theory of electrical conductivity in Cou-

lomb systems. 107
In the long-wavelength limit follows lig,,G™M(k,w)

«k?. Thus, no contribution from these exchange terms of

—Im s"(O,m)

first order inV will modify the behavior ak—0. To include 107" = o w o
collisions in Born approximation, we have to take into ac- frequency w/a,
count the second-order tertd J(k, ). The contribution FIG. 1. Imaginary part of the dielectric function in the long-
due to the explicit dependence & from J{), caused by wavelength limit Eq.(18) as a function ofw, compared with the
the electron-ion scattering, is evaluated as Drude formula. An electron gas at=3.5, T=300 K is consid-
ered. The inset displays the imaginary part of the inverse dielectric
G(Z,V)(k,w) function near the plasma frequency.
fomzwﬂé 3 342 which is a Drude-like expression with the plasma frequency
B 32776e2nh3J d pf d*aVi(@)S(a) p| =e n/(eom) and a frequency-dependent relaxation time
T Hw)=o IIm G(0,w)/ w [15]. According to the discussion
1 fp—riz—qr2= Fprwztan above, the flrst order ter&)(k,») does not contribute to

X

the long-wavelength limit. The second-order term, Edg),

k+p-q pk+p-q—mMaw/h—i
PP A PP 7 gives a result for the dielectric function shown in Fig. 1. The

5 2e’nk (p,+0,/2)a, Drude formula is obtained replacings®(0,0)/w by
qz+ hollO(k o) mo lim,,_.oG®(0,0)/w. The high-frequency asymptotics of the
' p,+Q,/2— —— 7k —in Drude formula, In&(0,w) T(O)w,23|/(u3, is also shown in Fig.

1 (dotted ling. The account of the frequency dependence of
(Py—0,/2)0, G®)(0,w) leads to deviations from the Drude expressions for
- . (16)  frequencies higher than the plasma frequency. Using a
p,—q,/2— Me —iy saddle-point expansion, the asymptotic behavier *°was
2 hk found (dash-dotted line The inset shows the behavior of
—Ime 1(0,0) near the plasma frequency. Due to the
Si(q) =(Zjjexdiq- (Ri—R;)1/(nQy)) is the structure factor dependence of(w), the plasmon peak becomes narrower
of the ion system. In the long-wavelength limit to be consid-compared with the Drude expression. Furthermore,
ered below, terms arising from the electron-electron interacdue to the finite real part o66(0,w) the peak position is
tion do not contribute because of momentum conservatiorshifted.

Furthermore, the terms related toJ{"=ief?k/ For w—0 we get the well-known Born approximation for
(M2Q0) 3 ,,p2ng, contain a factork and do not give any the dc conductivityo .= eow57(0) of a degenerate weakly
contribution. interacting electron system, df16],
In the limit k—0, we find from Eq.(16)
2 3 -1
eom? w0 gy 2T f dqaeVv( fao| . (19
GD(0,0)= 32077 - nﬁo dspJ' BaaVA(9)S (q) de 202 aaPVA(a)Si(Q)f g (19
% ala M (17) The Ziman formula is obtained by introducing a screened
p-qp-q—mwlh—in potential, which can be done in a systematic way by sum
ming up the corresponding ring diagraifréd.
Using the local-field factor§(k,w), Eq. (4), the dielectric Several exact properties of the dielectric function are
function (2) can be rewritten as known [17], such as sum rules and the high-frequency be-
havior. In particular, we have
o
E(O,w): 1- 2 " ’ o dw
o[+ w? ReG(0,0)/w]+iw/m(w) " f %2 o ime (k) =S (k). 20
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A numerical check of thé-sum rule and the conductivity «<k?w»~''? has been derived fdt small compared with the
sum rule,—S{ (k)= S{")(k) =}, has been carried out for Fermi wave numbef18].
a two-component plasma with parameters=3.5 and T In conclusion, a systematic approach to the
=300 K, cf.[5]. It has been found numerically that the di- (k,»)-dependent local-field factors at finite temperatures has
electric function in the long-wavelength limitl8) obeys  been given. Furthermore, we derivedkad)-dependent col-
both sum rules within an accuracy of 0.1%. The consistenfision term, and showed that the sum rules are obeyed in the
consideration of both the real and the imaginary part of th@ong-wavelength limit. Arbitrary degeneracy is considered,
frequency-dependent collision tel@(0,w) is crucial for the  and the direct connection with the theory of dc conductivity
sum rules. Taking into account a frequency dependence i3 shown.
the relaxation time only, i.e., neglecting B¢0,w) in Eq. The single moment Born approximation, Eqg), (15),
(18), leads to a considerable violation of the sum rules of theand (16), can be improved systematically in two directions:
order of 10%. Until now, a check of the sum rules at finite (i) Higher order perturbation theory can be applied to deter-
values of the wave vector has only been performed for anine the correlation functions. As well known for the limit-
classical, Maxwellian two-component plasitel] for arbi-  ing cases, the dc conductivity should be evaluated by con-
trary wave vectors. sidering a screened interaction or by treating strong

Of special interest is the third-moment sum r&ig’(k),  collisions introducing a laddeF matrix [9]. Also, the local-
which is divergent within the Drude model. To obey the third field factors are improved introducing the pair distribution
moment as well as the compressibility sum rule simultafunction. (i) Taking into account further moments of the
neously, frequency-dependent local-field factors are requiredingle-particle distribution function, s€@®,16], the results
[18], i.e., a frequency-dependent collision term is neededobtained by perturbation expansion of Ef) are consistent
Evaluating the collision terr(il7) in the high-frequency limit  with the Chapman-Enskog or the Grad approach to the dc
using the saddle-point method, ém'(0,w) behaves as conductivity.
o~ %2, implying that the third-moment integral converges, After improving the Born approximation, a comparison
whereas higher moments are nonconverging. Note that thesgith experimental data for the dielectric function in hydro-
are different forms of the asymptotic behavior that aregenlike plasmas or, in a more specific treatment of the elec-
quoted in the literature depending on the approximationgron system, in condensed matter would be of interest. A
made, such as° in [7]. For the degenerate electron gas, possible way to check the present dielectric function is to
due to the electron-electron collisions a high-frequency beealculate the dynamical structure factor that is available from
havior of the imaginary part of the dielectric function molecular dynamics simulations; ¢fL9].
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