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Competition between glassiness and order in a multispin glass
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A mean-field multispin interaction spin glass model is analyzed in the presence of a ferromagnetic coupling.
The static and dynamical phase diagrams contain four pHpseamagnet, spin glass, ordinary ferromagnet,
and glassy ferromagneand exhibit reentrant behavior. The glassy ferromagnet phase has anomalous dynami-
cal properties. The results are consistent with a nonequilibrium thermodynamics that has been proposed for
glasses[S1063-651X99)51108-2

PACS numbsd(s): 75.10.Nr, 64.60.Cn, 75.10.Jm

Recent work has emphasized the importance of aging astaonal ferromagnetnonzero spontaneous magnetization but
fundamental property of glassy systems and given it a prero replica symmetry breaking or agingnd glassy ferro-
cise meaning: While simple average quantities relax relamagnet (nonzero spontaneous magnetization with replica
tively quickly to stationary values, two-time quantitier- ~ symmetry breaking for statics and aging for dynamiesl
relation and response functionshow that the system never the phases meet at a multicritical poifit) The critical fer-
truly equilibrates. Whenever the separation between the twoomagnetic exchange separating the spin-glass and glassy
times is comparable with the age of the system or greateferromagnetic regions decreases with increasing tempera-
time translational invariance is violated and the fluctuationtures, so that within a finite band of exchange interaction
dissipation relationFDR) is modified. These effects are a values there occurs a sequence of phases, with decreasing
direct consequence of trapping in metastable attractors, ar’[@mperature, of paramagnet, Ordinary ferromagnet, g|assy
the modified FDR giVeS information about the OVerlap dis-ferromagnet and Spin g|ass_ Th|s has been a regu|ar|y Ob'
tribution of these attractors. This has been demonstrated eXprved feature of experimefteferred to as “re-entrance”
plicitly for several soluble modefgl-3. [10]), but is not found in equilibrium theory for conventional

However, in all these models the distribution of the ghin_ glass modelEL7]. (i) There is a finite maximum fer-
quenched random variables is symmetric, so the metastablgmagnetic exchange for glassy ferromagnetism even at zero
attractors. lack mterestlmg macroscopic structqre. This is ”%mperature for all finitp>2 [18—20. (iv) The transition
the case in a large variety of systems where biased, tuned, Q{mnerature separating glassy and ordinary ferromagnetic re-
trained interactions lead to cooperatively ordered attractor:i:jiOns first rises and then falls as the ferromagnetic exchange
yet this macroscopic ordering competes with significants jncreased beyond its value at the multicritical point,
quenched randomness and the consequent tendency towgfd epy indicating re-entrance as the ferromagnetic exchange
glassiness. Examples of such systems include models for rgs jncreased within an appropriate temperature band, with the
current neural networkg4], error correction algorithmgs],  gequence paramagnet, ordinary ferromagnet, glassy ferro-
combinatorial optimizatiof6—8], and proteind9], as well magnet, and back to ordinary ferromagn@t. The peak of
as experimental spin glass materials with ferromagnetic, aneq phase line separating glassy and ordinary ferromagnet
tiferromagnetic, or helically ordered phasgl0]. Equilib-  5155"marks a boundary between two types of onset of one-
rium analyses of many of these have found replica symmetrgtep replica symmetry breakindRSB), discontinuous for

breaking regions, indicative of glassy behavior, in theirsmajier ferromagnetic exchange, continuous for larger ferro-
phase diagrams, but so far their dynamics have not been

studied.
The purpose of this Rapid Communications is to start to 2
remedy this lack by solving a nontrivial model with both p=4
spin-glass-like and macroscopic attractors. We demonstrate ™
that (i) the ferromagnetic part of the dynamical phase dia- Paramagnet Fetromagnet

gram contains both glassy and ordinary nonglassy regions
(with aging present in the glassy gnéi) the two-time cor-
relation function in the glassy ferromagnet involves nonana-
lytic features absent in the zero-field spin glé8k The re- Glassy
sults are in accord with a proposed nonequilibrium Ferromagnet
thermodynamic description of glasddd-13. 0 1 Jo/d 2

For the model we discuss, a spheripaspin glasg1,14—
16] with a ferromagnetic interaction, we observe several in- FIG. 1. Static and dynamic phase diagram for the model with
teresting features of the phase diagrdffg. 1). (i) For both  p=4. When different from the dynamical ones, the static phase
statics and dynamics, they contain four phases: paramagnégundaries are indicated by bold lindg.is the ferromagnetic cou-
spin glass(with zero spontaneous magnetizationonven-  pling, andJ is the variance of the spin-glass couplings.

critical
dls)-
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magnetic exchange; cf14]. (vi) Wherever the onset of (P—L)ua} *(1-qy’=1. )
1RSB is discontinuous, the dynamical transition temperature
is higher than the static one, as in the limit of zero ferromag-As in the problem without a ferromagnetic tefrh4], this

netic interactior{14,15,19. procedure yields the same order parameters and transitions
We consider a model Hamiltonian that we find with our second approach, a direct dynamical
analysis.
Jo That treatment starts from the Langevin equation
Hem 3 3,48.8,8, (3 $5HZ s, gevin €0
i1<iz..<ip ij i ﬂSi oH
1) &S 2t .

with independently distributed random quenchedpin in-

teractions of mean zero and variant®!/2NP~! and non-  where#;(t) is white noise of temperaturg andz(t) has to

random two-spin interactions. The spins are subject to thée adjusted to satisfy the spherical constraint. Following and

spherical constrainE;S?=N. Mean field theory is exact for extending now-standard procedurf23] of introducing a

infinite-ranged interactions. The choice of spherical spingenerating functional, averaging over stochastic noise and

simplifies the resulting self-consistency equations, while quenched disorder, introducing appropriate macroscopic

> 2 ensures that one-step rep]ica_symmetry brea(dma time-dependent quantities and using extremal analysis in the

is sufficient. limit N—oo, there result self-consistent equations for the lo-
We have studied the model by two complementary apcal correlation functiorC(t,t") =(1/N)Z(S(t)S(t")), the

proaches. The first employs the replica formalism and perlocal  response  function G(t,t")=(1/N)Z;5(S(t))/

mits us to obtain both the equilibrium and dynamical orderdHi(t")[i.)=n, and the global magnetizatiorM (t)

parameters. It is characterized by three order parameters; the(1/N)=;(S(t)):

maximum(self-) overlapq,, the minimum(mutua) overlap

0o, the magnetizatioM, and the amplitude (£x) of the  JC(t,t")=—2z(t)C(t,t")+2G(t’,t)+BHM(t")

self-overlap part of the overlap probability distribution. The )

spherical constraint is ensured by a self-consistently deter- +BJoM(t)M(t')+Mft dt,CP~1(t,t,)G(t' )

mined Lagrange multiplier. Stationarity of the replica free 0

energy

t
+(p—1 J'dt G(t,t;)CP~2(t,t,)C(t4,t"),
F:_%JOMZ_%ﬂJz[l—(l—X)ql—qu] (p )M 0 1 ( 1) ( 1) (1 )

—HM = 1(T/x)log[ 1— (1—X)q;— X 0] ©)

(1T (M2—qo)T AG(LE) = —Z(OG(LE) +o(t—t)+(p~1)u
oy log(1—qy)+ 2(1—(1-x)g;—Xqg) @

+

t
xf dt,G(t,t)CP~2(t,t1)G(ty,t"), (10)
with respect toqgy, g,, and M yields the self-consistency t'
equations
M (1) =—2z(t)M (1) + BH+BIM (1) + (p—1)
M=(BH+BIM)(1-0), 3 t
xj dt,;G(t,t;)CP~2(t,t;)M(ty). (11)
do=u(1-®)%af '+ M?, 4 °
b1 p-1 Together with the spherical constrai@(t,t)=1, Eqgs.(9)-
d1—Go=m(1-a)(1—-qgy)(ay "—as ), (5 (11) determine the dynamics completely. However, even for
Lo _ Jo=H=0, they have not yet been solved. We concentrate on
where we have used the shorthands=3pB°J° and q  |ong times, where(t) andM(t) reach stationary values and
=XQot+(1-x)qq. _ a self-consistent solution is possible under the assumption
For the equilibrium (statig theory, a fourth self- hatc(t,t') andG(t,t’') have time-translation-invariant be-
c_ons_|stency condition is provided by requiring that the de{,avior for t—t')<t’ and simple aging behavior fort (
rivative —t")>t' [1]:

F T[1 1-q q;-qy B2 . C(t,t')=Cqt—t')+ Cpg(t,t") (12)
PR D — _— — — 7 g il ]

ax 2| x? ogl—ql x(1-1q) 2 (A1~ o)

G(t,t)=Gg(t—t")+Guq(t,t"), (13)

B (M?=do)(d1—do) ©
where in terms o\ =t'/t, C,q(t,t")=C(N) and G,q(t,t")

(1-9?
=gG(N\)/t, with limiting valuesCg(0)=1—q4, Cg()=0,
vanish. Equation$3)—(6) are then solved foggy, q;, M, C(1)=gq4, andC(0)=qq. Thus,q, is the plateau value o@
andx. reached for Kt—t'<t’, andqq is its asymptotic {(— )
To obtain the dynamical order parameters one employdimit. In the stationary regime the conventional fluctuation-
instead of Eq(6), the marginal stability conditiofil4,21,22  dissipation theorem
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IC(t—t’ 1, =3
%ﬂ@st(t—w (t>1) (14) P

Paramagnet Ferromagnet
T
holds, while in the aging regime one has instead the modified

fluctuation-dissipation relation

ICaq(t,t")
at’

-
=TeGag(tit'), Te=1, (15 8\ 6\ .4\.2\\0

o 2
i.e.,dC(N)/dN=TG(N).

At long times the time-derivative terms on the left-hand
sides of Egs(9)—(11) can be neglected. The asymptotic so-
lution found in this limit for the aging regime admits a
reparametrization invarian¢@4]: if C(t,t") is a solution, so In the largep limit, the dynamical smalB, spin glass
is C[h(t),h(t")], with h(t) an arbitrary monotonic function  ansition temperaturdy approaches a finite limit 12e.
of t. Thus we cannot find the complete time-dependence oo glassy ferromagnetic phase extends oulge Jp/v2,

C andG from the asymptotic equations alone. Neverthelesswith its maximum temperature, T2/e achieved atJ,

we can solve_foM, X, o, andd,, f|n_d|ng the same re_sults =Jp/(ev2). The static spin glass transition temperatufg

as V\{er? obtained above by the replllca treatment in its “dy-at smallJ, goes to zero like 4iogp [16], so the spin glass
hamics” form. .No further assumptions 0@ and G are phase disappears, but the glassy ferromagnetic phase re-
needed to obtain these results. mains.

. We .restrlct ourselves =0 in th|s Rapid Commumca}- The glassy state is characterized by a plateawy; in the

tion. Figure 1 shows the phase diagram of the mod_e'_r N correlation function, the length of which is age-dependent.
—Jo space fqrp=4. The general featurles'are not.sensmve ©The behavior near this plateau involves power laws. An ex-
p. For sufficiently weak ferromagnetic interactidlg, we ponenta characterizes the decay at the end of the short-time

find - the same rgsults as f.O.KJO:O: a_dynamical regime (the approach to the platealC(t+ 7,t)=C(7)~q;
paramagnetic-to-spin glass transition at atemperatgnamd + const/?. Using Eq.(10) in the FDT regime, we find an
a static transition at a lower temperatdrg. The spin glass equation fora

states(both dynamical and equilibriupinvolve 1RSB, with
0Jo=M =0, andq, is discontinuous at the transitions, where r?(1—a) (p—2)(1—qy)

x—1. ForJ>Ty (T, for staticg, there is a Curie temperature T(1-2a) = 2q )
T., below which the paramagnetic state is unstable against !

the onset of spontaneous magnetization. For a range of tejz|ig in both glassy ferromagnetic and spin glass phases.
peratures belowl; this ferromagnetic state has a nonzeroThys a is independent o, sinceq; is fixed by Eq.(7).
spin glass order parameter, but no glassy propefties SB For Jo=0 the asymptotic dynamical equations have the
or aging: q;=0o. However, it is unstable, at low enough exact aging solutior€(A\)=\" (0<w»<1) [1], which also
temperatures and not too lardg, against the formation of & hods forJ,>0 in the spin glass phase. In the glassy ferro-
glassy ferromagnetic state with nonzekb, qo, and q;  magnetic phase(\) is nonanalytic fon—1, i.e., at the end
>(o (Which implies aging Below a temperature-dependent of the plateau and the beginning of the aging regime. We
critical value ofJo, the ferromagnetism of this state becomesmake the Ansatz’(\)=1-B(1—\)?+O[(1—\)?"] and
unstable, and one recovers the simple spin glass phase. Ajhd, using the result16), that the exponertt must satisfy
four phases come together at the paigeT=Ty4 (Jo=T
=T, for statics. I'’(1+b) T?1-a)

The upper boundary of the glassy ferromagnetic phase XF(1+2b) = r(1-2a) (17)
rises asl, increases fronTy (T, for static$ and reaches a
maximum atly/J=p(p—1)/Z (p—2)/p]P~ 2" Itfallsto  Such an Ansatz was also employed in a different problem
T=0 atJy/J=+p(p—1)/2. To the left of the maximum, [3], where the relatiori17) was also found. A similar result
g1— o jumps discontinuously ankl— 1 at the transitiofas is expected to hold for a spin glass in a field, as well. At the
in the paramagnetic-to-spin glass transition at siigll To  boundary between the spin glass and glassy ferromagnetic
the right of the maximumg;— g, goes continuously to zero phasesb— 1, and along the AT line separating the conven-
at the transition, wher@<1, and the static and dynamical tional and glassy ferromagnetic phafes 0. Figure 2 shows
boundaries coincide. This part of the boundary is thus atines of constanb for the p=3 model.
Almeida-Thouless line like that found in the SK mod2§], The system dynamically condenses into glassy states,
though the lowT states are different: here one step of RSB ischaracterized byx or the effective temperaturé,=T/x.
exact, while full RSB is necessary in the SK model. TheThey have a configurational entropyor complexity
overall shape of the boundary is similar to that in hepin  [11,12,26,27 Z= — (dF/dT) = (X3/T)(dF/x), that fol-
glass in an external field 4,15, though the relation between lows from Eq.(6). Z is a positive constant in the spin glass
the two phase diagrams is not elementary because the ordé@®6], and, of course, it is zero in the ordinary ferromagnet. In
parameter equations are coupled. the glassy ferromagnet it interpolates smoothly between

FIG. 2. Dynamical phase transition lin€solid) for the model
with p=3, and lines of constarit in the glassy ferromagnet.

(16)
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these two values, and it vanishes at the transition to the oithe specific heatas defined hejeacquires gnegative con-
dinary ferromagnet, wherg,—q; . tribution from changes in the shape of the free energy land-
The specific heat, defined as the limit of the energy dif-scape with temperature.

ference between states obtained by rapid quenches to two In summary, we have been able to elucidate explicitly the
slightly different temperatures, divided by the temperatureconsequences of the competition between glassiness and fer-

difference, has two terms: C=dU/dT=TdS/dT
+T.dZ/dT [11,12], with the intravalley entropy given by
S1=—(dF/dT)1, viz.,

Si=3In(1—q)—F(BHH1+(p—1)a}—pa) 1.
(18)

This is exactly the entropy of a single TAP vall§g6,2g

romagnetic ordering in the statistical mechanics and long-
time dynamics of an asymptotically soluble model. We have
found several features and extended and verified the applica-
bility of concepts devised for spin glasses. These results can
shed useful light on the many other important problems, in
physics and other fields, where ordering competes with
quenched disorder.
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