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Intrinsic localized modes and chaos in damped driven rotator lattices
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It is shown that intrinsic localized rotational mod@sRMs) in parametrically driven damped lattices of
coupled classical dipole rotators can become chaotic without losing their localized character. Insight into this
behavior is obtained by means of a nonlinear stability analysis. Moreover, we discuss a robust scheme for
exploiting a spatially extended chaotic state to generate stationary randomly spaced arrays of driven ILRMs,
and show that the associated absorption exhibits unusual signd®t€63-651%99)51308-1

PACS numbgs): 05.45-a, 63.20.Ry, 63.20.Pw, 78.20.Bh

While \(|brat!ongl |ntr|.n5|_c Ioca_lhzed modd#_Ms) arising —B=0,sin(6)+ f,(t)+ 75’|
from nonlinearity in periodic lattices are by now well under-
stood theoreticall\f1], they have yet to be verified in the

laboratory. Here, we discuss dynamical features of intrinsic +k2|,§+1 [=sin(6y—6;,)+3 cog 6)sin(6):)].
localized rotational mode$lLRMs) in lattices of coupled B
rotators, which give promising directions for filling this gap. @)

Our model represents a simplified view of dipolar moleculesere o, denotes the strength of a hindering potential model-
with orientational degrees of freedom which are adsorbed ofhg, e.g., an adsorbate-substrate couplingis the linear
crystal surfacessee, e.g.[2]) or occur in crystals such as damping constant, arkb is the strength of nearest-neighbor
KCN [3]. Josephson junction laddefd] also fit into this  (NN) dipole-dipole coupling. The lattice is oriented along
scheme, although here we will treat the rotators as opticallyyith the dipoles rotating in th&z plane. The driving force
driven electric dipoles. Atomic scale localized dynamicalf(t) is parametric for the case of dipoles coupled to an ex-
structures at surfaces may be of technological interest in theernal electric fieldf,(t) = f4 cosgt)sin(4), and it is non-
context of high temperature catalytic processes or high derparametric for an ac-driven Josephson ladder. We focus here
sity memory units. on the parametric driving case. Our parameter values are
ILRMs are stationary solutions of the coupled nonlineark,=0.1, 0,=1, f4=1, andy=0.1.
classical equations of motion and consist of a rotational cen- Stationary solutions are efficiently obtained by invoking
ter comprising one or few rotating dipoles plus librationalan extended rotating-wave approximatiGRWA). We in-
wings. ILRMs in undriven lattices were proposed recently byclude frequencies ranging from the first subharmonic of the
Takeno and Peyrard5]. However, real systems exhibit driving frequency(to describe the primary librational re-
damping, so that external driving is needed to sustain statiorfPons¢ through the second harmonioeeded for the free-
ary modes. Hence, our focus is on continuously driven andotor limit). Thus we take
damped lattices. In contrast to the recently discussed case of

transient optical excitation of vibrational ILM$], we will (D)= wdtr =

see that the richer dynamics of driven rotator lattices leads to 4

a robust scheme for both creating and detecting ILRMs, +21 [uf™ sin(nwt/2) +v{" cognwt/2)], (2)
n=

within the simpler case of continuous optical driving. This is

achieved by exploiting the existence of a regime of spatialljynere «, is fixed at 1 for rotational motion and is zero for
extended chaotic response. We will also discuss a differenfyations. After substituting this into Eql), we project out
regime where the system exhibits an interestiogalized equations for U|(n) and Vl(n) by multiplying by 1

chaotic response. While aspects of chaos in systems with one - ; :
. ; . N(wyt/2), cospgt/2), etc. and numerically integrating over
or a few rotators have been discussed in the literatsee, two driving periods 4r/wg. The resulting set of coupled

e.g., [7]), ILRM-type excitations in lattices were not in- nonlinear equations is solved using standard numerical meth-

cluded. Our concern is dynamical behavior that combineg ¢ 50 the predictions are verified by molecular dynamics
both phenomena. (MD)

He_re we dl_scuss a o_ne-dlmensm(lm) lattice of identi- The relevance of a stationary solutionz(t)
cal dipoles with one orientational degree of freedépper . . ) ) -
site!, although we have generalized our work to unrestricted=[01(), 62(1), . . . ,61(1), 65(t), . . .] obtained this way de-
rotations and higher dimensiof&]. After rescaling the time ~Pends crucially on its dynamical stability. The Floguet sta-
to eliminate the dipoles’ moment of inertia, we obtain the Pility analysis is based on the linearized equations of motion
equations of motion in the dimensionless form for perturbationsoz(t) of the stationary mode. Following

Ref. [9], we set up the linear mappingz(t+T)
=M. 6z(t), whereT is the predicted mode period. If the
*Present address: Infineon Technologies, Munich, Germany.  matrix M has any eigenvaluea; with |\j|>1, z(t) is
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unstable; otherwise, it is stable. Beyond the linear regime, : t
the perturbation eigenvectofy;} of M are useful for ana- '
lyzing nonlinear instability. We monitor the strobed differ-

ence between the mode’s actual trajectory, obtained in an
MD simulation, and its predicted RWA trajectory, in terms

of the eigenvectors, Piy

Zup(NT) = Zgya(nT) = 2 aj'x;- &)

The amplitudesajn are not only convenient for simple veri-
fication of predicted instability growth rates in the linear re- Prges
gime, but they also provide important insights into complex
nonlinear instabilities, as will be seen below in our discus- Pi+2
sion of localized chaos.

The simplest types of response for an isolated driven di-
pole comprise zero response, librational response 2,
and rotation awy. For a lattice, we find stable ILRMs over _ - ) o
a range of driving frequencies. These modes consist of a FIG. 1. Blfurca_tlon diagrams for_thg period-average kl_netlc en-
rotational center aiy, accompanied by either spatially de- ergy p, at the .rotatlonql cgntdb apd its flrsF and second nglghbqrs,
caying librational wings a4 or by nondecaying librational for an ILRM in a periodic ten-dlpole_lattlce. The MD simulation
wings atwgy/2. Moreover, the rotational centers can involve was begun for t_h_e S‘?b'e RWA solution @4=3, and after 1000
several adjacent sites, without qualitatively altering the stagycIes of the driving fieldp, was plotted for the next 500 cycles

o : . . . . (thin dotg. The frequency was then lowered by 0.001, and the
b_|||ty proper_t|es. _For clarity, we first discuss ILRMs having a process repeated. Also shown are the RWA predictions for stable
single rotating dipole.

e ) . ILRMs (X) and for stable, spatially extended, subharmonic acoustic
For large driving frequenciesu(;>2.9) we find ILRMS  jiyational modes(C]) (upper panel only For clarity, the figure

that closely resemble the undriven modes discussed in Refjes not include several other stable and unstable predicted station-
[5], i.e., having a rotational center and spatially decayingyry solutions.

wings, all atwy. However, the external force causes these
modes to occur in pairs consisting of one stable and onenly two of the perturbation eigenvectors gain appreciable
unstable solution, differing mainly by the phase of their ro-amplitudes with time. These are an instability eigenvegtor

tational centers. We begin with the stable ILRM ®§=3,  jith eigenvalug),|>1 (denoted as thprimary instability)
slowly decreaseoy in our MD simulation, and monitor the gnq jts associated “quasisymplectic” partngs with X,

rescaled period-average kinetic energy at eachl site — exp(~ yT)/\, (secondaryinstability). Both y; and y, are

1 Ty well localized, and they become strongly coupled anhar-
pi(t)=—— J 62dt, (4)  monically as the instabilities grow in time. It is this interplay
wgTa Jt which leads to the localized chaos: after the initial exponen-
tial growth phase of the primary instability it begins driving

whereT(_,:zw/wd_ is the plriving period._NOt? th<’=)rf|(_'f)~1 the secondary instability. As the secondary instability
for rotational motion, whilep,(t)<1 for librations. Figure 1

surveys some results. When the frequensy~2.85 is 2.0 ¢
reached, the ILRM spontaneously develops a spatially ex-
tended, subharmonic librational background of acoustic char-
acter, i.e., the background dipoles librate in phase. Further
decrease oy to ~2.48 leads to an additional subharmonic 52"
bifurcation, and finally after a Hopf-bifurcatiofsee, e.g., !
Ref. [14]) to a range of chaotic responsew{
~2.38,. ..,2.41), which has an interesting nature.

First, we notice in Fig. 1 that the chaotic spread in phase
space decreases with increasing distance from the mode’s
rotational center; the chaos is localized. Second, the mode’s

time trajector!es{ 6(1)} (not given herg‘e_r(?veal two time- FIG. 2. Amplitude modulija®”| from the stability eigenvector
Scales.. The .flrSt corresponds to t_he d”‘"!"g perTQ,d and description[Eq. (3)], applied to the finite time evolution of the
the trajectories appear nonchaotic on this t|mescale_. HOW;nstable ILRM atwy=2.4, in the lattice of Fig. 1. For clarity, we
ever, on a larger time scale-(100Ty at wg=2.4), we find  gyoped the amplitudes at integer multiples af,4 i.e., twice the
that the envelopes of the trajectories exhibit a chaotic “pulsyiprational period, to eliminate fluctuations caused by the subhar-
ing,” whose details are sensitive to small changeswgf  monic nature of the primary instabilitithick solid ling. Only the
Insight is provided by the expansion of E@), using the  primary instability and secondary instabilitshick dashed lingac-
Floguet eigenvectors for the unstable RWA-predicted ILRM.quire appreciable amplitudes, whereas those for all other eigenvec-
Results formy=2.4 are given in Fig. 2, which shows that tors (thin solid lines remain small.
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FIG. 3. Plots ofp, for the frequency ramping-up sequence ap- Fig. 3, for several ramping-up sequences. For each sequence, the
plied to a 256-dipole lattice. The sequence starto@t 2, in the ~ frequency was ramped as described in Fig. 3, and owing to the
region of spatial-temporal chaotic responds/apunov exponent spatial-temporal chaos at the initial time, the final ILRM array is
=0.32). The driving frequency is held at this value for 100 cycles,different for each. The small features af~2.3 are due to an
after which it is linearly increased by 0.002 per cycle. Shownpare instability in the librating portions of the lattice.
for (8) wg=2.05,(b) wg=2.30,(c) wy=2.60, andd) wy=2.90. As
the frequency increases beyond the chaotic region, the librationdecreases to zero, resulting in a stationary, randomly spaced
and rotations “decouple,” and the librational response decreasesgirray of stable ILRMs, most of which are composed of sev-
At large driving frequencie&d) the lattice is in a stationary state of eral adjacent rotators. We have also used this generation
randomly spaced ILRMs, between which the dipoles execute vergcheme for 2D lattices of scalar coupled dipoles and for 1D
small amplitude librations. The librations disappeatvgt=2.9. and 2D dipole lattices with unrestricted 3D rotati¢B$ The

scheme proves to be very robust, leading in all cases to ran-
becomes large, it “switches off” the primary instability and dom arrays of ILRMs.
soon afterwards collapses as well. The system is then close This technique for generating driven ILRMs from a cha-
to the initial conditions and the process begins again. Thetic state also provides a means for their detection, through
intervals between successive collapses of the primary instseveral unusual features exhibited by the associated period-
bility are irregular, and Poincare sections prove that the beaverage power absorption. These are conveniently illustrated
havior is indeed chaoti€Lyapunov exponenrt0.027 atwqy via the quantityp=1/N =,p,, whereN is the total number of
=2.4). Note that the presence of dissipation in our systensites. For stationary respongeis proportional to the absorp-
seems essential for localized chaos, since in the Hamiltoniation divided bywﬁ, and Fig. 4 plotp(wy) for several rep-
case (y=0), so-called Arnold diffusion should prevent lo- etitions of the ramping-up sequence discussed above. First,
calized chaos in gener&ll0,11. Note also that while the because of the small random noise used to establish the ini-
range of parameter space for these chaotic ILRMs is quitéially chaotic response, each sequence produces a different
small, other types of local chaos have been discussed fabsorption curve. All of the curves exhibit three characteris-
various driven dissipative systems that do not involve intrin-tic regions:(a) a small, initially chaotic region(b) a region
sic localized mode$12]. In view of those results and the of roughly linear decrease until the librational response dis-
chaotic ILRMs found here, we anticipate that driven chaoticappears, an¢c) a flat plateau ¢4~2.9,. .. ,4.9) where, to a
ILMs should also exist in Josephson ladddrs3] and  good approximation, the absorption of the created ILRM ar-
damped driven lattice vibrational systems. ray varies asw3. The plateau heights directly reflect the

Decreasingwy further, we find that the localized chaotic number of rotating dipoles captured from the initially chaotic
attractor abruptly disappearsaf~2.38, due to @oundary state. Finally, there is a cutoff aiy~5, beyond which the
crisis[14], in which the attractor crosses into another mode’sparametric drive cannot supply energy fast enough to sustain
basin of attraction and finally evolves into the stable, spathe rotational motion.
tially extended, subharmonic acoustic librational mode. Con- In summary, our study of optically driven and damped
tinuing to decrease the driving frequency, we find that thisperfect lattices of rotating dipoles has revealed unusual and
mode becomes unstablea~ 2.04, below which it exhibits useful connections between intrinsic localized rotational
temporal and spatially extended chaos, which can be vieweghodes and chaos. First we have shown that such modes may
as a mixture of librational and rotational motion. We now exhibit a long timescale chaotic behavior without losing their
discuss how this chaotic response can be exploited to gendocalized character. A stability perturbation eigenvector
ate stable, nonchaotic ILRMs. analysis of this mode’s MD trajectories showed that the

In MD, we begin driving a 256-dipole lattice in this cha- chaos stems from the dynamics of a pair of localized eigen-
otic regime atwy=2, adding small random noise until the vectors, which become strongly coupled anharmonically
chaos has fully developed. We then slowly ramp up the drivover extended times, but remain localized. Second, we have
ing frequency, and as we leave the range of chaotic responsexploited the existence of a spatially extended chaotic re-
we pick up rotational domainsp(=1) and subharmonic li- gime to demonstrate a simple and robust scheme for opti-
brational domains (;,<1) from the chaotic state. This is cally generating ILRMs, by slowly increasing the driving
seen in Fig. 3. Aswy is increased, the librational response frequency out of the chaotic regime. Third, we have shown
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that monitoring the classical absorption during this procesenologically from observed lifetimes of small-angle libra-
yields unusual signatures. These phenomena also carry oviéenal transitions, the speculative quantum theory of vibra-
to higher-dimensional systems with unrestricted rotationafional local mode damping in Ref15] suggests that modi-
degrees of freedorf8]. fications of our assumed linear form may be necessary at
Our model and parameter values were chosen both to féygh energies. Nevertheless, our results strongly suggest that

cilitate the MD simulations and to reveal interesting dynami-" €Xtensions to more sophisticated models, the interplay be-
fween chaos and intrinsic localized modes can play an im-

cal phenomena .Of coupled dipole rotator Iattlce_s. To_trea ortant and practical role in the study of strongly anharmonic
candidate experimental systems, however, the inclusion ttices

additional aspects, such as vibrational degrees of freedom

and electronic polarizability will likely lead to even more  This work was supported by the Alexander von Humboldt
complex dynamics. And while values of the damping con-Foundation and NSF Grant No. DMR-9510182. We thank L.
stant could be computed perturbatively or estimated phenontloria for a preprint of his work.
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