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Recently, Watts and Strogafiature (London 393 440 (1998] offered an interesting model of small-
world networks. Here we concretize the concept of a “faraway” connection in a network by defining a far
edge. Our definition is algorithmic and independent of any external parameters such as topology of the
underlying space of the network. We show that it is possible to control the spread of an epidemic by using the
knowledge of far edges. We also suggest a model for better product advertisement using the far edges. Our
findings indicate that the number of far edges can be a good intrinsic parameter to characterize small-world
phenomena.S1063-651X%99)50908-2

PACS numbes): 84.35+i, 02.40—k, 05.45.Gg, 87.23.Ge

The properties of very large networks are mainly deter- Consider a graplinetwork with n vertices ancE edges.
mined by the way the connections between the vertices areet Vi denote the number of distinct paths of lengtie-
made. At one extreme are the regular networks where onlyween the vertices andj. For a simple graph/,\filj is one if
the “local” vertices are interconnected and the “far away” there is an edge between verti¢esdj; otherwise it is zero.
vertices are not connected, while at the other extreme are th&e now concretize the idea of faraway connections by de-
random networks where the vertices are connected at raffining a far edge. Let an edgg between verticesandj be
dom. The regular networks display a high degree of locah far edge of ordeg if it is an edge for which/\/{]“lzo [6].
clustering and the average distance between vertices is quitt 4 ... denote the minimal order of the far edge. We note
large. On the other hand, the random networks show neglihat, Umin Satisfies the property that, for d||g,umm,j\/:.
gible local clustering and the average distance between ver:q J
tices is quite small. The small-world network$,2] have Figure Xa) shows an example of a far edge of minimal
intermediate connectivity properties but exhibit a high de-grger one and Fig. (b) shows a typical graph with far edges
gree of clustering as in regular networks and a small averaggnq their orders. We note that none of the edges in a com-
distance between vertices as in random networks. A veryjetely connected graph are far edges of any order, while all
interesting model for small-world networks was recently pro-edges in a tree are far edges of all the orders. Henceforth we
posed by Watts and Strogalta]. They found that a regular il assume that a far edge has minimal order one unless
network acquires the properties of a small-world networkgiated otherwise.
with only a very small fraction of connections or edges Tg generate small-world networks as well as other types
(about 1%) rewired to faraway vertices. They demonstrategy networks, we follow the procedure given in RE3]. We
that several diverse phenomena such as neural netlkks  start with a regular network consisting of a ringrotertices
power grids, and collaboration graphs of film actff$can  with edges connecting each vertex toktsearest neighbors.
be modeled using small-world networks. Also, the spread ofach edge is rewired with probability avoiding multiple
an epidemic is much faster in small-world networks than ingqges. Theo=1 case corresponds to a random network. The
the regular networks and almost close to that of random netyeworks obtained witlp~0.01 correspond to small-world
works. networks|[3].

In this paper we suggest a possible way of characterizing e have generated several networks from the reguar (
small-world networks. The basic ingredients of small-worldzo) to the random §=1) case. For each network we cal-

networks are the faraway connections. We introduce a notion
of far edges in a network to identify these faraway connec-
tions. Our definition of a far edge is independent of any
external parameters such as the topology of the underlying
space of a network and depends only on the way connections

or edges are made. We claim that the rapid spread of an 1,2 1,2
epidemic in a small-world network as found by Watts and b

Strogatz[3] is due to these far edges. This allows us to v
propose a mechanism to control the epidemic using the same 2,3 2,3

far edges that are responsible for the rapid spread. We further
demonstrate the utility of our notion of far edges by offering @) (b)
a better method of advertising. FIG. 1. Examples of networks consisting of far edgegairthe
edge between vertices a and b is a far edge of order one, which is
also its minimal order(b) shows a general graph with far edges of
*Electronic address: sagar@prl.ernet.in different orders. The orders of the far edges are shown near each far
Electronic address: amritkar@prl.ernet.in edge.
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FIG. 2. Graph ofC(F)/C(0) andL(F)/L(0) as functions off, . . .
whereC is the clustering coefficient, is the average path length, FIG. 3. Graphs of the fraction of vertices affected as a function

andF is the ratio of the number of far edges to the total number ofc_)f ti.me steps. Cu;jv«t;ca) Is the epidr(]emic spr?jadhwith%ut imn:junizg-
edges. This figure is similar in nature to the plotGyfp)/C(0) and tion; curves(c) and (f) represent the spread when the random im-

L(p)/L(0) as functions op. The small-world networks lie around munization is appliedsee texlfpr T:,7 and 2 rgspgctively; CUIVes
F=0.01. (b) and(e) shows the spread if the immunization is carried out for

the vertices with highest degree first and then in descending degree
. . for =7 and 2, respectively; curvesl)) and (g) show the spread
culate the average path lengtt{p) and clustering coeffi- \hen the far edge immunization usedsis 7 and 2, respectively.
cientC(p). The quantityl (p) denotes the average length of The simulations are carried out on a small-world network of 1000
the shortest path between two vertices, &f@) denotes the  vertices and 10 000 edges. The plotted results are averaged quanti-
average ofC, over all the verticey, whereC,, is the number ties over 500 seeds for an epidemic.
of edges connecting the neighborsvohormalized with re-
spect to the maximum number of possible edges betweenism for the rapid spread of the epidemics in small-world
these neighborfs]. Next we determine the far edges in thesenetworks is due to the traversal of the disease along the far
networks. Let denote the ratio of the number of far edgesedges. Each such traversal opens a virgin area for the spread
to the total number of edges. We find that initially, to a goodof the epidemic, leading to rapid growth.
approximation,F is equal top for p<0.1 and then it in- Clearly, if the far edges are responsible for the rapid
creases slowly until it saturates to a value of about 0.4 fogrowth of the epidemic, then we should be able to effectively
p=1. The saturation value depends on the chosen realizatiazontrol the spread by preventing the traversal of the epidemic
and could vary from 0.2 to 0.8. It turns out that the numberalong the far edges. To test this hypothesis, we propose the
of far edges of minimal order higher than one are negligiblefollowing mechanism to control an epidemic. We assume
In Fig. 2 we plotC(F)/C(0) andL(F)/L(0) as functions that we have sufficient knowledge of the network and we
of F. This figure is similar in nature to the plot of have identified all the far edges. We note that identification
C(p)/C(0) andL(p)/L(0) as functions op (Fig. 2 of Ref.  of far edges requires only the knowledge of vertices and
[3]). The small-world networks can be identified as thoseedges and hence should be possible in many practical situa-
with C(p)/C(0)~1 andL(p)/L(0)~L(1)/L(0).From Fig. tions. Letr denote the time steps that have elapsed between
2 we see that this corresponds f=0.01. ThusF can be the beginning of the epidemic and its detection. iredenote
used as a parameter with which to characterize networks théite number of vertices that can be immunized at each time
interpolate between regular and random cases. We note thsitep. To block a far edge, we first immunize one of the two
unlike p, Fis an intrinsic quantity. The quantit¥ is defined  vertices connected by this far edge. Immunization is carried
for any general a network and does not depend on any speut by first blocking all the far edges and then immunizing at
cific algorithm used for generating a network. Henge random. If the number of far edges is greater tharthen
should prove to be a better parameter tpan blocking all the far edges will take more than one time step.
To further investigate the importance of far edges, we In Fig. 3 we show the fraction of vertices affected as a
consider the problem of spread of an epidefik Consider  function of time steps for a small-world network. Cur(s
an epidemic starting from a random vertéseed. We as- shows the uncontrolled spread of the epidemic. Cufdgs
sume that at each time step all the neighbors of infecte@nd(g) show the spread of epidemic with the control method
vertices are affected with probability one, which is the mostsuggested above far=7 and 2, respectively. For compari-
infectious case, and the vertices that are already affected d&on, we show, by curveg) and(f), the epidemic with only
and play no further role in the spread of the epidemic. Here;tandom immunization for=7 and 2, respectively. It is ob-
neighbors of a given vertex means all the vertices connectedous that the far edge control mechanism proposed here is
to it by edges. As found by Watts and Strogd84, the very effective. For larger some of the far edges are already
spread of an epidemic in small-world networks is almost agraversed by the epidemic, decreasing the efficiency of our
fast as that in the random case. We propose that the mechesntrol mechanism. Comparing the far edge immunization
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FIG. 4. Graph of the asymptotic difference between the number
of affected vertices in random and far edge immunizatidnas
function of number of vertices immunized in one time stepThe
three curvesa), (b), and(c) are for/=0.0022, 0.0084, and 0.0162,
respectively. Curveb) corresponds to the small-world network.
The other curves demonstrate the behaviaF @i either side of the
small-world network. The other parameters are as in Fig. 3. of choosing the initial centers. In one way the centers are

chosen at random and in the other they are chosen as one of
and the random immunization, we find that the far edge imthe vertices in a far edge. Figure 6 shows the number of
munization decreases the rate of spread of the epidemic mopeople informed about the product as a functiort.oft is
effectively but takes longer to completely stop the spreactlear that the choice of centers using far edges has a definite
[see Fig. 3, curvedd) and(g)]. Further, to test the effective- advantage over that of random choice.
ness of our method we compare the results with another To conclude, we have introduced the concepanfedges
method of immunization. We order the vertices by degreein networks. Our definition of a far edge is in accordance
Immunization is carried out by starting with the vertex with with the intuitive idea of a far away connection between two
the largest degree and then going down from there. The reertices. The advantage of our definition of far edge is that it
sults forr=7 and 2 are shown as curvé® and(e) in Fig.  is independent of the underlying topology of the network
3, respectively. We note that results for immunization usinge.g., the underlying topology of the network [i8] is the
degree are similar to that of the random immunization. Thisopology of a circle and our definition does not depend pn it
is an interesting result which shows that the degrees of the
vertices do not play a significant role in the spread of the
epidemic.

Let d denote the asymptotic difference between the num-
ber of affected vertices in random and far edge immuniza-
tion. We plotd as a function ofn for three different values
of F (or p) in Fig. 4. The plot shows that the far edge
immunization is most effective whem is about half the
number of far edges. The reason for the decrease fof
large m is that the probability that random immunization
blocks a far edge keeps on increasingraisicreases, thereby
decreasing the difference between the two methods. The plot
of d as a function ofF for different values ofn is shown in
Fig. 5. The figure shows that the far edge immunization is
more effective for small-world networks. Also from Figs. 4
and 5 it is clear that the far edge immunization offers a
substantial benefit in terms of number of unaffected vertices 0 T T T T T
in the small-world case and this number can be as large as 0 5 10 15 20 25 30 35 40 45 50
410, which is more than 40% of the total number of vertices. t

~ Now, we consider an interesting model of product adver- g, . Graph of the number of people informed as a function of
tisement. Letr be the number of vertices or centers from curves(a) and (b) show the result for far edge centers and ran-
which a product is advertised. The information about thegom centers, respectively. The simulation is carried out on a small-
product spreads by word of mouth to the neighbors with theyorld network with 1000 vertices and 10000 edges. The initial
probability ¢, wheret is the time elapsed since the initial advertising is done from five centers. The probability functipiis
advertisement. We compare the results of two different wayshosen as);=0.8 andg;=0.18, whera =2.

FIG. 5. Graph ofd as a function ofF. The three curve&), (b),
and(c) are plotted form=30, 10, and 80, respectively. The figure
shows that the immunization method suggested here is most effec-
tive in small-world networks.
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Also, the definition is algorithmic in nature and allows the important in the spread of an epidemic, particularly in the
determination of far edges only from the knowledge of ver-small-world networks. It is also observed that the degrees of
tices and edges. We have also applied the idea of far edges ¥ertices do not play a significant role in the spread. We have
the networks that are not generated by the algorithm given ishown that the knowledge of far edges can be fruitfully uti-
Ref.[3] and arrived at similar conclusion8]. lized to control the spread of an epidemic and to achieve

We have demonstrated the use of far edges in the contrdletter advertising. Our results strongly indicate that the far
of the spread of an epidemic and in advertisement of prodedges are the key elements responsible for the special prop-
ucts[9]. Our simulations show that the far edges are indeedrties of small-world phenomena.
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not be known. Even in these cases the definition of far edge is
useful; e.g., if only a fraction of edges are known and with this
information it turns out that some edge, a3y, is not a far
edge, then after adding the information about remaining edges,
€(ij; cannot become a far edgg].



