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Characterization and control of small-world networks
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Recently, Watts and Strogatz@Nature ~London! 393, 440 ~1998!# offered an interesting model of small-
world networks. Here we concretize the concept of a ‘‘faraway’’ connection in a network by defining a far
edge. Our definition is algorithmic and independent of any external parameters such as topology of the
underlying space of the network. We show that it is possible to control the spread of an epidemic by using the
knowledge of far edges. We also suggest a model for better product advertisement using the far edges. Our
findings indicate that the number of far edges can be a good intrinsic parameter to characterize small-world
phenomena.@S1063-651X~99!50908-2#

PACS number~s!: 84.35.1i, 02.40.2k, 05.45.Gg, 87.23.Ge
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The properties of very large networks are mainly det
mined by the way the connections between the vertices
made. At one extreme are the regular networks where o
the ‘‘local’’ vertices are interconnected and the ‘‘far away
vertices are not connected, while at the other extreme are
random networks where the vertices are connected at
dom. The regular networks display a high degree of lo
clustering and the average distance between vertices is
large. On the other hand, the random networks show ne
gible local clustering and the average distance between
tices is quite small. The small-world networks@1,2# have
intermediate connectivity properties but exhibit a high d
gree of clustering as in regular networks and a small aver
distance between vertices as in random networks. A v
interesting model for small-world networks was recently p
posed by Watts and Strogatz@3#. They found that a regula
network acquires the properties of a small-world netwo
with only a very small fraction of connections or edg
~about 1%) rewired to faraway vertices. They demonstra
that several diverse phenomena such as neural networks@4#,
power grids, and collaboration graphs of film actors@5# can
be modeled using small-world networks. Also, the spread
an epidemic is much faster in small-world networks than
the regular networks and almost close to that of random
works.

In this paper we suggest a possible way of characteriz
small-world networks. The basic ingredients of small-wo
networks are the faraway connections. We introduce a no
of far edges in a network to identify these faraway conn
tions. Our definition of a far edge is independent of a
externalparameters such as the topology of the underly
space of a network and depends only on the way connect
or edges are made. We claim that the rapid spread o
epidemic in a small-world network as found by Watts a
Strogatz @3# is due to these far edges. This allows us
propose a mechanism to control the epidemic using the s
far edges that are responsible for the rapid spread. We fur
demonstrate the utility of our notion of far edges by offeri
a better method of advertising.

*Electronic address: sagar@prl.ernet.in
†Electronic address: amritkar@prl.ernet.in
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Consider a graph~network! with n vertices andE edges.
Let N i j

n denote the number of distinct paths of lengthn be-
tween the verticesi and j. For a simple graph,N i j

1 is one if
there is an edge between verticesi andj; otherwise it is zero.
We now concretize the idea of faraway connections by
fining a far edge. Let an edgeei j between verticesi and j be
a far edge of orderm if it is an edge for whichN i j

m1150 @6#.
Let mmin denote the minimal order of the far edge. We no
that, mmin satisfies the property that, for alll<mmin ,N i j

l

Þ0.
Figure 1~a! shows an example of a far edge of minim

order one and Fig. 1~b! shows a typical graph with far edge
and their orders. We note that none of the edges in a c
pletely connected graph are far edges of any order, while
edges in a tree are far edges of all the orders. Henceforth
will assume that a far edge has minimal order one unl
stated otherwise.

To generate small-world networks as well as other typ
of networks, we follow the procedure given in Ref.@3#. We
start with a regular network consisting of a ring ofn vertices
with edges connecting each vertex to itsk nearest neighbors
Each edge is rewired with probabilityp avoiding multiple
edges. Thep51 case corresponds to a random network. T
networks obtained withp'0.01 correspond to small-world
networks@3#.

We have generated several networks from the regularp
50) to the random (p51) case. For each network we ca

FIG. 1. Examples of networks consisting of far edges. In~a! the
edge between vertices a and b is a far edge of order one, whic
also its minimal order.~b! shows a general graph with far edges
different orders. The orders of the far edges are shown near eac
edge.
R1119 © 1999 The American Physical Society
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culate the average path lengthL(p) and clustering coeffi-
cientC(p). The quantityL(p) denotes the average length
the shortest path between two vertices, andC(p) denotes the
average ofCv over all the verticesv, whereCv is the number
of edges connecting the neighbors ofv normalized with re-
spect to the maximum number of possible edges betw
these neighbors@3#. Next we determine the far edges in the
networks. LetF denote the ratio of the number of far edg
to the total number of edges. We find that initially, to a go
approximation,F is equal top for p<0.1 and then it in-
creases slowly until it saturates to a value of about 0.4
p51. The saturation value depends on the chosen realiza
and could vary from 0.2 to 0.8. It turns out that the numb
of far edges of minimal order higher than one are negligib

In Fig. 2 we plotC(F)/C(0) andL(F)/L(0) as functions
of F. This figure is similar in nature to the plot o
C(p)/C(0) andL(p)/L(0) as functions ofp ~Fig. 2 of Ref.
@3#!. The small-world networks can be identified as tho
with C(p)/C(0)'1 andL(p)/L(0)'L(1)/L(0). From Fig.
2 we see that this corresponds toF'0.01. ThusF can be
used as a parameter with which to characterize networks
interpolate between regular and random cases. We note
unlike p, F is an intrinsic quantity. The quantityF is defined
for any general a network and does not depend on any
cific algorithm used for generating a network. HenceF
should prove to be a better parameter thanp.

To further investigate the importance of far edges,
consider the problem of spread of an epidemic@7#. Consider
an epidemic starting from a random vertex~seed!. We as-
sume that at each time step all the neighbors of infec
vertices are affected with probability one, which is the m
infectious case, and the vertices that are already affected
and play no further role in the spread of the epidemic. He
neighbors of a given vertex means all the vertices conne
to it by edges. As found by Watts and Strogatz@3#, the
spread of an epidemic in small-world networks is almost
fast as that in the random case. We propose that the me

FIG. 2. Graph ofC(F)/C(0) andL(F)/L(0) as functions ofF,
whereC is the clustering coefficient,L is the average path length
andF is the ratio of the number of far edges to the total numbe
edges. This figure is similar in nature to the plot ofC(p)/C(0) and
L(p)/L(0) as functions ofp. The small-world networks lie around
F50.01.
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nism for the rapid spread of the epidemics in small-wo
networks is due to the traversal of the disease along the
edges. Each such traversal opens a virgin area for the sp
of the epidemic, leading to rapid growth.

Clearly, if the far edges are responsible for the rap
growth of the epidemic, then we should be able to effectiv
control the spread by preventing the traversal of the epide
along the far edges. To test this hypothesis, we propose
following mechanism to control an epidemic. We assu
that we have sufficient knowledge of the network and
have identified all the far edges. We note that identificat
of far edges requires only the knowledge of vertices a
edges and hence should be possible in many practical s
tions. Lett denote the time steps that have elapsed betw
the beginning of the epidemic and its detection. Letm denote
the number of vertices that can be immunized at each t
step. To block a far edge, we first immunize one of the t
vertices connected by this far edge. Immunization is carr
out by first blocking all the far edges and then immunizing
random. If the number of far edges is greater thanm, then
blocking all the far edges will take more than one time st

In Fig. 3 we show the fraction of vertices affected as
function of time steps for a small-world network. Curve~a!
shows the uncontrolled spread of the epidemic. Curves~d!
and~g! show the spread of epidemic with the control meth
suggested above fort57 and 2, respectively. For compar
son, we show, by curves~c! and ~f!, the epidemic with only
random immunization fort57 and 2, respectively. It is ob
vious that the far edge control mechanism proposed her
very effective. For largert some of the far edges are alread
traversed by the epidemic, decreasing the efficiency of
control mechanism. Comparing the far edge immunizat

f

FIG. 3. Graphs of the fraction of vertices affected as a funct
of time steps. Curve~a! is the epidemic spread without immuniza
tion; curves~c! and ~f! represent the spread when the random i
munization is applied~see text! for t57 and 2, respectively; curve
~b! and ~e! shows the spread if the immunization is carried out
the vertices with highest degree first and then in descending de
for t57 and 2, respectively; curves~d! and ~g! show the spread
when the far edge immunization used ist57 and 2, respectively.
The simulations are carried out on a small-world network of 10
vertices and 10 000 edges. The plotted results are averaged qu
ties over 500 seeds for an epidemic.
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and the random immunization, we find that the far edge
munization decreases the rate of spread of the epidemic m
effectively but takes longer to completely stop the spre
@see Fig. 3, curves~d! and~g!#. Further, to test the effective
ness of our method we compare the results with ano
method of immunization. We order the vertices by degr
Immunization is carried out by starting with the vertex wi
the largest degree and then going down from there. The
sults fort57 and 2 are shown as curves~b! and~e! in Fig.
3, respectively. We note that results for immunization us
degree are similar to that of the random immunization. T
is an interesting result which shows that the degrees of
vertices do not play a significant role in the spread of
epidemic.

Let d denote the asymptotic difference between the nu
ber of affected vertices in random and far edge immuni
tion. We plotd as a function ofm for three different values
of F ~or p) in Fig. 4. The plot shows that the far edg
immunization is most effective whenm is about half the
number of far edges. The reason for the decrease ofd for
large m is that the probability that random immunizatio
blocks a far edge keeps on increasing asm increases, thereby
decreasing the difference between the two methods. The
of d as a function ofF for different values ofm is shown in
Fig. 5. The figure shows that the far edge immunization
more effective for small-world networks. Also from Figs.
and 5 it is clear that the far edge immunization offers
substantial benefit in terms of number of unaffected verti
in the small-world case and this number can be as larg
410, which is more than 40% of the total number of vertic

Now, we consider an interesting model of product adv
tisement. Letr be the number of vertices or centers fro
which a product is advertised. The information about
product spreads by word of mouth to the neighbors with
probability qt , wheret is the time elapsed since the initia
advertisement. We compare the results of two different w

FIG. 4. Graph of the asymptotic difference between the num
of affected vertices in random and far edge immunization,d, as
function of number of vertices immunized in one time step,m. The
three curves~a!, ~b!, and~c! are forF50.0022, 0.0084, and 0.0162
respectively. Curve~b! corresponds to the small-world networ
The other curves demonstrate the behavior ofF on either side of the
small-world network. The other parameters are as in Fig. 3.
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of choosing the initial centers. In one way the centers
chosen at random and in the other they are chosen as on
the vertices in a far edge. Figure 6 shows the number
people informed about the product as a function oft. It is
clear that the choice of centers using far edges has a defi
advantage over that of random choice.

To conclude, we have introduced the concept offar edges
in networks. Our definition of a far edge is in accordan
with the intuitive idea of a far away connection between tw
vertices. The advantage of our definition of far edge is tha
is independent of the underlying topology of the netwo
~e.g., the underlying topology of the network in@3# is the
topology of a circle and our definition does not depend on!.

r
FIG. 5. Graph ofd as a function ofF. The three curves~a!, ~b!,

and ~c! are plotted form530, 10, and 80, respectively. The figur
shows that the immunization method suggested here is most e
tive in small-world networks.

FIG. 6. Graph of the number of people informed as a function
t. Curves~a! and ~b! show the result for far edge centers and ra
dom centers, respectively. The simulation is carried out on a sm
world network with 1000 vertices and 10 000 edges. The ini
advertising is done from five centers. The probability functionqt is
chosen asq150.8 andqi50.18, wherei>2.
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Also, the definition is algorithmic in nature and allows th
determination of far edges only from the knowledge of v
tices and edges. We have also applied the idea of far edg
the networks that are not generated by the algorithm give
Ref. @3# and arrived at similar conclusions@8#.

We have demonstrated the use of far edges in the con
of the spread of an epidemic and in advertisement of pr
ucts @9#. Our simulations show that the far edges are inde
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important in the spread of an epidemic, particularly in t
small-world networks. It is also observed that the degree
vertices do not play a significant role in the spread. We h
shown that the knowledge of far edges can be fruitfully u
lized to control the spread of an epidemic and to achie
better advertising. Our results strongly indicate that the
edges are the key elements responsible for the special p
erties of small-world phenomena.
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@6# From the definition of a far edge it is clear that for a far ed

ei j , of order m there does not exist a path of lengthm11
connecting verticesi and j. Intuitively, the absence of a pat
implies farness; in our definition, it means the farness o
given orderm.
a

@7# Although we consider the spread of an epidemic, the res
are equally applicable for any quantity that spreads on a
work through edges, e.g., the spread of rumors, informat
spread in neural networks, the spread of a virus in a comp
network, the spread of a disturbance in an electrical netwo
etc.

@8# S. A. Pandit and R. E. Amritkar~unpublished!.
@9# As pointed out in@7#, the results are applicable for any situ

tion in which a quantity spreads on a network through edg
In some cases complete information about the network m
not be known. Even in these cases the definition of far edg
useful; e.g., if only a fraction of edges are known and with th
information it turns out that some edge, saye$ i j %, is not a far
edge, then after adding the information about remaining ed
e{ i j } cannot become a far edge@8#.


