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We apply the recently introduced distribution of sign-tim@ST) to nonequilibrium interface growth
dynamics. We are able to treat within a unified picture the persistence properties of a large class of relaxational
and noisy linear growth processes, and prove the existence of a nontrivial scaling relation. A critical dimension
is found, relating to the persistence properties of these systems. We also illustrate, by means of numerical
simulations, the different types of DST to be expected in both linear and nonlinear growth mechanisms.
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The notion of persistence, or the statistics of first passagRapid Communication, we propose that such information
events, has been a powerful conceptual tool in studying stomay be inferred from the DST, which has recently been in-
chastic non-Markovian processes in many research areas #bduced in the context of the persistence properties of
physics, engineering, statistics, and applied mathematics. Iimple coarsening systems and the diffusion equdt@od].
this Rapid Communication we apply a persistence-relateffirst passage time or persistence problems have been the
concept, the distribution of sign-times, or D$defined be- focus of intensive research for the past few years, producing
low), to the problem of kinetic surface roughening in non-a series of analytic and numerical results with applications to
equilibrium interface growth dynamidd]. We believe that the Ising and Potts mode[$], the diffusion equatiori6],
the ideas, described in this paper, could become an extremephase orderind7], interface kinetic§8], etc. and experi-
useful conceptual and practical tool in characterizing surfac&ents on liquid crystals and soap frotisee the references in
growth dynamics, rivaling the dynamic scaling ideas cur-[6]). The central issue of persistence concerns the probability
rently used in studying kinetic surface roughening. Dependof an evenneveroccurring(up to a certain time). It is very
ing on the specific issues of interest, our proposed DST tecHestrictive by definition, and good statistics from numerics or
nique may actually be more powerful and informative thaneéxperiments may be extremely hard to obtain. The recently
the currently fashionable dynamical/roughness/growth expaintroduced 3,4] DST is practically more accessible, and as a
nent based characterization of dynamical surface morpholdimiting case produces the persistence probability.
gies. The DST is essentially a histogram performed on the sign

One of the main themes in the theory of nonequilibriumof the fluctuations and simply measures the probability of the
interfaces is grouping the interface roughening phenomenfiuctuations having been in the positive domain for a total
within “universality classes”. This classification of sce- time 7 in the given timet of the process. Obviously for
narios is based on calculating the dynamic scaling propertiest we obtain the usual persistence probability, which we
of the surface correlation functidii]. On the other hand, in denote byP . (t), and forr=0 we obtain the probability of
non-equilibrium interface growth experiments, one mightthe fluctuations havingieverbeen in the positive domain,
also be interested in morphology stability issues which can in.e, to have beealwaysin the negative domair?_(t). The
fact be formulated as first passage type questions: what is treistinction between the persistence of fluctuations in the
probability that a moundor crevice will survive as a mound positive domain and in the negative domain becomes impor-
(crevice for a given period of time? How does this prob- tant in the case of nonlinear moddB]. We shall refer to
ability decay in time, etc.? These type of questions, howeveithese as “positive” and *“negative” persistence, respec-
are not simply delineated by such a correlation function. tively.

Another open theoretical problem is to establish a corre- The sign-time for an interface on d@dimensional sub-
spondence between discrete solid-on-s@@9 models and  strate is the stochastic variable defined by
continuum Langevin equations beyond the equality of expo-
nents. For example, based on structure factor measurements, t
the authors in Ref(2] claim that the SOS model they intro- T(X.t)=f dt’H(h(x,t")), (1)
duced does not only belong to the same universality class as 0
the noisy Mullins equation but it is describedtactlyby it.

Our approach proposed in the present Rapid Communicatiowhere H is the Heaviside step function ardx,t) is the
(which isnot based on direct measurement of the correlatiorheight of the interface measured with respect to the average
function) supports that claim. height. Sinceh is a random variablédue to its coupling to

It would be useful, therefore, to study statistical quantitiesthe noisg¢ the sign-time will be described by a probability
that are directly sensitive to the structural and morphologicadlistribution, the DST. For a system with translation invari-
properties of interfacege.g., formation of moundsand to  ance, the statistics afwill not depend on the locatiox, and
the dynamics of these structurés.g., coarsening In this  so the DST may be written as
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S(7,H)=(8(7=T(O,1))), )

where(-) indicates the average over the noise. Some prop

erties ofSare(i) it is defined on the interval € 7/t<1; (ii)
for interface growth witth— —h symmetry,Swill be sym-

metric aboutr/t=1/2; (iii) the tails of the distribution give

the persistence probabilitiesP_(t)=[gd7S(7,t) and
P, (t)=/fod7S(t—7,t), where e<t is a microscopic time

scale(of the order of the fastest temporal scale in the inter-
face dynamics These probabilities are expected to have a 03
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power law decay, defining the corresponding persistence ey X X

ponentsd.. : P.(t)~(e/t)%=, and(iv) the shape of con-

tains information about whether the growth is rare event

dominated or not.
In the spirit of Ref.[8] we first consider the following
class of stochastic linear equations:
dth=—v(—V?)?h+¢, (3)

with flat [h(x,0)= 0] initial condition, where¢ is a general

FIG. 1. DST’s for(a) {1,2 (thick line) at t=0.25x (2 10°)
obtained on a grid of =2048 sites and averaged ovex 20° runs;
{2,4 at t=0.01x 256 (dot9, andt=0.01x 4096 (thin line), on a
grid of 1024x 1024 shown for a single rurib) the SOS large cur-
vature modeldiamonds$ on a lattice ofL=10* at 8192 steps, av-
eraged over 100 runs; and f¢d,4f measured on a grid ok
=2048 sites at=0.05x (2x 10°), and averaged over210® runs
(continuous ling Due to the symmetry propertyi) the DST’s are
shown only in the half rangee[0.5,1].

noise term that may represent the “pure deterministic” case

via the choice&(x,t) = 6(t) »(x,t) or the regular “noisy”

range correlated noise. We make the following observations

case withé(x,t) = 7(x,t), wherez is a Gaussian-distributed from Egs. (4)—(6). First, the DST obeys the exact scaling
noise possibly with spatial correlations. We consider the fol4grm

lowing three choices fom: (1) white noise with correlator

(n(x,t) p(x',t")y=2D 5(x—x")8(t—t"), (2) volume con-
serving noise( 7(x,t) 7(x’,t"))=—2DV?28(x—x') 8(t—t'),
and (3) long range spatially correlated
(p(x, ) p(x',t"))=2D|x—x'|P"98(t—t"), p<d. For ex-

ample, the Edwards-WilkinsofEW) model may be recov-
ered by setting=2 in Eq.(3), and by applying white noise;
likewise, the noisy Mullins equation corresponds to settin
z=4 [1]. We write Eq.(2) through the higher moments of

DST as

o © d . i n
=3, [ e rponry, @

noise

sA(r=2F. 1], o=r=t @)
d (Tv ) t y t ’ T ’

for all values oft (u, ist independent Second, the “mate-
rial parameters”v andD do not appear in the DST. Third,
the three numberg(z,p) appear in the DSTfor anyt) only

gthrough their combination inv= y(d,z,p). Thus, the persis-

tence exponentévhich are contained within the D$TWwill

also only depend oml, z, and p through the exponeny.
[This appears to be implicitly understood in RES], where
persistence is measured as a function of the growth exponent
B=max0,(1— y)/2).] A similar scaling property for the per-
sistence exponents is also true for the deterministic case.

where we have introduced a frequency representation of the For simplicity of the notation, instead (ng)(T,t) (and

6 function, and expanded in powers of the sign-tifife We

05) we will use S,(7,t) (and 6,). Let us consider as an

shall enter into no technical details here on how to proceeéxample the generic case of white noise, for whichd/z.
with calculating the moments of the DST. We present On|yAccording to the above, for any model for which, ed/z

the final form that we obtained for the™ order moment
normalized byt" [ u,=((7/t)"]

_ﬁ fldakfx dO’k 2
= o2 ). ario W T4 ojoix(ay,a) |,
(5)

where the limits ofe,—0" are to be taken, and

(x+y)~ 7, deterministic case

K(X,y)= fmin(x,y)

0

du(x+y—2u)~ 7, noisy case,

(6)

with 0=x,y<1, andy being given by(1) y=d/z for the
deterministic case and for white noig@) y=(d+2)/z for
volume conserving noise, an@) y=(d—p)/z for long-

=0.5, the DST(and thus the persistence propertiesll be
identical to that for the EW model in one dimension. We
compared the numerically obtained DST's {dr,2} (mean-

ing d=1, z=2) and{2,4} . According to the above, one
should observe identical DST's. TH4,2} DST was mea-
sured using a standard discretization scheme, see @&p. 1
The numerical integration of the ca$g,4} is less straight-
forward. We used the simplest discrete scheme for modeling
the operatoWV* in d=2, as more sophisticated schemes were
actually less stable under the influence of additive white
noise. A very small integration time step 6f=0.01 was
used to ensure stability. We observed a long transient in
which the DST was actually concave, in contrast to the con-
vex DST for the casé€1,2 (d=1 EW mode). After 10°
iterations the DST began to turn over, and eventually settled
into a convex shape, closely matching €2} DST. This
illustrates the sensitivity of the DST to lattice effects, which
may be a very useful property if one is investigating physics
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which is itself sensitive to the underlying lattice. In FigbjL 5 5
we show the DST's obtained from numerical integration of 2| Arsinelaw Zu
the cas€ 1,4} (thed=1 noisy Mullins equationand numeri- 1 1 1 t
cal simulation of the SOS large curvature mop&l These o 0 0 0
e . o 05 1 o0 05 1 0 05 1 0 05 1
two models are expected to have very similar properties, and y / o
indeed their DST’s are almost indistinguishable. b : T — s —F
It follows from Egs.(4)—(6) that the knowledge of the 0 025 v 0.5 =% ¥
second momenj, uniquelydetermines the value of, and FIG. 2. Behavior of DST as a function of for Eq. (3), with
therefore alsa (in a given dimensionality It is possible t0  \yhite noise. Each inset shows the functien(x) vs x. For y
evaluate analytically the second momenf. We find u,  =0.25 andy=0.5 we simulated the Langevin equation with white
=1/2—G(y), where for the deterministic case noise in one dimension at=4 andz= 2, respectively. For=2 the
2y 1 simulation parameters were the same as for the thick line in Fig.
y (1 1l-a||[l+a 1(a) and forz=4 they were the same as for the continuous line in
G=g- Odam Kl’z) - : ®  Fig. ub).
) the case of the two dimensional EW equation with white
and for the noisy case noise. Note that the EW equation in any integer dimension
1 (1 (d=1) with volume conserving noise is in the smooth phase,
G(y)= _J da and would therefore have & function DST (y=1+d/2),
2o with the persistence exponent undefin@d formally infi-
nite).
(4a)t~” From the scaling relatiofi7) one can infer the existence
xarcta [(1+a)t "= (1—a)t 72 -1..© of a new critical “dimension”y* both for the deterministic

and noisy cases: since the tails of DST give the persistence

The second moment in both cases is a monotonic function dirobability, which has a power law decap (~t~") ,9“19
y and therefore the knowledge of one determines the other; $€aling functionF, must obey the behavid¥ ,(x)~x""",
property useful in deciding whether a measured DST cafor X<<1, and I-x<1 in order that Eq(7) be satisfied. For
indeed be described by a process like B}. For example, ¢<1 the DST has integrably divergent tails while fér 1
one may obtain from numerical or experimental measurethe tails vanishiasx”~%). In the former case the sites are
ments a symmetric DST, from which one may compute more_llkely to be fpund in a positive or negative persistent
One cartesttherefore if the process generating the measuregtate(i.e., with a height that did not change sign aj,althile
DST can be described by E): one determineg using the  in the latter case persistent sites will be an absolute minority
above procedure, and then simulates &y.with the corre- ~ (With vanishing measure ds-). Sinced, is a monotoni-
sponding value ofy, thus generating a new DST. If the two Cally increasing function ofy the equationd,=1 will be
DST's are very close or coincide, then the assumption thagatisfied at a unique value of . At this valueF . is flat at
the physica| process may be modeled by ijs Va”d’ just the tails: it neither falls to zero nor dlverges. This shows that
as in the SOS large curvature model case, shown in fiy. 1 the value off = 0&2*)= 1 is special. It is possible that,«
Note, that this procedure also requires an assumption abouaan still have some structure arount=1/2, but the sim-
the type of noise. plest possibility is that it is a top-hat function. In this case
The integral in Eq.(6) is divergent fory>1 atx=y.  u,=1/3, and therefore/* can be calculated afténumeri-
Introducing a microscopic lattice cut-off, the DST can becally) inverting G(y) =1/6, using Egs(8) and (9). For the
calculated[10] to give a Diracé function centered around deterministic case one obtaing =17.983.. ., and for the
T=1t/2 noisy casey* =0.43. .. . Infact, exact bounds exi§8] for
the relation betweer8 and 6 from which we find thaty*
=<0.36.... Therefore our approximate value of* lies
above the bound, which implies that at criticalityamely,
0=1), the DST, although having flat tails, still has nontrivial
It is a well known resulf1] that for Eq.(3), d=d,=zis an  structure aroundr=t/2. For the noisy case, our numerical
upper critical dimension and separates interfaces that are asimulations are compatible with 0.25/* <0.5, as can be
ymptotically rough from those which are asymptotically seen from Fig. 2. It is interesting to note that the permanent
smooth. Thus, the fact that for dimensions abpt#eere isno  presence of noise “brings down” this criticagl* to a sub-
roughening, is reflected by & function DST, i.e.all points  unitary value as compared to the deterministic case.
of the interface will spend exactly half of their time above The DST for y=0 is exactly known, and is called the
the mean height. The persistence exponent in this case is ntarcsine law” in the mathematical literaturgll]: Fy(x)
really defined, since the persistence probability is zero. In & 1/ wx(1—x)], which can also be derived from Edg)—
lattice model, one would expect corrections to scaling to thé6) presenting an alternative to this venerable old problem.
above result, and for the persistence probability to decayigure 2 summarizes our findings on the different regimes
exponentially with time. When approaching,=d,/z=1  for the DST of the noisy case of E() with the two critical
from below, the persistence exponent diverges;y, being  “dimensionalities” y* andy, .
a marginal case for which no numeric or analytic results have We shall now present and briefly discuss the numerically
been produced ydbn persistence propertiedt is precisely  obtained DST'’s for two nonlinear systemd) the one di-

1 /1 =
SV(T,I)Zfﬁ(———

571 for any y>1. (10
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25 25 times, or else a more complicated scaling form. Figui® 3
) 2 ) ® shows the DST obtained numerically from the DT model
Feo bimodalnoise | F® with Schwoebel barrierEl3]. This system is highly nonlin-
15 L5 ear, exhibits mound-formation and coarsening. The DST

mirrors all these morphological and structural characteristics.
‘ : Nonlinearity is obvious from the asymmetric shape. The
05 \Pu_m' right end of the curve has the highest value, meaning that the

1

1

Gaussian noise \
kY
\

osf/
sites are most likely to be found in a positive persistent state,
o o5 on O E o5 om 1 i.e., they belong to structures that stayed above the mean
x x height all the time, namelystable moundsOn the contrary,

FIG. 3. (a) DST for thed=1 KPZ equation with white noise at the_left end,_ when compared to the right one, IS 1N the mi-
t=512,t=1024 and for bimodal noise a& 2048.(b) DST for the no_”ty' showing that th‘*?tab'e Ccrevicesor vaIIQySWIII_ con-
SOS DT model with Schwoebel barrierstat 10° steps shown for  tain only a small fraction of the sites, which points to a
three different values of the paramefgy, which is the probability ~mMounded morphology with high skewness. The fact that a
for an atom to attach to a lower step. The system size was Site has a small probability to survive for a long time in a
=100, and the averaging was made ovex ' runs for each Crevice, means that the valleys tend to disappear during time-
curve. evolution, i.e., there must beparsening This shows the in-
timate connection between the coarsening and persistence
properties of a interface morphology, which is the topic of a
separate, forthcoming publication.

In summary, the DST proves to be very sensitive to the
details of the morphological dynamics, and can provide cru-
cial information on the nonequilibrium interface fluctuations.

mensional KPZ equation, and2) the Das Sarma-
TamborenedDT) SOS model with Schwoebel barriers. Fig-
ure Ja) shows the KPZ case at different times and with two
different noise typegGaussian and bimodalusing the dis-
cretization scheme introduced in R¢L2]. For the case of
Gaussian noise one can see that the DST satisfies the generalThe authors are grateful to R. Desei, T. Einstein, P.
scaling form(7) but with an asymmetric scaling function Punyindu, B. Schittmann, R.K.P. Zia, and E.D. Williams for
F(x) since theh— —h symmetry is broken, reflecting the interesting discussions. Financial support is acknowledged
nonlinear character of the KPZ equation. The DST for thefrom the Materials Research Division of the National Sci-
case of bimodal noise has a different shape to that for Gausence Foundation(T.J.N. and Z.T, MRSEC (Z.T. and

ian noise, which was still evolving for the largest times weS.D.S), and from the Hungarian Science Foundation,
observed {(~10%, indicating either very long crossover T17493 and T19488Z.T.).
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