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We study a random neighbor version of the Bak-Sneppen model, where ‘‘nearest neighbors’’ are chosen
according to a probability distribution decaying as a power law of the distance from the active site,P(x)
;ux2xacu2v. All of the exponents characterizing the self-organized critical state of this model depend on the
exponentv. As v˜1 we recover the usual random nearest-neighbor version of the model. The pattern of
results obtained for a range of values ofv is also compatible with the results of simulations of the original BS
model in high dimensions. Moreover, our results suggest a critical dimensiondc56 for the Bak-Sneppen
model, in contrast with previous claims.@S1063-651X~99!50108-6#

PACS number~s!: 05.40.2a, 64.60.Ak, 64.60.Fr, 87.10.1e
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Since its introduction, the Bak-Sneppen~BS! model @1#
has had much success as perhaps the simplest and yet
trivial self-organized critical~SOC! extremal model. Under-
standing its behavior is therefore very important to gain
sight into the behavior of other SOC extremal models@2#.

The BS model is easily defined: To each sitei on a hy-
percubic lattice ind dimensions is assigned a random va
able f i taken from a probability distributionp( f ), say, uni-
form in @0,1#. Then at each time step the sitei with the
smallest f i is chosen~it is called theactive site!, and its
variable and the variables of its 2d nearest neighbors ar
updated taking them fromp( f ). As a result of this dynamics
the system organizes in a stationary state where almos
the variablesf i are above a thresholdf c . Moreover, in this
state, the dynamics of the model has self-similar featu
each update of the minimum variable triggers a local a
lanche of updates; the time durations of the avalanches o
a power-law distribution that is characterized by an expon
t. The number of sites touched by an avalanche of duratit
grows liketm. Also the first return times~defined as the times
between two successive returns of the activity to the sa
site! and the all return times~the times between the firs
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passage of the activity on a site and any successive retu
the same site! are power-law distributed, with exponentst f

andta, respectively.
Not all of the above exponents are independent. Indee

is possible to show, from renewal theory, thatta1t f52 if
ta,1, ta5t f if ta.1 @3#. Recently, a nontrivial relation
betweent and m has been unveiled in@4,5# exploiting the
hierarchical structure of the update avalanches~each ava-
lanche is made up of smaller avalanches, and so on dow
the microscopic scale!. Both relations are satisfied ford51
with t;1.07 andm;0.42, ta;0.42 andt f;1.58 @1,2#.

The only known exactly solved version of the BS mod
is the random nearest-neighbor~RNN! model: there, ‘‘near-
est neighbors’’ are chosen at random over the lattice@6#. As
a result geometric correlations typical of low dimensions
lost, and the RNN can be considered as a mean field ver
of the BS model. The exponents of the RNN model a
known to bet5ta5t f53/2 and m51 @7#. In particular
these exponents satisfy bothta5t f and the relation between
t andm proposed in@4#. In @5# this relation has been care
fully studied, and it has been ‘‘graphically’’ explicited~see
Fig. 1!. The knowledge of the two exponent relations h
R1111 © 1999 The American Physical Society
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given confidence in high-dimensional simulations@8# whose
main result is that the upper critical dimension of the mo
is duc58 ~the upper critical dimension is the dimensio
above which the exponents should take the RNN valu!.
This conclusion is at odds with previous claims, based
analogies of the BS model with directed percolation, thatduc
should be 4. A further result from@8# is the presence of two
regimes as the dimensiond of the system increases: ford
<3 the model is recurrent (ta,1; in random walk theory
recurrence means that every site of the lattice is touche
infinite number of times with probability one!, whereas for
d>4 the model is transient (ta.1; transience means tha
there is a finite probability, smaller than 1, that a site will
touched by the process!, yet nontrivial ~i.e., different from
the RNN model! as long asd,8. Actually, before@8#, a
further exponent relation was believed to hold, namely,m
5ta . In @8# this relation is shown not to hold ford.2.
Indeed, sincem<1 always andta(RNN)53/2, it is straight-
forward to conclude that at least as soon asta.1, taÞm.
The dimensionalityd53, with ta,1 and mÞta , can be
therefore considered as representative of a further reg
within the recurrent one.

The BS model shows therefore an extremely rich beha
changing the dimensionalityd of the system. Yet, high-
dimensional simulations are always susceptible of str
finite-size corrections, and the good convergence of the
sults is difficult to prove. In this Rapid Communication w
propose a way to interpolate between thed51 and the RNN
models: The ‘‘nearest neighbors’’ of the active sitexac are
chosen at random over the lattice, but with a probability t
is a power-law decreasing function of the distance from

P~x!;ux2xacu2v. ~1!

As we will show, varyingv we find the same behaviora
pattern as found in@8# varying d. We name this model the

FIG. 1. Avalanche exponentt vs m for different Levy expo-
nents v. The dashed line is the exact relation between the
exponents as from@5#. The data from the simulations and the exa
relation are in excellent agreement. Error bars are comparable
the symbol dimensions.
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Levy-random-nearest-neighbor model~LRNN; here the use
of the word Levy is somehow an abuse since we use a
v.3).

As a loose analogy, we recall that the same idea has b
applied also to thed51 Ising model with interactions decay
ing as Eq.~1!, and indeed it has been found that, varyingv
it is possible to go from thed51 model to mean-field-like
results@9#.

Simulations are performed over 1D lattices of up to 219

sites, with growing sizes showing stability of the exponen
In Fig. 1 we show thet avalanche exponents for differen
values ofv plotted against the corresponding values ofm.
All the m/t pairs nicely satisfy the exponent relation b
tween the two exponents obtained in@8#. This is a first im-
portant check of the consistency of our simulations and
the exponent relation.

In Fig. 2 we plot theta , t f andm exponents for different
values ofv from v53 to v511 ~this extreme value is no
shown since simulations become extremely difficult due
the non-normalizability of the distribution ifv51). Many
important aspects of the model can be discussed lookin
Fig. 2. We find that the exponent relation betweenta andt f
is satisfied both whenta,1 and whenta.1. Therefore this
result and Fig. 1 confirm the validity of the two alread
known exponent relations. Moreover, we see that the ex
nents tend to their RNN values asv˜1. This result should
have been expected. Indeed the probability distribution~1! is
normalizable in the thermodynamic limit only as long asv
.1; when v,1 then the normalization is ruled by th
length of the lattice

E
1

L

x2v;L12v ~2!

that diverges in the limit of infinite lattice sizeL. Therefore
the distributionP(x), properly normalized, degenerates to
just as in the RNN case, where the normalization is 1/L ~case
v50).

The opposite case,v˜`, is also intriguing. Indeed we
could naively expect thed51 limit to be recovered when
v>3. In that case the average distance of the ‘‘neighbo

o
t
ith

FIG. 2. Values of the different relevant exponents,m, ta , and
t f , as a function of the Levy exponentv.
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and its variance are finite, just as for nearest neighbors.
would thus expect thev.3 case to belong to the same un
versality class as the original BS model, but this conclus
is not correct. In order to shed light on this problem, we a
performed simulations taking the neighbors according t
distribution exponentially decreasing with respect to the d
tance from the active sitexac . In this case, instead, we nicel
recover the knownd51 exponents of the BS model. W
conclude therefore that the presence of diverging mom
of order higher than two drives the system out of its nea
neighbor fixed point. The latter holds instead whenever
distribution of the random neighbors has all its mome
finite. This result, although nontrivial, is not new in~an-
nealed or quenched! disordered systems. For example, it h
been shown that diverging moments of order higher than
the disorder distribution can change the universality clas
directed polymers in random environments, and of the
lated Kardar-Parisi-Zhang surface growth equation@10#.

It is well known in classical random walk theory th
random walks with a jump probability distribution with finit
variance belong to the Gaussian universality class. Ran
walks with infinite higher moments have a microscop
structure that is different from a Gaussian one, mainly m
of clusters of points seldom separated by long jumps.
larger and larger length scales, this cluster structure dis
pears, and the walks ‘‘renormalize’’ to Gaussian ones. Ye
main difference between a simple random walk and the
model is the presence of memory effects. Indeed, any tim
site is chosen~either as the active one or as one of its neig
bors!, any memory of its previous updates is lost. Therefo
the interaction between the geometric structure given by
choice of the neighbors according toP(x) and the updates o
the corresponding variables can give rise to nontrivial
fects.

As already mentioned above, the geometrical fractal
mensionD f of the avalanches is another quantity of intere
It is possible to relateD f to the other exponents of the mode
Indeed, we recall that the fractal dimension relates the v
umeN of the avalanche~that is, the number of sites touche
by the avalanche! with the typical sizeR of the avalanche, as
N;RD f . On the other hand,N scales with the duration of th
avalanche asN;tm. The relation between the typical size
the avalancheR, and its durationt is given byt;Rz, z being
the dynamical exponent of the model. Then we findD f
5zm.

In principle, in order to determinez it is possible to use
the all return time distributionPa(t). At long times on a
d-dimensional lattice ofN5Ld sites,Pa(t) flattens. We can
write a scaling form forPa(t) as

Pa~ t,L !5t2taf S t

LzD , ~3!

with f (x);const whenx˜0 and f (x);xta whenx˜`. In
this second case we find thatPa(t,L)5L2d ~roughly speak-
ing, as soon as every site of the lattice has been touche
an avalanche, they have all the same probability to be c
sen!, from which we havez5d/ta .

Then we can write an expression for the fractal dime
sion,
e
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. ~4!

This expression holds for the high-dimensional simulatio
of @8#: when avalanches are compact objects (d51,2), m
5ta . Then,mÞta and avalanches become fractal objec
Indeed Eq.~4! approximates well the data given in@8# for
d53 (ta50.92, m50.85, D f52.6.3m/ta52.77 . . . ) and
for d54 (ta51.15, m50.92, D f53.3.4m/ta53.2). As a
by-product, we find that Eq.~4! suggests an upper critica
dimension for the Bak-Sneppen modelduc56: indeed with
m51 and t53/2 ~the ‘‘mean-field,’’ RNN, values of the
exponents! we find D f(d56)54, that is indeed the pre
dicted avalanche fractal dimension in the RNN limit.duc
56 is at odds with what is stated in@8#, whereduc58 was
suggested by numerical simulations, but also with@2#, where
duc54 was claimed based on analogies with directed per
lation.

Although Eq.~4! seems to hold in the high-dimension
case, it does not fit the numerical results in the pres
LRNN approach. The reason is that, whereas in the hi
dimensional case there is a single relation between time
space, namely,t;Ld/ta, in the LRNN case there is a furthe
relation, the usual Levy random walk lawt;Rv21. We mea-
sure the fractal dimension of avalanches using the dista
between the right-most and left-most touched sites as a m
sure ofR, and this corresponds toz5v21. Indeed, as can
be seen from Fig. 3,D f5m(v21) approximates very wel
the measured fractal dimensions.

As noted above about the fractal dimension of hig
dimensional avalanches, we observed thatm5ta corre-
sponds to compact avalanches. In the LRNN case we
from Fig. 2 that indeedmÞta for v,2, even if the fractal
dimensionD f,1 already forv,3. We can try to under-
stand this result remembering thatD f is related to the ran-
dom walk exponentz5v21: althoughz is different from its
Gaussian valuez52 as soon asv,3, a Levy random walk
with v.2 is still compact, and so is the structure built by
choice of neighbors according to Eq.~1!. Only whenv,2
such a structure becomes genuinely fractal, andmÞta .

FIG. 3. Avalanche fractal dimensionD f for different values of
v ~circles! and as fromD f5(v21)m ~squares!.
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The possibility to obtain the exponentD f from m andta
in high dimensions, and fromm andv in the LRNN version,
suggests that indeed there are at most two independen
ponents in the model, namelym andta . The LRNN model
suggests the presence of a further~although nontrivial! ex-
ponent relation. Indeed, in Fig. 4 we show the values of
ta exponent as a function of the correspondingm exponent
for different values ofv and for different dimensions. As ca
be seen, the agreement is good, suggesting that the kn
edge ofm ~or of ta) is sufficient to know all the other expo
nents through relations that, as for them/t one, could be
highly nontrivial.

FIG. 4. All return time exponentta vs m for different values of
v ~squares! and for different dimensions, fromd51 to d58
~circles!.
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In conclusion, we have introduced a modification of t
Bak-Sneppen model where the neighbors of the active
are chosen at random over the lattice with a probability t
decreases like a power law of the distance from the ac
site, with an exponentv. As a result we find that the char
acteristic exponents of the model interpolate between thd
51 limit (v5`) and the mean-field~RNN! limit ( v<1).
In particular, we verify that the known exponent relatio
hold for this model, too. Moreover, we find and verify a
exponent relation for the fractal dimension of the avalanch
D f5(v21)m. As a by-product we obtain a relation betwee
D f and m and ta also in high dimensions, fitting well the
present numerical results up tod54 @8#, although it suggests
an upper critical dimensionduc56 ~and notduc54 or duc

58 as previously believed!. More accurate numerical simu
lations in high dimensions are therefore needed. The
evance of the results reported in this Rapid Communica
is manifold: they can be looked at as an interesting mod
cation of the Bak-Sneppen model, but their full importan
emerges when compared to the high-dimensional result
@8#. Indeed, they lead us to propose a value of the up
critical dimension of the model, namelyduc56, and to con-
jecture the existence of a still undiscovered exponent rela
betweenm and ta , reducing therefore the number of inde
pendent exponents to 1 in any dimension. This result sh
therefore that there is still some way to go before a full a
satisfying understanding of the BS model is achieved.
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