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We study a random neighbor version of the Bak-Sneppen model, where “nearest neighbors” are chosen
according to a probability distribution decaying as a power law of the distance from the activ®(sije,
~|x—xad ~“. All of the exponents characterizing the self-organized critical state of this model depend on the
exponentw. As w—1 we recover the usual random nearest-neighbor version of the model. The pattern of
results obtained for a range of values«®fs also compatible with the results of simulations of the original BS
model in high dimensions. Moreover, our results suggest a critical dimewigie® for the Bak-Sneppen
model, in contrast with previous claimsS1063-651X%99)50108-6

PACS numbgs): 05.40-a, 64.60.Ak, 64.60.Fr, 87.18e

Since its introduction, the Bak-SneppéBS) model [1] passage of the activity on a site and any successive return to
has had much success as perhaps the simplest and yet ntine same sifeare power-law distributed, with exponents
trivial self-organized criticalSOQ extremal model. Under- and r,, respectively.
standing its behavior is therefore very important to gain in- Not all of the above exponents are independent. Indeed it
sight into the behavior of other SOC extremal modéls is possible to show, from renewal theory, thgt- ;=2 if

The BS model is easily defined: To each siten a hy- 7,<1, 7,=7 if 7,>1 [3]. Recently, a nontrivial relation
percubic lattice ind dimensions is assigned a random vari- betweenr and u has been unveiled if4,5] exploiting the
able f; taken from a probability distributiop(f), say, uni- hierarchical structure of the update avalanckesch ava-
form in [0,1]. Then at each time step the sitewith the lanche is made up of smaller avalanches, and so on down to
smallestf; is chosen(it is called theactive site), and its the microscopic scaleBoth relations are satisfied fai=1
variable and the variables of itsd2hearest neighbors are with 7~1.07 andu~0.42, 7,~0.42 andr;~1.58[1,2].
updated taking them from(f). As a result of this dynamics, The only known exactly solved version of the BS model
the system organizes in a stationary state where almost &l the random nearest-neighb@®@NN) model: there, “near-
the variabled; are above a thresholl . Moreover, in this  est neighbors” are chosen at random over the lafiideAs
state, the dynamics of the model has self-similar featuresa result geometric correlations typical of low dimensions are
each update of the minimum variable triggers a local avalost, and the RNN can be considered as a mean field version
lanche of updates; the time durations of the avalanches obayf the BS model. The exponents of the RNN model are
a power-law distribution that is characterized by an exponenknown to be r=7,=7=3/2 andu=1 [7]. In particular
7. The number of sites touched by an avalanche of durationthese exponents satisfy both= 7; and the relation between
grows liket*. Also the first return time&efined as the times 7 and u proposed in4]. In [5] this relation has been care-
between two successive returns of the activity to the saméully studied, and it has been “graphically” explicitedee
site) and the all return timesgthe times between the first Fig. 1). The knowledge of the two exponent relations has
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FIG. 1. Avalanche exponent vs u for different Levy expo- FIG. 2. Values of the different relevant exponenis, 7,, and

nents w. The dashed line is the exact relation between the twor;, as a function of the Levy exponent

exponents as frofb]. The data from the simulations and the exact

relation are in excellent agreement. Error bars are comparable withevy-random-nearest-neighbor modeRNN; here the use

the symbol dimensions. of the wordLevyis somehow an abuse since we use also
w>3).

given confidence in high-dimensional simulatid8$ whose As a loose analogy, we recall that the same idea has been
main result is that the upper critical dimension of the model@Pplied also to thel=1 Ising model with interactions decay-

is d,.=8 (the upper critical dimension is the dimension iNg @s Eq.(1), and indeed it has been found that, varying
above which the exponents should take the RNN valuesit iS possible to go from thel=1 model to mean-field-like
This conclusion is at odds with previous claims, based orfesults[9]- _

analogies of the BS model with directed percolation, that ~_ Simulations are performed over 1D lattices of up ts 2
should be 4. A further result froffi8] is the presence of two 5|te§, with growing sizes showing stability of the exponents.
regimes as the dimensiah of the system increases: for In Fig. 1 we show ther_ avalanche exponents for different
<3 the model is recurrentri<1; in random walk theory Valués ofw plotted against the corresponding valuespof
recurrence means that every site of the lattice is touched afll the /7 pairs nicely satisfy the exponent relation be-
infinite number of times with probability opewhereas for tween the two exponents obtained[Bl. This is a first im-
d=4 the model is transient{>1; transience means that portant check of the consistency of our simulations and of
there is a finite probability, smaller than 1, that a site will beh® €xponent relation. _

touched by the procegsyet nontrivial (i.e., different from In Fig. 2 we plot ther,, 7 afldﬂ exponents for different
the RNN model as long asd<8. Actually, before[8], a values ofw from w=3tow=1 (this extreme v_al_ue is not
further exponent relation was believed to hold, nameiy, shown since smula}t}ons become ('axtr('ame.ly difficult due to
=7,. In [8] this relation is shown not to hold fod>2. f[he non-normalizability of the d|str|but|on_ ib=1). Many
Indeed, sincgu<1 always andr,(RNN)=3/2, it is straight- |mportant a§pects of the model can b_e discussed looking at
forward to conclude that at least as soonmgs 1, 7,# . 19- 2. We find that the exponent relation betwegrand 7¢

The dimensionalityd=3, with 7,<1 and u+# r,, can be is satisfied both whem,<1 and whenr,>1. Therefore this

therefore considered as representative of a further regimi€Sult and Fig. 1 confirm the validity of the two already
within the recurrent one. known exponent relations. Moreover, we see that the expo-

The BS model shows therefore an extremely rich behavioP€Nts ténd to their RNN values as—1. This result should
changing the dimensionalitg of the system. Yet, high- have been expected. Indeed the probability distributions
dimensional simulations are always susceptible of stronglormalizable in the thermodynamic limit only as long @s
finite-size corrections, and the good convergence of the re=1; when o<1 then the normalization is ruled by the
sults is difficult to prove. In this Rapid Communication we !€ngth of the lattice
propose a way to interpolate between thel and the RNN L
models: The “nearest neighbors” of the active siig. are j X O~ 17 2
chosen at random over the lattice, but with a probability that 1

is a power-law decreasing function of the distance from it, . . - e . .
P 9 ! that diverges in the limit of infinite lattice size Therefore

the distributionP(x), properly normalized, degenerates to 0,
P(X)~|X—Xad . (1) Jjustasinthe RNN case, where the normalization ks (tase
w=0).
The opposite casey—x, is also intriguing. Indeed we
As we will show, varyingw we find the same behavioral could naively expect thel=1 limit to be recovered when
pattern as found if8] varying d. We name this model the w=3. In that case the average distance of the “neighbors”



RAPID COMMUNICATIONS

PRE 60 LEVY-NEAREST-NEIGHBORS BAK-SNEPPEN MODEL R1113

and its variance are finite, just as for nearest neighbors. Wk 1
would thus expect the@>3 case to belong to the same uni-

versality class as the original BS model, but this conclusion

is not correct. In order to shed light on this problem, we also 08
performed simulations taking the neighbors according to a
distribution exponentially decreasing with respect to the dis-
tance from the active site,.. In this case, instead, we nicely
recover the knowrd=1 exponents of the BS model. We Df
conclude therefore that the presence of diverging moment:
of order higher than two drives the system out of its nearest
neighbor fixed point. The latter holds instead whenever the
distribution of the random neighbors has all its moments
finite. This result, although nontrivial, is not new {@an-
nealed or quenchedlisordered systems. For example, it has
been shown that diverging moments of order higher than 2 in 0 . . .
the disorder distribution can change the universality class of 1 15 2 25 3
directed polymers in random environments, and of the re- @

lated Kardar-Parisi-Zhang surface growth equafibd. FIG. 3. Avalanche fractal dimensidp; for different values of

It is well known in classical random walk theory that 4 (circles and as fromD;=(w— 1) (squares
random walks with a jump probability distribution with finite
variance belong to the Gaussian universality class. Random
walks with infinite higher moments have a microscopic Df=dﬁ. (4)
structure that is different from a Gaussian one, mainly made Ta
of clusters of points seldom separated by long jumps. On
larger and larger length scales, this cluster structure disapFhis expression holds for the high-dimensional simulations
pears, and the walks “renormalize” to Gaussian ones. Yet, @f [8]: when avalanches are compact objeats=(@,2), u
main difference between a simple random walk and the BS=r,. Then, u# 7, and avalanches become fractal objects.
model is the presence of memory effects. Indeed, any time mdeed Eq.(4) approximates well the data given 8] for
site is choserteither as the active one or as one of its neigh-d=3 (7,=0.92, ©=0.85, D{=2.6=3u/7,=2.77...) and
bors, any memory of its previous updates is lost. Thereforefor d=4 (r,=1.15, ©=0.92,D;=3.3=4u/7,=3.2). As a
the interaction between the geometric structure given by they-product, we find that Eq(4) suggests an upper critical
choice of the neighbors accordingRgx) and the updates of dimension for the Bak-Sneppen modk).=6: indeed with
the corresponding variables can give rise to nontrivial ef-,=1 and r=3/2 (the “mean-field,” RNN, values of the
fects. exponents we find D¢(d=6)=4, that is indeed the pre-

As already mentioned above, the geometrical fractal didicted avalanche fractal dimension in the RNN lint,
mensionD; of the avalanches is another quantity of interest.=6 is at odds with what is stated [8], whered,.=8 was
Itis possible to relat®; to the other exponents of the model. suggested by numerical simulations, but also \Wa&h where
Indeed, we recall that the fractal dimension relates the vold,.=4 was claimed based on analogies with directed perco-
umeN of the avalanchéthat is, the number of sites touched |atjon.
by the avalanchewith the typical sizeR of the avalanche, as  Although Eq.(4) seems to hold in the high-dimensional
N~RP'. On the other hand\ scales with the duration of the case, it does not fit the numerical results in the present
avalanche adl~t*. The relation between the typical size of LRNN approach. The reason is that, whereas in the high-
the avalanch&®, and its duratiort is given byt~R? zbeing  dimensional case there is a single relation between time and
the dynamical exponent of the model. Then we fidgd  space, namely,~L% ", in the LRNN case there is a further
=Zu. relation, the usual Levy random walk law R~ 1. We mea-

In principle, in order to determing it is possible to use sure the fractal dimension of avalanches using the distance
the all return time distributiorP,(t). At long times on a between the right-most and left-most touched sites as a mea-
d-dimensional lattice oN=L1 sites,P,(t) flattens. We can sure ofR, and this corresponds = w—1. Indeed, as can
write a scaling form forP,(t) as be seen from Fig. 3D;=u(w—1) approximates very well

the measured fractal dimensions.
t As noted above about the fractal dimension of high-
Pa(t,L)thaf(—) , (3) dimensional avalanches, we observed theat 7, corre-
L* sponds to compact avalanches. In the LRNN case we see
from Fig. 2 that indeedt# 7, for <2, even if the fractal
with f(x) ~const wherx—0 andf(x)~x" whenx—c. In  dimensionD;<1 already foro<3. We can try to under-
this second case we find thag(t,L)=L "% (roughly speak- stand this result remembering that is related to the ran-
ing, as soon as every site of the lattice has been touched gom walk exponent= w—1: althoughz is different from its
an avalanche, they have all the same probability to be chdsaussian valug=2 as soon aw<3, a Levy random walk
sern), from which we have=d/r,. with w>2 is still compact, and so is the structure built by a

Then we can write an expression for the fractal dimen-choice of neighbors according to E@.). Only whenw<2

sion, such a structure becomes genuinely fractal, asér, .
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1.5 - - y - - o0 In conclusion, we have introduced a modification of the
= ---u LNRR o Bak-Sneppen model where the neighbors of the active site
O d=1,...,8 Simulations on | are chosen at random over the lattice with a probability that
decreases like a power law of the distance from the active
site, with an exponend. As a result we find that the char-
Tr T acteristic exponents of the model interpolate betweendthe
/.,'O\ =1 limit (w=%) and the mean-fieldRNN) limit (o<1).
--. In particular, we verify that the known exponent relations
=% hold for this model, too. Moreover, we find and verify an
- \ exponent relation for the fractal dimension of the avalanches,
0.5 - . i ) .
d=2 Di=(w—1)w. As a by-product we obtain a relation between
'\ D¢ and x and 7, also in high dimensions, fitting well the
present numerical results upde=4 [8], although it suggests
an upper critical dimensiod,.=6 (and notd,.=4 ord,
) ) ) =8 as previously believgdMore accurate numerical simu-
0.4 0.6 0.8 1 lations in high dimensions are therefore needed. The rel-
H evance of the results reported in this Rapid Communication
FIG. 4. All return time exponent, vs u for different values of is manifold: they can be looked at as an irjteres.ting modifi-
 (squares and for different dimensions, fromi=1 to d=g  cation of the Bak-Sneppen model, but their full importance
(circles. emerges when compared to the high-dimensional results of
[8]. Indeed, they lead us to propose a value of the upper
The possibility to obtain the exponeBt; from x and r, critical dimension of the model, namety,.=6, and to con-
in high dimensions, and from andw in the LRNN version, jecture the existence of a still undiscovered exponent relation
suggests that indeed there are at most two independent elfetweenu and 7,, reducing therefore the number of inde-
ponents in the model, namely and 7,. The LRNN model pendent exponents to 1 in any dimension. This result shows
suggests the presence of a furtlfelthough nontrivigl ex-  therefore that there is still some way to go before a full and
ponent relation. Indeed, in Fig. 4 we show the values of thesatisfying understanding of the BS model is achieved.
T, €Xponent as a function of the correspondjpagexponent

for different values ofv and for different dimensions. As can The authors thank F. Slanina for useful discussions. R.

be seen, the agreement is good, suggesting that the knov\ﬁ_afiero and P. De Los Rios ackpowledge financial support
edge ofu (or of r,) is sufficient to know all the other expo- under the European network Project No. FMRXCT980183.

nents through relations that, as for tper one, could be
highly nontrivial.
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