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We prove that for an arbitrary time-homogeneous stochastic process, Kramers’s flux-over-population rate is
identical to the inverse of the associated mean first-passage time. In this way the mean first-passage time
problem can be treated without making use of the adjoint equation in conjunction with cumbersome boundary
conditions.@S1063-651X~99!50307-3#
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When does a random process cross the border betw
two regions of its state space for the first time? This probl
of the mean first-passage time~MFPT! @1–5# is of central
importance in the entire field of random walk theory@6# and
noise-assisted surmounting of a potential barrier@4# with
many applications in physical, chemical, and biological s
tems. The proper mathematical formulation of the MF
problem—the so-called adjoint equation—and especially
the correct boundary conditions is often plagued by con
erable difficulties and subtle pitfalls@4,5,7–12#. The main
result of our present Rapid Communication is a way to
termine the MFPT which is based solely on the master eq
tion that governs the time evolution of the probability de
sity. The cornerstone of this approach is an exact iden
between the inverse MFPT and an associated Kramers
escape rate. This identity has been demonstrated befo
Appendix B of Ref.@4# for the special case of a stochas
process driven by Gaussian white noise~multidimensional
Fokker-Planck process!, and is also well known from acti
vated barrier crossing theories as an asymptotic result in
weak noise limit@4,7,10,13#. It is in this limit that the ‘‘re-
action rate’’ defines the macroscopic exponential decay
reactants@4#. Our present proof iscompletely general, in-
cluding, for instance, colored Gaussian noise@8#, dichoto-
mous noise@7,8,10,11,14#, pre-Gaussian noise@9#, shot noise
@7,15,16#, and composite noise@12#, as well as noisy dynam
ics in discrete time@13,17,18# without any restriction on the
noise strength.
PRE 601063-651X/99/60~1!/1~4!/$15.00
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We consider a stochastic processx(t) in arbitrary dimen-
sions. For the moment we restrict ourselves to Markov
processes@the future of x(t) depends only on its presen
state, not on its past# which are furthermore continuous an
homogeneous in time. Generalizations will be discus
later. In a numerical simulation of such a stochastic dyna
ics, the MFPT is the most straightforward quantity one c
think of, one starts at an arbitrary but fixedx0 and observes,
for N independent realizations of the processx(t), the times
tn , n51,2,. . . ,N, it takes to leave somea priori prescribed
domain G for the first time. Then,Sn51

N tn /N is the best
possible estimate for the MFPT that one can obtain from
given samplingstn , approaching, by definition, strict equa
ity for N→` ~with probability 1!, i.e.,

TG~x0!ª lim
N→`

1

N (
n51

N

tn . ~1!

We remark that the processx(t) need not be continuous in
space, i.e., it may typically exit from the domainG without
ever actually hitting the boundarydG. We furthermore take
for granted that the considered problem is physically me
ingful, especially the choice ofG should be such thatx0
PG and 0,TG(x0),`.

Turning to the definition of the Kramers rate, we imagi
an ensemble of independent ‘‘particles’’x(t) with a constant
particle-sourceq at x0 , that is, in any time interval@ t,t
R1 ©1999 The American Physical Society
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1dt#, a numberqdt of new particles are joining the en
semble with seedx0 . Furthermore, particlesx(t) are re-
moved from the ensemble as soon as they leave the do
G for the first time. Due to our assumption that the stocha
dynamics is time homogeneous and the MFPT is finite,
particle densityP(x,t) approaches a steady stateP(x) in the
long time limit and the average number of particles leav
G becomes equal to those injected by the source. The
kG(x0) according to Kramers and Farkas@4,19,20# is then
definedas this resulting constant net flux out ofG normal-
ized by the population insideG,

kG~x0!ªqY E
G

P~x!dx. ~2!

Since doubling the source strengthq will also double the
steady state population*GP(x)dx, this definition is clearly
independent of the actualq value.

In contrast to the MFPT, the question of how to determ
the Kramers rate~2! from a numerical simulation is slightly
less trivial. Due to the time homogeneity, the escape timetn
contain all the relevant information that one can possi
extract from any type of numerical simulation. Therefore,
Kramers rate can definitely be calculated from thetn , but
how? A first guess that comes to mind is to take the aver
over the ‘‘individual rates’’knª1/tn . Indeed, each realiza
tion of the stochastic process may be considered as re
senting one possible ‘‘reaction channel’’ with a correspon
ing rate kn and ana priori probability 1/N. The resulting
total rate is thus the sum of the contributions of all chann
weighted with theira priori probability. A second natura
guess of how to obtain the Kramers rate from the simula
escape timestn is by taking the inverse of the MFPT from
Eq. ~1!, i.e.,

TG~x0!51/kG~x0!. ~3!

The commonly used argument~see, e.g., in@21#! is that each
particle injected by the source remains on the average f
time TG(x0) in G. The steady state population ofG should
therefore be equal toq TG(x0) and the rate equal to the in
verse MFPT. The problem with this argument is that t
individual particles actually remain inG for a time tn and
not TG(x0), and the net effect of these deviations on t
population ofG is not so obvious. We also remark that th
two guesses are not equivalent unless all of thetn are exactly
identical. Anticipating that Eq.~3! is indeed correct it fol-
lows that the average over 1/tn never equals the Kramers
rate, not even in the weak noise limit of a barrier cross
problem.

In order to prove Eq.~3! we observe that the relativ
number of particlesr t0

(t) that havenot yet left G at time t,

given that they have been launched fromx0 at time t0 , can
be calculated from the escape timestn as

r t0
~ t !512 lim

N→`

1

N (
n51

N

Q~@ t2t0#2tn!

5 lim
N→`

1

N (
n51

N

Q~tn1t02t !, ~4!
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where the Heaviside function is defined by

Q~y!ª1 if y.0, Q~y!ª0 if y<0. ~5!

Due to the assumed time homogeneity of the stochastic
namics, it follows that

r t0
~ t !5r0~ t2t0!. ~6!

Let us now start at timet i to constantly inject particles atx0
at a rateq. Then, the total population insideG at time t
.t i is

E
G

P~x,t !dx5E
t i

t

dt0 q r0~ t2t0!. ~7!

By introducingt85t2t0 and using Eq.~4!, this yields

E
G

P~x,t !dx5 lim
N→`

q

N (
n51

N E
0

t2t i
dt8Q~tn2t8! ~8!

and thus fort→`, i.e., in the steady state,

E
G

P~x!dx5q lim
N→`

1

N (
n51

N

tn . ~9!

By comparison with Eqs.~1! and~2! we arrive at the centra
relation ~3! between the Kramers rate and the MFPT.

So far we have restricted ourselves to point sources
particles of the formS(x)5qd(x2x0). For more general
sourcesS(x), the net flux of particles acrossdG in the
steady state equals the total source strength*GS(x)dx yield-
ing, for the Kramers-Farkas flux-over-population ratethe
generalized definition,

kG@S~x!#ªE
G

S~x!dxY E
G

P~x!dx. ~10!

The proper definition of the MFPTTG@S(x)# for a general-
ized distribution of seeds according toS(x) is still given by
the right hand side of Eq.~1!, implying

TG@S~x!#5E
G

S~x!TG~x!dxY E
G

S~x!dx. ~11!

Our line of reasoning above can be readily extended to
case with the following result:

TG@S~x!#51/kG@S~x!#. ~12!

An analogous extension is possible for more general si
than the so far considered perfect absorption outsideG, e.g.,
for a constant finite absorbtion probabilityS(x)}2P(x) in
the regionx¹G.

We remark that the same line of reasoning can be ado
also for the case of processes in discrete time. A more s
ous restriction is the time homogeneity. In the case o
periodic time dependence, a generalization of our argume
is still possible via stroboscopic mapping and coarse grain
of time but not for a general explicit time dependence. T
procedure mimics the averaging of a corresponding tim
periodic flux over a full period.



ti

th
d

b-
rs

d
e

en

h
in
he
pu
st

r

e
en
at

-
to
rb

s
r-

-
o

ro
b

h

a

-

the
mall

te

ady
to

is

be

m-
-

icle
left

o a
e
in

y
nu-

ur
p-
or
any

ion
ator

ife-

he

ce
pu-
l-
ing

ng
y de-
an-
and
di-
e
e-
e—
eta-

d
o

RAPID COMMUNICATIONS

PRE 60 R3UNIVERSAL EQUIVALENCE OF MEAN FIRST-PASSAGE . . .
Next we turn to the case of a non-Markovian stochas
dynamics. The time evolution of such a processx(t) and
thus the MFPT is not completely specified anymore by
seedx0 and one has to tacitly take for granted some ad
tional ‘‘preparation conditions’’ in order to make the pro
lem well defined. Similarly, in the definition of the Krame
rate, the distribution of the particle sourcesS(x) has to be
supplemented by the same additional ‘‘preparation con
tions’’ as in the MFPT. Our above line of reasoning can th
be carried over without any further modification and the c
tral result~12! still holds true.

The fact that Eq.~12! is an exact identity under suc
extremely general conditions is certainly of considerable
terest in itself. However, its main practical application is t
evaluation of the MFPT and, for this, the steady state po
lation *GP(x)dx in Eq. ~1! has to be determined. In the mo
general case~Markov and non-Markov!, the time evolution
of the particle distributionP(x,t) is governed by a maste
equation of the form

]

]t
P~x,t !5Ĝ„x,@P~y,s<t !#…1Q̂„x,@S~y!#…, ~13!

where the master operatorĜ is a function ofx and simulta-
neously a linear functional ofP(y,s), and similarly for the
source operatorQ̂. Due to causality, only time argumentss
<t can play a role in Eq.~13! and, due to the assumed tim
homogeneity, both operators involve no explicit time dep
dence. For a general non-Markovian process those oper
take into account memory effects~e.g., memory friction or
time correlations of the noise! as well as the above
mentioned additional ‘‘preparation conditions’’ in order
make the time evolution unique. To account for the abso
tion of particles outsideG, one has to restrict Eq.~13! to x
values insideG with supplementing boundary condition
P(x,t)50 for x¹G. In passing we note that so-called pe
fect reflecting boundary conditions~i.e., the dynamics is ex
cluded from a subset ofG) can always be incorporated int
the master operator, e.g., by infinite ‘‘potential walls.’’

In many cases of practical interest, a non-Markovian p
cess can be made exactly or approximately Markovian
including some auxiliary state variables intox(t). In this
way, the problem is typically much easier to handle. As
matter of fact, we do not know of any example for whic
such a transformation isnot known but the explicit forms of

the operatorsĜ and Q̂ in Eq. ~13! are known. For all prac-
tical purposes we can therefore restrict ourselves to the M
kovian case. The source operatorQ̂(x,@S(y)#) then becomes
equal toS(x) and the steady state density is governed by

Ĝ„x,@P~y!#…52S~x!, xPG

P~x!50, x¹G.
~14!

In other words, to determine the MFPT via Eqs.~10! and

~12! one has to know the master operatorĜ and solve the
time-independentproblem ~14!. ~The calculation of the
MFPT from an equivalent, buttime-dependentproblem is
well known @5# but its actual evaluation is much more diffi
cult.!
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We close with a few remarks with special emphasis on
escape over a potential barrier in the presence of a s
amount of noise. It was in this context that Kramers@19#
introduced the flux-over-population definition of the ra
~10!, based on an earlier work by Farkas@20#. Their original
strategy was to start with an ingenious ansatz for the ste
state solutionP(x) on the entire state space and then
determine the corresponding sinks and sourcesa posteriori
by inserting that solution back into Eq.~14! @4#. While, in
principle, anyP(x) satisfies Eq.~14! with properly adapted
S(x), the art of arriving at the physically relevant solution
by concocting aP(x) with a negligibleS(x) in the barrier
region. In our slightly modified formulation of the problem
~14!, sinks do not explicitly appear but could of course
determineda posteriorias well.

Our second remark is that the usual choice ofx0 is at or
close to the metastable potential well. To calculate the Kra
ers rate~for weak noise!, G is typically assumed to be suf
ficiently much larger than thebasin of attractionof this
metastable state, such that it is very unlikely that a part
x(t), had it not been taken out of the game after having
G, would return into this basin ofx0 in the near future. On
the other hand, the MFPT is often meant with respect t
domainG which coincides with the basin of attraction of th
metastable state. This type of MFPT is known to approach
the weak noise limittwice the inverse Kramers rate in man
cases, yet this fact does not always hold true for disconti
ous stochastic processes@18#. While for any finite noise
strength this equality is generically not verified exactly, o
result ~12! is always exact. Moreover, in our present a
proach, the domainG has to always be chosen identical f
the MFPT and the Kramers rate, but need not agree with
of the above-mentioned standard choices.

Besides the MFPT and the Kramers flux-over-populat
rate, the smallest positive eigenvalue of the master oper

Ĝ is another frequently used quantity to characterize the l
time of a metastable state@4#. Again, this quantity is known
to become equal to the Kramers rate~in a bistable potential,
to the sum of forward and backward Kramers rates! in the
weak noise limit. It is interesting to note that the MFPT from
Eq. ~11! can also be identified with an eigenvalue of t

master operatorĜ in the very special case that the sour
S(x) is required to be proportional to the steady state po
lation P(x). This condition singles out the smallest, re
valued eigenvalue of the eigenvalue problem with absort
boundary condition, cf. Eq.~14!.

It has been known previously that for moderate-to-stro
noise the decay of a metastable state depends on man
tails of the system and thus the various possibilities to qu
tify the decay do no longer agree. Whereas the MFPT
the Kramers flux-over-population rate both have an imme
ate physical~or chemical! meaning, and on top of that ar
equivalent, the physical relevance of the third abov
mentioned concept—the smallest nonvanishing eigenvalu
and the closely connected exponential decay of the m
stable state are questionablewhen the noise is no longer
weak.

In this context it is also worth noting that the so-calle
resonant activation effect@22# has been mainly discussed s
far in terms of the MFPT; see@23# for a review. The first
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reason for this is again the clear-cut physical meaning of
MFPT even when the escape no longer follows an expon
tial decay in time. Nevertheless, the concept of the flux-ov
population still applies for any noise strength. The seco
reason is that, in terms of the smallest nonvanishing eig
value of the master operator, the effect typically no long
occurs@23,24#. The conclusion of our present work is that a
of the previous literature on resonant activation in terms
the MFPT can be immediately translated into stateme
about the associated Kramers-Farkas flux-over-popula
rates.

To summarize, we have shown that the MFPT is exac
equal to the inverse of the associated Kramers escape
Our proof is both completely general and surprising
simple. As a consequence, all of the explorations of ‘‘re
nant activation’’@22,23#, which have been mainly conducte
in terms of the MFPT, especially in the regime where
e
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exponential decay is no longer observed, can be immedia
translated into conclusions in terms of the Kramers rate. I
well known, especially for colored noise processes@7–11#,
but also, e.g., for white shot noise@7,11,15,16,25#, that the
derivation of the adjoint equation governing the MFPT a
especially of the correct boundary conditions is not straig
forward at all. In such cases, the calculation of the exac
equivalent Kramers rate@~10! and ~12!# by solving Eq.~14!
may amount to a considerable technical simplification of
task.
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