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Scaling theory for homogenization of the Maxwell equations

A. P. VinogradoV¥ and A. V. Aivazyan
Scientific Centre for Applied Problems in Electrodynamics, Russian Academy of Sciences, Izhorskaya 13/19, Moscow 127412 RF, Russia
(Received 11 December 1998

A scaling theory for homogenization of the Maxwell equations is developed upon the representation of any
field as a sum of its dipole, quadrupole, and magnetic dipole moments. This representation is exact and is
connected neither with multipole expansion nor with the Helmholtz theorem. A chain of hierarchical equations
is derived to calculate the moments. It is shown that the resulting macroscopic fields are governed by the
homogenized Maxwell equations. Generally, these fields differ from the mean values of microscopic fields.
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[. INTRODUCTION Such a simplicity tempts us to consider Ef). as a multipole
expansion[10-13, appending to Eq(1) new multipole
Recent studies of artificial materials have focused orterms:
properties of composite materials inside which an electro-., - N - 1 -
magnetic wave interacts with inclusions in a resonant wayP=¢E+47P—47V.-Q+..., H=u "B—47M+..-.

Examples are percolation systefil§, chiral materialg2], Though the molecular optics is a well-developed area, this

omega materialg3], artificially permeable materialst—6], speculation seems to be an obscure place. Indeed, the multi-

etc. An attempt to increase the observed effects entails work- - . -1
) . . . i ) ole moments naturally appear while expanding any field in
ing with a dense, high-loaded composite. Dealing with suc!% Y app P g any

" o rerial N " bl Th /R powers wheral is a sourcginclusion size andR is the
resonant™ materiais, one encounters two probiems. Cistance between the source and a recofdaother inclu-
f|r.st one is that a dimension of an |ncI'US|on IS comparab!esion). Such an expansion is useful in the “molecular optics”
with the wavele_ngth. _The _second one IS that the_ mean OIISa'lpproximation as evaluating a local field which is a sum of
tance between inclusions is comparable W't.h their size. Th n external field and fields induced by other molecules. In
first fact means that one should homogenize the Maxwel

; . . hat cased<R, with R to be a mean distance between the
equations instead of the Laplace equation, whereas the SEColecules. ON the contrary, the employment of the expan-
ond fact means that one has to work beyond the molecul ’

’ . . ) &ion is doubtful for evaluation of the mean fields and cur-
optics approximation. Thus, many results known from I|tera-rentS since this procedure demands knowledge of corre-

ture (for example, mixing formulag7]) become useless un- sponding values inside the moleculd0,14, where the

der these conditions. expansion is not held becauRe<d. Moreover, “molecular

Usually homog_enlzauon of th? Maxwgl! equations 'is optics” ceases to be a good approximation even for calcula-
treated as averaging over a physically infinitesimal VOIumetion of a local field if we deal with high loaded composites

element(PIVE) [8]. For “resonant” materials direct averag- e{vhered~R

ing is not correct because currents, which build up close Even in the frame of the molecular optics, there exists still

Eﬁ?tt(r)wl;rs’cgaslogggir:itgrkm)glt%itsosith:tigqr?i? g:lzirosgﬂglc g#grea tnother problem, i.e., the dependence of the multipoles upon
y P 9y 9 e frame origin. It is well knowrisection 4.110]) that only

a magnetic moment. The recipe for the correct averaging %he lowest nonvanishing multipole moment does not depend

circular currents seems to be well known from the theory O%on the location of the origin. All higher multipole moments

magnetic materials. It is an introduction of the magnetizationdepend upon the choice of the location. The problem of in-

M [9], troducing origin-independent moments has a long history
(see[10-13) but still has no clear solution.

A relation like Eq.(1) could be formally deduced, avoid-
ing speculation about multipole expansion, by employing the
charge conservation laysee[15])

jimacro) ¢ gyr| M (macro)

that yields

F(macro): alS(macro)at +ccurl '\7| (macro) (1) ap R
— +divj =0. 2
and permits one not only to see how circular currents con- at

tribute to the macroscopic current but also to take into aCTaking into account the definition of polarization,

count the lost energy dissipation by regarding an imaginary

part of M(™°) |n the framework of the molecular optics p=—divP, 3)

approximation,M (Mol and P(Macrol/,. - are equal to _
sums of moments of molecules situated inside the PIVEONE arrives at

. 9P
div| j——=/=0
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which yields Eq.(1) with vector M, the physical sense of €ach interface surface. Indeed, even uniform magnetization
which is still undefined8]. The last fact significantly com- (microscopic circular currentproduces a surface current on

plicates a consequent introduction of high-frequency permeany interface[9]. To write down the correct boundary con-
ability. ditions, one should introduce an additional constitutive equa-

tion for this surface current which is quite equivalent to in-
troduction of permeability19].

- 1 - - The conclusion of this brief review is that we should fix
f Mdv = Ef [rxjldo, (4 the following problems: first, why we can use a multipole
expansion whed~ R; second, what is the physical meaning
of M and P if aP/at~ccurlM; third, how to introduce
origin-independent multipoles.

To prove thatM is a magnetic moment of currents,

one resorts to two assumptiotsee[8]). First, the current is
perfectly circular:

j=ccurlM.
' . ) Il. THE SCALING ALGORITHM
It means that the first term in E¢l) could be ignored or OF THE HOMOGENIZATION
Jd . - . . .
ZPB<ccurlM. (5) It seems t_hat the key moment is the expressin It is
at Eq. (4) that gives us a reason to consider Eh.as a multi-

pole expansion. Moreover, E@}) gives rise to a dependence
of the moments upon the origin. Solely to prove E), one
should bound oneself by frames of the assumpt@®nand
the assumption thatl and P are equal to zero outside the
PIVE. To fix all aforementioned problems and to attribute a
physical meaning tM andP, we generalize Eq(1). For this
Jpurpose we resort to the following mathematical lemma.
Lemma.Any field can be represented through its “elec-

For natural magnetic materials E(p) fails at optical fre-
guencieqd 8] whereas for composite material it already hap-
pens amw. If the inequality(5) is broken but Eq(1) is still
held, one should look for any other definitionMfinstead of
Eq. (4) (see[15-17).

Assumption(5) is insufficient for Eq.(4) to be valid. The
second assumption concerns space distribution of polari

ability, namely, the magnetic momeNt should be equal to

) . ; - trical dipole,” “magnetic dipole,” and “electrical quadru-
zero outside the volume of integration. As it is showr8ii pole” moments:

1 - 11 . -

== [rX] dv=—f rxcurlM _9 J g 9 _

ZCJ[ Hdv=7] I ] Ji—ﬁpﬁceﬁjka—xjmk—ca—xkEQik—Ji(p)ﬂLJi(m)ﬁLJi(Q),

O i, (6)
= X[dsxM]]+ | Mdv.
fﬁ[r Lds 11 J do where

It is therefore seen that Ed@4) is held if and only if the 1
surface integral is equal to zero. This could be achieved by Mi(Xj I = 5 X J (7)
putting the surface slightly outside the considered volume, in
the area wherd1 =0. 1

Certainly, this is an idealization that is never realized be- 719 (%5130 == 55 (Xidj +X;3i), 8)
cause the PIVE is a part of a large body. It means that the
PIVE neighbors upon alike volume elements where magne- d
tization is not equal to zero. To describe the situation, one St Pixi )= —(Xia—Xka)- 9)
should move on from a consideration of lumped-element ob-
jects to a consideration of distributed systems. One shoul@his could be shown by straightforward calculation:
distinguish currents with flux lines confined to the PIVE and
those with lines terminated on the PIVE walls. The first ones d Jd d

> e )
contribute to magnetic polarizatioM (M) whereas the kg T G, at Tk
second ones contribute to the complex electric polarization P
p(macro) and complex quadrupole densigy™macro: = 8ijk 25 EmXmdn + == (Xi it XiJ)
j k
j"(macro): ccurl j (macro) . é,F")(macro)(?t 5 5
—cdivaQMmacroyot+ . . . e”ke"’“”&x,- Ximdn %, aka" J"axkx'
Generally, such a separation highly depends on the shape x iJ.+J.iX
and size of the PIVHES] that makes the procedure of aver- Kaxe ™ Tl ax,
aging indeterminate. P P P
Tq avoid all the_s_e problems, the quth@&liﬁ] r_efl_Js_e to = Jy— — X di | X J | X — I+ 4T,
consider permeability at all, introducing a permittivity ten- IXn IXn Xk IX
sor: gij(w,K) =" (w)(8;; —kikj/k?) + &' (w)kik; /K% As a 5
penalty for this simplification, one should introduce an extra = ( 2% —Jy | +2J; . (10)
constitutive equation for the additional currents, flowing on Xk
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It is worth emphasizing that E¢6) is neither a multipole The brackets ) denote the averaging over a volume ele-
expansion nor a representation of a field as a sum of irrotament, say PIVE.
tional and solenoidal parts according to Helmholtz’s theo- In particular, Eq(11) is held wherL is one of the bilinear
rem. forms p;(X;,Ji), mi(x;,Jdi), or d;;(;,Jy) defined by Egs.

It is important to emphasize that,p, andq on the right-  (7)—(9). We can see that a moment of the PIVE can be rep-

hand sides of the expressiofi§)—(9) are related with the resented as a sum of an origin—independ_ent terr_‘n and a mo-
entire current in a Common]y accepted V\/@D] without ment of the whole PIVE when the PIVE is considered as a

additional assumptions. unitized indivisible pointlike construction. Further, the for-
The representatiof6) is not self-consistent because, for mula (11) will help us to introduce frame-independent mul-
example, tipole moments.
Let us imagine a composite sample as a sum of cells
Ji(m)(j) iJi(m)(j(m)):(1/20)eijkfv(?(eklmX|J§nm))/5de3r- whose characteristic size lisThus, the(f}m varies only on

scales greater thdnThe Fourier expansion «éf)m contains

As a consequence E() is not unique. Along with it, any terms withk<2m/l, whereas forsj it contains terms with
power (in operator sengeof the representation may be used. k>2m/1. Applying Eq.(11) for a vector field of the fornt6),
In the general case we come to the following expression: We get

Ii=> ( O b Sk
i=2 Col =~ Xi—kn" T 5 —— - N e s m s s m o o
TE S Tax 2 Jx; Jimacrol= J [IM(5],6r)+ID(S],0r)+IP( 5], 6r)
\Y
9 (X Sknt X 0in) s R .
X €amXidmn o | +IM(S] (1)) +ID(] (ry)+IP (6] (r))

with 2.cs=1. Implying that the traditional expressidh) is
held in numerous cases, we can assert¢hatl. Further we
shall considerc;=1 [20].

Our consideration is also based on another mathematic
formula [16], which is held for any bilinear form.(x,J)
such as

2 2 >, > b >, > bt >, dV
I[N +IVCGN+HIPEG) NI

EiJhe first group of three terms consists of quantities which are
independent of the origin place. The second group of three
terms is equal to zero as it can be seen from @q). The

L(ax;+bxy,cJi+dJp)=ack(x;,J;) +adl(x;,Jz) sum of the last three terms is equal(§) due to the inde-
+becl(xy,d7) +bdL(X5,d5) pendence ofj) upon coordinate inside the cell. Thus, after
averaging we express a macroscdjmcthe frame of the cell
value of the fieldJ as a sum of four terms which are the
L(J,r)=L(I—{I)y+{(I),r —(r)+{r)=L(8I+(J), mean value o(f), curl to “magnetic dipole” moment, and
time derivatives to the electric dipole moment and to the
Sr+(ry)=L(83,6r)+L(83,(r))+L(I),r). (11  divergence of the electric quadrupole moment:

wherea,b,c, andd are real numbers, namely

—

S U I 1 - .
Ja(macro)zj [ccurl,ﬂM(&jo,6r0)—dieraQ(éjo,(Sro)/aHaP(Sjo,éro)/aH Ecurlro[rOX@)rOEvl]
\%

1. . R - L d®rg
+ §d|Vr0(ro<J>Foevl+<J>r?,ev1r0)_<r0>rzevld|vro<~]>r_;evl] v

> S T A P
:<J>FOEV1+<ccurI,OM(5J,5r)—d|erEQ(5j,6r)+EP(&J,&)>*

roeVy

b > hd e . (9 2 d . a = > e
=<J>;,Evl+ccurlrl<M(5J,5r)>gevl—dlvrl<5Q(5J,5r)> + (PO, 0M)igev, - (12

roeVy

All the quantities are independent of the location of the“currents” over new, large cells employing expressidre).
frame origin and are constant within the cell. Certainly, theyEach of the four “currents” calculated on scdlavill con-
fluctuate when moving on from cell to cell. To take into tribute to four currents” on scal&’. It is obvious that we
account that the four “currents”J™, J@, ), <j>) could arrive at the following equation for “current” moments:
fluctuate on scalé’>1, we shall behave in the spirit of the

renormalization groug21]. We should group the primary R _

cells into cells of sizé’=nl (n>1) and average these four In=(In-1), (13
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. . . . Ay
Mn=(My_1)+ m(5JN7115rN71)V—
Vi N

d3ry-1
Vi

+f m(c ScurlMy_1,8n-1)
VN

+f A 62By L. of drns
VNm St N-1 FN—1 Vi
-1

4. . \d
_JVNm(édlvﬁQNl’&Nl) vy (14

. . . APy
Pn=(Pn-1)+ p(5JN—1v5rN—1)—V

3

- - - d ry-1
+ p(cécurlMy_1,0rN_1)———
Vy VN

+f *<5(9ﬁ ST, a1
VNp E N—-1>» rN*l VN

3
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magnetic and quadrupole moments dj: m=3[ér
xéf]/S, Qjj=2(0dr;dj;+ or;6j;)/16, where summation is
performed over eight primary cells constituting a new sec-
ondary cell andsr; is a position of the primary cell with
regard to the center of the secondary cell. At the next substep
we join eight secondary cells into a new cell that will play
the role of the primary cell at the next step. Computing mean
current j(Mea=(({})  magnetic currentj™=c curlm,
quadrupole currenj®=—c div dg/dt, and polarization
current (P =(ap/aty= —3[ srdiv(5])/8], we arrive at the
primordial situation: the body is split into cells which are
cubes but with side &,. The only difference is that instead

of dealing with a single quantity, namely with the curr§nt

we should treat four quantitieg{™mea" jm (@ andj®.
As a result, after two substeps, we obtain sixteen quantities

in each cell of the third levelwith side 1@,): j{meam,

I ndere Tinban | SanProduced fromy(mean) jieam, jim jo,
j®) produced fromj™, jimean, jim @ - ie) produced

from (@, and j{™@, jim j@ 70 produced from]®.

- 0. - drn_1 Going on, we construct new quantities
_j p| 6 div ZTON-1,0MN-1 | (15)
V, 2 2 > 2 2
N N J(mean): j Enﬂégﬁn)_'_ i Enmean)+ j gmean)_'_ j E’mean)’ (18)
. . . . Ay
QN:<QN—1>+LNQ(5JN—1,5FN—1)V—N Jm = Jm o Jimy m oy fim (19)
8 70 =) 4 7P 4 (P 4 {(P)
+ a(cécurll\szlﬁrﬁNfl)d \r/Nil 7= meart Im' *iq *ip (20)
Y N - - - - -
) y 0= [t T+ T4 21
J 5 ~ 'n-1
+ vaq( 5EPN1'&N1> Thus we have completed the step and are ready to do the

next one applying the proposed algorithm.
- 9. - d3ry_q Moreover, taking into account thgtf’)=(f)’ for any
—LNQ 6 div—Qn-1,0"N-1 Vy (16 function and differentiation operation denoted by a prime
(brackets denote averaging over a ;elle obtain Eqs(13)
Here the functionsn, g, andp are defined by Eqg7)—(9).  and(16) from Egs.(18) and(21).
The equations allow us to calculate origin-independent mo-
ments on theNth level if we know the distribution of the
same moments on thé&(- 1)th level[22]. We have to go on
until we reach a certain level, where the diameter of the . o
volume of averaging becomes equal to the correlation length In t_he case O.f composite materials instead of the Lorentz
L. of inhomogeneities. At this step the moments cease t quations vallc_i in Yacuum, one should average the Maxwell
depend upon the spatial variables. Thus, we arrive at th@aterlal equations:
following determination of the macroscopic value of the field e .
J: curlE= FMH’

lll. THE HOMOGENIZED MAXWELL EQUATION
FOR COMPOSITE MATERIALS

- iw -
curlH=——¢E,
c

wheree andu are complex functions depending @nandr.

j(macro): ccurl ,\7' Smacro)_ ¢ div i@gmacro)_i_ iF';Smacro)_i_ <j’> - | - :
ot ot Employing Eq.(17) for homogenization yields

7

Let us consider the algorithm with the intent of employing it
on a computer. At the first step we have a system of elemen-
tary cells building up the whole body under consideration.
For simplicity we shall consider the cells to be cubes with
sideay. We know the currenf in each cell. The first step
cpnssts_of two substeps. At the f_|rst substep we join togeth%ith a new couple of fields,

eight neighborhood cells producing a new set of large cells.

For each of such cells we can calculate the mean cu¢ient (eE)(Macro)= ¢ cyr| [(Macroly ¢ 4 dliv QMO+ (£ E),

distribution of the fluctuating part of the curreﬂ[ie, and (23

curl E(macro):i_w(luH")(macro)
c f

J(macro)_ __ I_a) =\ (macro)
curlH o (eE) (22
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(uH)Macrol= ¢ cyr| C(macro)y jc ¢ diy Z(Macroy ( 4, ).
(24)
Herez(Ma)js 3 quadrupole moment of the “magnetic cur-
rent” uH; (M%) js related to the macroscopic magnetiza-
tion M(ma) caysed by fluctuations of the total current
(weE/4im). Indeed,

©

(b)

NNIZ4
AN

(@)

M ~[8r X 8] 1= (wldicm)[ 5T X (¢ E)]~1.

More exactly,M (M2¢0)= — (j /47 (M) This term should
be calculated employing Eq13) wherem should be taken
from Eq. (7) with | = (weE/di ).

The vectorL(M2) has been phenomenologically intro-
duced in[23]. In the present consideration it appears while
homogenizing the magnetic field. It is a “magnetic,” in

{c)

the sensé6), part of B(Maer0)=( ;, H)(Macr0) This term comes
from Eq. (13), wherem should be taken from Eq7) with
j=(iwuH/47). Thus,L is proportional to “anapolization”

FIG. 1. Possible patterns of fluctuating current.

Repeating the same speculations, it is easy to show that for
E(macr9) gne has

[24] or density of anapole dipole moments. The anapole or

toroidal pole moments were introduced in nuclear physics nx (E,(Macro)— g, (Macro)) — 4.7 x (L, (macro)_ | (macro)
[25] to describe objects without electric and magnetic mo-

ments. An electrodynamical anapole could be thought of as a

toroidal solenoid with poloidal current$For more details,
see[24].)

It is convenient to introduce new field&,= E(Mmacr)
—4qL(Mmacro) gnd H,=H(Macro)l_ 47\ (Maeo) (see [23]).
These fields are introduced, much as the fiéld=(h)
—47M is traditionally introduced. Heréh) is the mean
microscopic magnetic field usually denotedBsnd called
the magnetic induction.

Employing the new fieldéo and HO, we can recast Eqs.

In the vicinity of the interface outside the composite, say
in vacuum, there could exist a lot of evanescent waves. This
could result in nonzero anapolization of vacuum. Hence one
should deal with the macroscopic fields instead of mean
fields in vacuum. This is a typical situation if we deal with
inhomogeneous systerh26—29.

IV. CONCLUSION AND DISCUSSION

To repel an accusation in abstract contemplation, let us
consider examples of the “multipole” media. Permeable

(22) as . . i
composites made of nonpermeable ingredients are well
- o - - o known. The simplest example is a composite loaded with
curl EO_F“eﬁHO' curlHo=— C Bo, (29 highly conducting spherical inclusions. Due to eddy currents,

there appears a magnetic moment of the inclusion. The com-

where constitutive parametesgs, uerr are defined by the  sgite heing placed, say, in a microwave field exhibits prop-

equations erties of diamagnetic materif23]. The inclusions of more
8eff|§0: ( 8§> +iwc div Omacro) (26) _com.pli.cated structure can exhibit resonant excitation r.esult—
ing in induced magnetic moment. Examples of such inclu-

weHo=(uH)+iwc div Z(Mmacro) (27)  sions are open ringist], dielectric sphere§5], helices, and

bihelices[2,6]. In this case we can observe either diamagne-
tism or paramagnetism, depending upon the relation between
the working and resonant frequencie®. medium is a
smarter system. As a composite made of identical dielectric
equations. As a consequence, the usual boundary conditioﬁgheres is permeable, the material made of dl'fferent S|zed"

inuitv of ial & and b spheres may be nonpermeable. The concentrations and radii
(continuity of tangential components & andHo On any oy e chosen so that one part of the spheres is excited in a
interface surfaceshould connect fields outside the medium diamagnetic mode and the other in a paramagnetic one. Such
with the “subzero” fields. The fieldsE(Ma), H(maco) 5 vstem should be described by its quadrupole moment.
change across the boundary. To understand this fact, it is Obviously we can design a still smarter system with in-
worth referring to the traditional homogenization procedureciusions whose electric and magnetic dipole as well as elec-
where H(Ma) corresponds tdB and Hy=H(Ma—47M tric quadrupole moments are equal to zero. A corresponding
ary condition forH(m2°) reminds us of the one foB in ![tr;aetegi;h:tsizl:g;wiﬁgath?Opgpxzedsﬂgg?g?r;em:;ch(?nmt
traditional consideratioisee Chap. 198]): y prop y

L _ o _) (15) yield a zero value foM andQ. Here we must say that,
nX (H,(Macro)— 7 (Macro)) = 4 7y 5 (M, (Macro)— y (macro)) generally speaking, on the right sides of equations like Egs.

which differ from the custom onese«(E)=(cE), ues(H)

=(uH) (seel7).
The fieldsk, andH, are governed by the usual Maxwell
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exists a “zerg” plane sgch thad| '=O on _it and thatdj;
—> -— =d;or [31] increases linearly while coming outward from
T ¢ _I_ T ¢ T ¢ the plane, where,~ j/a. Only magnetic dipole and electric
- — quadrupole moments of such a current distribution have non-
«— —_— i -
zero va!ues. All other multipoles are equal to zero. Tzhe mag
netic dipole densitym,= (fvce"eijkd” oror ) IVe—asjla
FIG. 2. A graphical analog of Eq6); the pattern shown in Fig. ~Q(a). Contribution of the quadrupole moment is of the
1(a) could be presented as a combination of the currents shown iggme ordef32], whereas the disturbance of a plane wave is

Figs. 1b) and 1c). o small from these values. Hence, one should ﬂﬁkand@

into account. The next terms in the Taylor expansion of cur-

rent give rise to higher moments. The density of tthepale

r?ﬁagnetic and the 2¢1)-pole electric moment ar®(a')

[see[10] formula (9.9)]. Even forl=2 (magnetic quadru-
Mg\lm_alcro): Ccurlfg\lrrlafro)+ic wdivwg\lnlafro)_'_“\z'\l_l). pole moment the contribut_ion isO(a?), which i; of the

same order as the correction to the wave amplitude due to
(28) averaging and hence it must be abandof8s].
This leads to the introduction of additional fields. In the ex- From what has been said, it follows that high-multipole

ample(28) these are an anapolizatifmnd a tensor fieldlV, media cannot be described in terms of local constitutive
describing densities of higher moments. Certainly, one has tequations for just the averaging procedure to become nonlo-
write down the equations for these fields, introducing a newcal.
set of fieldsad infinitum To cut off the chain of the equa- There is another method of averaging which is employed
tions one should assume macroscopic values to be equal o so-called strong fluctuation theofBFT) [34]. Unfortu-
mean ones for any field set. This implies straightforwardnately, this method has an even more limited field of appli-
averaging of the quantities over the PIVE of sizg avoid-  cation than averaging over the PIVE. The method implies
ing an iteration procedure. In doing so, one should calculatéghat the value of the field is completely determined by the
moments relative to the PIVE center, but to sum momentsalue of the local constitutive parameters. As a consequence,
calculated re[ative to a local positi_on inside the PIVE, as it isfjgt, despite considering the correlation function one does
done at the first step of the iteration procedure. not really take into account that the field inside an inclusion
The cutoff problem is tightly connected with the averag-gepends upon its membership of a certain cluster. The per-

ing procedure. In Sec. Il we concluded that the iteration proq|ation theory is best suited to illustrate this statement for a
cedure must be stopped after arriving at the st:_@l.eAt this . static limit. The SFT, which is equivalent to the Bruggeman
scale there are no fluctuations. Nevertheless, if we deal wit pproximation with neglecting correlations, says that, de-

alternating in time fields, say with a plane wave, there is st|IIpending upon the component concentration, an inclusion can

a spatial dependence of the fields akpk It is natural to xist in only one of two possible positions: below the perco-
expect that the averaging would not disturb the dependencg. . y  possibie p ' PEerco
ation threshold each inclusion is surrounded by a matrix

For uniform space fields the averaging over the PIVE o . . . :
radiusL . does not change the values of the fields, wherea aterlal,_whll_e ab_ove the threshold all inclusions belo_ng t_o
for a plane wave the procedure changes the amplitude by € _sole mfmltg smglg-connected cluster. The correlation in
factor sinkL)/(kL). In other words, there is no reason to the_ inclusion d|str|but_|on can c_hange the value qf th(_a perco-
consider terms higher tha®((kL.)2) while passing from lation threshold. waoqsl_y it is a rough approximation be-
microscopic to macroscopic Maxwell equations without sig-cause the formation of finite clusters, “dead ends,” and par-
nificantly changing the averaging procedure. It is necessar§lle! paths of the infinite cluster existing in real composites
to mention that one cannot completely disregard effects ofire ignored.
the fields retardation because they may be of lower order in Second, the SFT ignores the dynamic effect: the field dis-
(KL,). In particular, the retardation is responsible for chiral-tribution inside inclusions. Consideration of a correlation,
ity (see[30,2)). say in a bilocal approximation, does not improve the situa-
Disregarding the effects higher th@(a?) means that it tion. Indeed, the correction to the static value of permittivity
is possible to take foiM (Macro) [(macro) the corresponding  describes reradiation of the incident wave into a noncoherent

mean values. Indeed, in any primary cell the fluctuating parfomponen{35,34. To describe effects connected with the

(?j of any field has one of the distribution patterns presente%et""rd"’Itlon of fields on the scale of inclusiofekin effect

in Fig. 1 (see Fig. 2 Certainly Fig. 1a) presents a common
situation corresponding to the existence of a nonzero spati
derivative of the field inside the cell. The contribution of
other patterns iQ(ag) compared to a-cell contribution(it

is assumed that there is a finite number of cells with such

singular patterns Thus we can avoid consideration of the e would like to thank Professor R. Raab and Professor
cells without loss of accuracy. _ A. Lakhtakia for helpful discussions. This work was partially
Confining to the first two terms of the Taylor expansion of sypported by RFBR Grant Nos. 96-15-97248 and 99-02-

hd

i ji=iotdikdr,, we can see that inside theXell there 16564.

(14)—(16) the macroscopic values, sa§{""®, should stay

nected with the corresponding mean value through(Edg),

23], artificial magnetic propertieg4—6], etc) one needs a
Jpore sophisticated theory.
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