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Scaling theory for homogenization of the Maxwell equations

A. P. Vinogradov* and A. V. Aivazyan
Scientific Centre for Applied Problems in Electrodynamics, Russian Academy of Sciences, Izhorskaya 13/19, Moscow 127412 R

~Received 11 December 1998!

A scaling theory for homogenization of the Maxwell equations is developed upon the representation of any
field as a sum of its dipole, quadrupole, and magnetic dipole moments. This representation is exact and is
connected neither with multipole expansion nor with the Helmholtz theorem. A chain of hierarchical equations
is derived to calculate the moments. It is shown that the resulting macroscopic fields are governed by the
homogenized Maxwell equations. Generally, these fields differ from the mean values of microscopic fields.
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I. INTRODUCTION

Recent studies of artificial materials have focused
properties of composite materials inside which an elec
magnetic wave interacts with inclusions in a resonant w
Examples are percolation systems@1#, chiral materials@2#,
omega materials@3#, artificially permeable materials@4–6#,
etc. An attempt to increase the observed effects entails w
ing with a dense, high-loaded composite. Dealing with su
‘‘resonant’’ materials, one encounters two problems. T
first one is that a dimension of an inclusion is compara
with the wavelength. The second one is that the mean
tance between inclusions is comparable with their size.
first fact means that one should homogenize the Maxw
equations instead of the Laplace equation, whereas the
ond fact means that one has to work beyond the molec
optics approximation. Thus, many results known from lite
ture ~for example, mixing formulas@7#! become useless un
der these conditions.

Usually homogenization of the Maxwell equations
treated as averaging over a physically infinitesimal volu
element~PIVE! @8#. For ‘‘resonant’’ materials direct averag
ing is not correct because currents, which build up clo
contours, do not contribute to the mean macroscopic cur
but they cause additional dissipation of energy and gene
a magnetic moment. The recipe for the correct averaging
circular currents seems to be well known from the theory
magnetic materials. It is an introduction of the magnetizat
MW @9#,

jWcurl
(macro)5c curlMW (macro),

that yields

jW (macro)5]PW (macro)]t1c curlMW (macro) ~1!

and permits one not only to see how circular currents c
tribute to the macroscopic current but also to take into
count the lost energy dissipation by regarding an imagin
part of MW (macro). In the framework of the molecular optic
approximation,MW (macro)VPIVE and PW (macro)VPIVE are equal to
sums of moments of molecules situated inside the PIV
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Such a simplicity tempts us to consider Eq.~1! as a multipole
expansion@10–13#, appending to Eq.~1! new multipole
terms:

DW 5«EW 14pPW 24p¹W •Q̂1•••, HW 5m21BW 24pMW 1•••.

Though the molecular optics is a well-developed area,
speculation seems to be an obscure place. Indeed, the m
pole moments naturally appear while expanding any field
d/R powers whered is a source~inclusion! size andR is the
distance between the source and a recorder~another inclu-
sion!. Such an expansion is useful in the ‘‘molecular optic
approximation as evaluating a local field which is a sum
an external field and fields induced by other molecules.
that cased!R, with R to be a mean distance between t
molecules. On the contrary, the employment of the exp
sion is doubtful for evaluation of the mean fields and c
rents since this procedure demands knowledge of co
sponding values inside the molecule@10,14#, where the
expansion is not held becauseR,d. Moreover, ‘‘molecular
optics’’ ceases to be a good approximation even for calcu
tion of a local field if we deal with high loaded composite
whered;R.

Even in the frame of the molecular optics, there exists s
another problem, i.e., the dependence of the multipoles u
the frame origin. It is well known~section 4.1@10#! that only
the lowest nonvanishing multipole moment does not dep
on the location of the origin. All higher multipole momen
depend upon the choice of the location. The problem of
troducing origin-independent moments has a long hist
~see@10–13#! but still has no clear solution.

A relation like Eq.~1! could be formally deduced, avoid
ing speculation about multipole expansion, by employing
charge conservation law~see@15#!

]r

]t
1div jW50. ~2!

Taking into account the definition of polarization,

r52divPW , ~3!

one arrives at

divS jW2
]PW

]t
D 50
987 ©1999 The American Physical Society
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which yields Eq.~1! with vector MW , the physical sense o
which is still undefined@8#. The last fact significantly com
plicates a consequent introduction of high-frequency per
ability.

To prove thatMW is a magnetic moment of currents,

E MW dv5
1

2cE @rW3 jW#dv, ~4!

one resorts to two assumptions~see@8#!. First, the current is
perfectly circular:

jW5c curlMW .

It means that the first term in Eq.~1! could be ignored or

]

]t
PW !c curlMW . ~5!

For natural magnetic materials Eq.~5! fails at optical fre-
quencies@8# whereas for composite material it already ha
pens atmw. If the inequality~5! is broken but Eq.~1! is still
held, one should look for any other definition ofMW instead of
Eq. ~4! ~see@15–17#!.

Assumption~5! is insufficient for Eq.~4! to be valid. The
second assumption concerns space distribution of pola
ability, namely, the magnetic momentMW should be equal to
zero outside the volume of integration. As it is shown in@8#,

1

2cE @rW3 jW#dv5
1

2E @rW3curlMW #

5 R †rW3@dsW3MW #‡1E MW dv.

It is therefore seen that Eq.~4! is held if and only if the
surface integral is equal to zero. This could be achieved
putting the surface slightly outside the considered volume
the area whereMW 50.

Certainly, this is an idealization that is never realized b
cause the PIVE is a part of a large body. It means that
PIVE neighbors upon alike volume elements where mag
tization is not equal to zero. To describe the situation, o
should move on from a consideration of lumped-element
jects to a consideration of distributed systems. One sho
distinguish currents with flux lines confined to the PIVE a
those with lines terminated on the PIVE walls. The first on
contribute to magnetic polarizationMW (macro), whereas the
second ones contribute to the complex electric polariza
PW (macro) and complex quadrupole densityQ̂(macro):

jW (macro)5c curlMW (macro)1]PW (macro)]t

2c div ]Q̂(macro)/]t1•••.

Generally, such a separation highly depends on the sh
and size of the PIVE@8# that makes the procedure of ave
aging indeterminate.

To avoid all these problems, the authors@8,18# refuse to
consider permeability at all, introducing a permittivity te
sor: « i j (v,k)5« tr(v)(d i j 2kikj /k2)1« l(v)kikj /k2. As a
penalty for this simplification, one should introduce an ex
constitutive equation for the additional currents, flowing
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each interface surface. Indeed, even uniform magnetiza
~microscopic circular currents! produces a surface current o
any interface@9#. To write down the correct boundary con
ditions, one should introduce an additional constitutive eq
tion for this surface current which is quite equivalent to i
troduction of permeability@19#.

The conclusion of this brief review is that we should fi
the following problems: first, why we can use a multipo
expansion whend;R; second, what is the physical meanin
of MW and PW if ]PW /]t;c curlMW ; third, how to introduce
origin-independent multipoles.

II. THE SCALING ALGORITHM
OF THE HOMOGENIZATION

It seems that the key moment is the expression~4!. It is
Eq. ~4! that gives us a reason to consider Eq.~1! as a multi-
pole expansion. Moreover, Eq.~4! gives rise to a dependenc
of the moments upon the origin. Solely to prove Eq.~4!, one
should bound oneself by frames of the assumption~5! and
the assumption thatMW and PW are equal to zero outside th
PIVE. To fix all aforementioned problems and to attribute
physical meaning toMW andPW , we generalize Eq.~1!. For this
purpose we resort to the following mathematical lemma.

Lemma.Any field can be represented through its ‘‘ele
trical dipole,’’ ‘‘magnetic dipole,’’ and ‘‘electrical quadru-
pole’’ moments:

Ji5
]

]t
pi1c ei jk

]

]xj
mk2c

]

]xk

]

]t
qik5Ji

(p)1Ji
(m)1Ji

(q) ,

~6!

where

mi~xj ,Jk!5
1

2c
ei jkxjJk , ~7!

]

]t
qi j ~xj ,Jk!52

1

2c
~xiJj1xjJi !, ~8!

]

]t
pi~xi ,Jk!52S xi

]

]xk
JkD . ~9!

This could be shown by straightforward calculation:

ei jk

]

]xj
mk1

]

]xk

]

]t
qik

5ei jk

]

]xj
ekmnxmJn1

]

]xk
~xiJk1xkJi !

5ei jkekmn

]

]xj
xmJn1xi

]

]xk
Jk1Jk

]

]xk
xi

1xk

]

]xk
Ji1Ji

]

]xk
xk

5
]

]xn
xiJn2

]

]xn
xnJi1S xi

]

]xk
JkD1xk

]

]xk
Ji14Ji

5S 2xi

]

]xk
JkD12Ji . ~10!
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It is worth emphasizing that Eq.~6! is neither a multipole
expansion nor a representation of a field as a sum of irr
tional and solenoidal parts according to Helmholtz’s the
rem.

It is important to emphasize thatmW ,pW , andq̂ on the right-
hand sides of the expressions~7!–~9! are related with the
entire current in a commonly accepted way@10# without
additional assumptions.

The representation~6! is not self-consistent because, f
example,

Ji
(m)~JW !ÞJi

(m)~JW (m)!5~1/2c!ei jkE
V
]~eklmxlJm

(m)!/]xjd
3r .

As a consequence Eq.~6! is not unique. Along with it, any
power~in operator sense! of the representation may be use
In the general case we come to the following expression

Ji5(
s51

csS 2xi

]

]xk
dkn•••1

ei jk

2

]

]xj

3eklmxldmn•••2
]

]xk

~xidkn1xjd in!

2
••• D s

Jn

with (scs51. Implying that the traditional expression~1! is
held in numerous cases, we can assert thatc1'1. Further we
shall considerc151 @20#.

Our consideration is also based on another mathema
formula @16#, which is held for any bilinear formL(x,J)
such as

L~ax11bx2 ,cJ11dJ2!5acL~x1 ,J1!1adL~x1 ,J2!

1bcL~x2 ,J1!1bdL~x2 ,J2!

wherea,b,c, andd are real numbers, namely

L~J,r !5L~J2^J&1^J&,r 2^r &1^r &!5L~dJ1^J&,

dr 1^r &)5L~dJ,dr !1L~dJ,^r &!1L~^J&,r !. ~11!
he
e
to

e

r

a-
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.
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The bracketŝ & denote the averaging over a volume e
ment, say PIVE.

In particular, Eq.~11! is held whenL is one of the bilinear
forms pi(xj ,Jk), mi(xj ,Jk), or qi j (xj ,Jk) defined by Eqs.
~7!–~9!. We can see that a moment of the PIVE can be r
resented as a sum of an origin-independent term and a
ment of the whole PIVE when the PIVE is considered a
unitized indivisible pointlike construction. Further, the fo
mula ~11! will help us to introduce frame-independent mu
tipole moments.

Let us imagine a composite sample as a sum of c
whose characteristic size isl. Thus, thê jW& ( l ) varies only on
scales greater thanl. The Fourier expansion of^ jW& ( l ) contains
terms withk,2p/ l , whereas ford jW it contains terms with
k.2p/ l . Applying Eq.~11! for a vector field of the form~6!,
we get

JW1
(macro)5E

V
@JW (m)~d jW,drW !1JW (q)~d jW,drW !1JW (p)~d jW,drW !

1JW (m)~d jW,^rW&!1JW (q)~d jW,^rW&!1JW (p)~d jW,^rW&!

1JW (m)~^ jW&,rW !1JW (q)~^ jW&,rW !1JW (p)~^ jW&,rW !#
dV

V
.

The first group of three terms consists of quantities which
independent of the origin place. The second group of th
terms is equal to zero as it can be seen from Eq.~10!. The
sum of the last three terms is equal to^ jW& due to the inde-
pendence of̂ jW& upon coordinater inside the cell. Thus, afte
averaging we express a macroscopic~in the frame of the cell!
value of the fieldJW as a sum of four terms which are th
mean value of̂ jW&, curl to ‘‘magnetic dipole’’ moment, and
time derivatives to the electric dipole moment and to t
divergence of the electric quadrupole moment:
Jr 1
WW (macro)5E

V
H c curlr 0

MW ~d j 0
W ,drW0!2divr 0

]Q̂~d j 0
W ,drW0!/]t1]PW ~d j 0

W ,drW0!/]t1
1

2
curlr 0

@r 0
W3^JW & r 0

WPV1
#

1
1

2
divr 0

~r 0
W ^JW & r 0

WPV1
1^JW & r 0

WPV1
r 0
W !2^r 0

W & r 0
WPV1

divr 0
^JW & r 0

WPV1J d3r 0

V

5^ jW& r 0
WPV1

1 K ccurlr 0
MW ~d jW,drW !2divr 0

]

]t
Q̂~d jW,drW !1

]

]t
PW ~d jW,drW !L

r 0
WPV1

5^ jW& r 0
WPV1

1ccurlr 1
^MW ~d jW,drW !& r 0

WPV1
2divr 1K ]

]t
Q̂~d jW,drW !L

r 0
WPV1

1
]

]t
^PW ~d jW,drW !& r 0

WPV1
. ~12!
All the quantities are independent of the location of t
frame origin and are constant within the cell. Certainly, th
fluctuate when moving on from cell to cell. To take in
account that the four ‘‘currents’’ (JW (m), JW (q), JW (p), ^JW &) could
fluctuate on scalel 8. l , we shall behave in the spirit of th
renormalization group@21#. We should group the primary
cells into cells of sizel 85nl (n.1) and average these fou
y
‘‘currents’’ over new, large cells employing expression~12!.
Each of the four ‘‘currents’’ calculated on scalel will con-
tribute to four currents’’ on scalel 8. It is obvious that we
arrive at the following equation for ‘‘current’’ moments:

JWN5^JWN21&, ~13!
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MW N5^MW N21&1E
VN

mW ~d jWN21 ,drWN21!
d3r N21

VN

1E
VN

mW ~c d curlMW N21 ,drWN21!
d3r N21

VN

1E
VN

mW S d
]

]t
PW N21 ,drWN21D d3r N21

VN

2E
VN

mW S d div
]

]t
Q̂N21 ,drWN21D d3r N21

VN
, ~14!

PW N5^PW N21&1E
VN

pW ~d jWN21 ,drWN21!
d3r N21

VN

1E
VN

pW ~c d curlMW N21 ,drWN21!
d3r N21

VN

1E
VN

pW S d
]

]t
PW N21 ,drWN21D d3r N21

VN

2E
VN

pW S d div
]

]t
Q̂N21 ,drWN21D d3r N21

VN
, ~15!

Q̂N5^Q̂N21&1E
VN

q̂~d jWN21 ,drWN21!
d3r N21

VN

1E
VN

q̂~c d curlMW N21 ,drWN21!
d3r N21

VN

1E
VN

q̂S d
]

]t
PW N21 ,drWN21D d3r N21

VN

2E
VN

q̂S d div
]

]t
Q̂N21 ,drWN21D d3r N21

VN
. ~16!

Here the functionsmW , q̂, andpW are defined by Eqs.~7!–~9!.
The equations allow us to calculate origin-independent m
ments on theNth level if we know the distribution of the
same moments on the (N21)th level@22#. We have to go on
until we reach a certain level, where the diameter of
volume of averaging becomes equal to the correlation len
Lc of inhomogeneities. At this step the moments cease
depend upon the spatial variables. Thus, we arrive at
following determination of the macroscopic value of the fie
JW :

JW (macro)5c curlMW J
(macro)2c div

]

]t
Q̂J

(macro)1
]

]t
PW J

(macro)1^JW &.

~17!

Let us consider the algorithm with the intent of employing
on a computer. At the first step we have a system of elem
tary cells building up the whole body under consideratio
For simplicity we shall consider the cells to be cubes w
side a0 . We know the currentjW in each cell. The first step
consists of two substeps. At the first substep we join toge
eight neighborhood cells producing a new set of large ce
For each of such cells we can calculate the mean current^ jW&,
distribution of the fluctuating part of the currentd jW, and
-

e
th
to
e

n-
.

er
s.

magnetic and quadrupole moments ofd jW: mW 5(@drW

3d jW#/8, qi j 5((dr id j j1dr jd j i)/16, where summation is
performed over eight primary cells constituting a new s
ondary cell anddr i is a position of the primary cell with
regard to the center of the secondary cell. At the next sub
we join eight secondary cells into a new cell that will pla
the role of the primary cell at the next step. Computing me
current jW (mean)5^^ jW&&, magnetic current jW (m)5c curlmW ,
quadrupole currentjW (q)52c div ]q̂/]t, and polarization
current jW (p)5^]pW /]t&52(@drWdiv(d jW)/8#, we arrive at the
primordial situation: the body is split into cells which a
cubes but with side 4a0. The only difference is that instea
of dealing with a single quantity, namely with the currentjW,
we should treat four quantities:jW (mean), jW (m), jW (q), and jW (p).
As a result, after two substeps, we obtain sixteen quant
in each cell of the third level~with side 16a0): jWmean

(mean),

jWmean
(m) , jWmean

(q) , jWmean
(p) produced fromjW (mean), jWm

(mean), jWm
(m) , jWm

(q) ,

jWm
(p) produced fromjW (m), jWq

(mean), jWq
(m) , jWq

(q) , jWq
(p) produced

from jW (q), and jWp
(mean), jWp

(m) , jWp
(q) , jWp

(p) produced fromjW (p).
Going on, we construct new quantities

jW (mean)5 jWmean
(mean)1 jWm

(mean)1 jWq
(mean)1 jWp

(mean), ~18!

jW (m)5 jWmean
(m) 1 jWm

(m)1 jWq
(m)1 jWp

(m) , ~19!

jW (p)5 jWmean
(p) 1 jWm

(p)1 jWq
(p)1 jWp

(p) , ~20!

jW (q)5 jWmean
(q) 1 jWm

(q)1 jWq
(q)1 jWp

(q) . ~21!

Thus we have completed the step and are ready to do
next one applying the proposed algorithm.

Moreover, taking into account that^ f 8&5^ f &8 for any
function and differentiation operation denoted by a prim
~brackets denote averaging over a cell!, we obtain Eqs.~13!
and ~16! from Eqs.~18! and ~21!.

III. THE HOMOGENIZED MAXWELL EQUATION
FOR COMPOSITE MATERIALS

In the case of composite materials instead of the Lore
equations valid in vacuum, one should average the Maxw
material equations:

curlEW 5
iv

c
mHW , curlHW 52

iv

c
«EW ,

where« andm are complex functions depending onv andr.
Employing Eq.~17! for homogenization yields

curlEW (macro)5
iv

c
~mHW !(macro),

curlHW (macro)52
iv

c
~«EW !(macro) ~22!

with a new couple of fields,

~«EW !(macro)5c curl IW (macro)1 icv div Q̂(macro)1^«EW &,
~23!
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~mHW !(macro)5c curlLW (macro)1 ic v div Ẑ(macro)1^mHW &.

~24!

HereẐ(macro) is a quadrupole moment of the ‘‘magnetic cu
rent’’ mHW ; IW (macro) is related to the macroscopic magnetiz
tion MW (macro) caused by fluctuations of the total curre
(v«EW /4ip). Indeed,

MW ;@drW3d jW#5~v/4icp!@drW3d~«EW !#; IW.

More exactly,MW (macro)52( iv/4p) IW (macro). This term should
be calculated employing Eq.~13! wheremW should be taken
from Eq. ~7! with jW5(v«EW /4ip).

The vectorLW (macro) has been phenomenologically intro
duced in@23#. In the present consideration it appears wh
homogenizing the magnetic fieldBW . It is a ‘‘magnetic,’’ in
the sense~6!, part ofBW (macro)5(mHW )(macro). This term comes
from Eq. ~13!, wheremW should be taken from Eq.~7! with
jW5( ivmHW /4p). Thus,LW is proportional to ‘‘anapolization’’
@24# or density of anapole dipole moments. The anapole
toroidal pole moments were introduced in nuclear phys
@25# to describe objects without electric and magnetic m
ments. An electrodynamical anapole could be thought of
toroidal solenoid with poloidal currents.~For more details,
see@24#.!

It is convenient to introduce new fieldsEW 05EW (macro)

24pLW (macro) and HW 05HW (macro)24pMW (macro) ~see @23#!.
These fields are introduced, much as the fieldHW 5^hW &
24pMW is traditionally introduced. HerêhW & is the mean
microscopic magnetic field usually denoted asBW and called
the magnetic induction.

Employing the new fieldsEW 0 andHW 0, we can recast Eqs
~22! as

curlEW 05
iv

c
meffHW 0 , curlHW 052

iv«eff

c
EW 0 , ~25!

where constitutive parameters«eff , meff are defined by the
equations

«effEW 05^«EW &1 ivc div Q̂(macro), ~26!

meffHW 05^mHW &1 ivc div Ẑ(macro), ~27!

which differ from the custom ones«eff^E&W 5^«EW &, meff^H&W

5^mHW & ~see@7#!.
The fieldsEW 0 andHW 0 are governed by the usual Maxwe

equations. As a consequence, the usual boundary condi
~continuity of tangential components ofEW 0 and HW 0 on any
interface surface! should connect fields outside the mediu
with the ‘‘subzero’’ fields. The fieldsEW (macro), HW (macro)

change across the boundary. To understand this fact,
worth referring to the traditional homogenization procedu
where HW (macro) corresponds toBW and HW 05HW (macro)24pMW

does the same toHW . As it follows from Eq.~25!, the bound-
ary condition forHW (macro) reminds us of the one forBW in
traditional consideration~see Chap. 19@8#!:

nW 3~H2
W (macro)2H1

W (macro)!54pnW 3~M2
W (macro)2M1

W (macro)!.
-

r
s
-
a

ns

is
e

Repeating the same speculations, it is easy to show tha
EW (macro) one has

nW 3~E2
W (macro)2E1

W (macro)!54pnW 3~L2
W (macro)2L1

W (macro)!.

In the vicinity of the interface outside the composite, s
in vacuum, there could exist a lot of evanescent waves. T
could result in nonzero anapolization of vacuum. Hence o
should deal with the macroscopic fields instead of me
fields in vacuum. This is a typical situation if we deal wi
inhomogeneous systems@26–29#.

IV. CONCLUSION AND DISCUSSION

To repel an accusation in abstract contemplation, let
consider examples of the ‘‘multipole’’ media. Permeab
composites made of nonpermeable ingredients are
known. The simplest example is a composite loaded w
highly conducting spherical inclusions. Due to eddy curren
there appears a magnetic moment of the inclusion. The c
posite being placed, say, in a microwave field exhibits pr
erties of diamagnetic material@23#. The inclusions of more
complicated structure can exhibit resonant excitation res
ing in induced magnetic moment. Examples of such inc
sions are open rings@4#, dielectric spheres@5#, helices, and
bihelices@2,6#. In this case we can observe either diamag
tism or paramagnetism, depending upon the relation betw
the working and resonant frequencies.Q medium is a
smarter system. As a composite made of identical dielec
spheres is permeable, the material made of different s
spheres may be nonpermeable. The concentrations and
may be chosen so that one part of the spheres is excited
diamagnetic mode and the other in a paramagnetic one. S
a system should be described by its quadrupole momen

Obviously we can design a still smarter system with
clusions whose electric and magnetic dipole as well as e
tric quadrupole moments are equal to zero. A correspond
distribution of current is presented in Fig. 1~d!. At first sight,
it seems that following the proposed procedure, one can
treat such systems in a proper way since formulas~14! and
~15! yield a zero value forMW andQ̂. Here we must say that
generally speaking, on the right sides of equations like E

FIG. 1. Possible patterns of fluctuating current.
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~14!–~16! the macroscopic values, sayMW N21
(macro), should stay

instead of the mean values. The macroscopic value is c
nected with the corresponding mean value through Eq.~17!,

MW N21
(macro)5ccurlTW N21

(macro)1 ic v div ŴN21
(macro)1^MW N21&.

~28!

This leads to the introduction of additional fields. In the e
ample~28! these are an anapolizationTW and a tensor fieldŴ,
describing densities of higher moments. Certainly, one ha
write down the equations for these fields, introducing a n
set of fieldsad infinitum. To cut off the chain of the equa
tions one should assume macroscopic values to be equ
mean ones for any field set. This implies straightforwa
averaging of the quantities over the PIVE of sizeLc , avoid-
ing an iteration procedure. In doing so, one should calcu
moments relative to the PIVE center, but to sum mome
calculated relative to a local position inside the PIVE, as i
done at the first step of the iteration procedure.

The cutoff problem is tightly connected with the avera
ing procedure. In Sec. II we concluded that the iteration p
cedure must be stopped after arriving at the scaleLc . At this
scale there are no fluctuations. Nevertheless, if we deal
alternating in time fields, say with a plane wave, there is s
a spatial dependence of the fields exp(ikr). It is natural to
expect that the averaging would not disturb the depende
For uniform space fields the averaging over the PIVE
radiusLc does not change the values of the fields, wher
for a plane wave the procedure changes the amplitude
factor sin(kLc)/(kLc). In other words, there is no reason
consider terms higher thanO„(kLc)

2
… while passing from

microscopic to macroscopic Maxwell equations without s
nificantly changing the averaging procedure. It is necess
to mention that one cannot completely disregard effects
the fields retardation because they may be of lower orde
(kLc). In particular, the retardation is responsible for chir
ity ~see@30,2#!.

Disregarding the effects higher thanO(a2) means that it
is possible to take forMW (macro),LW (macro) the corresponding
mean values. Indeed, in any primary cell the fluctuating p
d jW of any field has one of the distribution patterns presen
in Fig. 1 ~see Fig. 2!. Certainly Fig. 1~a! presents a common
situation corresponding to the existence of a nonzero sp
derivative of the field inside the cell. The contribution
other patterns isO(a0

3) compared to 1a-cell contribution~it
is assumed that there is a finite number of cells with s
singular patterns!. Thus we can avoid consideration of th
cells without loss of accuracy.

Confining to the first two terms of the Taylor expansion
jW: j i5 j 01dikdr k , we can see that inside the 1a cell there

FIG. 2. A graphical analog of Eq.~6!; the pattern shown in Fig
1~a! could be presented as a combination of the currents show
Figs. 1~b! and 1~c!.
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exists a ‘‘zero’’ plane such thatd jW50W on it and thatd j i

5dikdr k @31# increases linearly while coming outward from
the plane, wheredik; j /a. Only magnetic dipole and electri
quadrupole moments of such a current distribution have n
zero values. All other multipoles are equal to zero. The m
netic dipole densitymi5(*Vcell

ei jkdil dr ldr k)/Vcell;a2 j /a

;O(a). Contribution of the quadrupole moment is of th
same order@32#, whereas the disturbance of a plane wave

o small from these values. Hence, one should takeMW andQ̂
into account. The next terms in the Taylor expansion of c
rent give rise to higher moments. The density of the 2l -pole
magnetic and the 2(l 11)-pole electric moment areO(al)
@see@10# formula ~9.9!#. Even for l 52 ~magnetic quadru-
pole moment! the contribution isO(a2), which is of the
same order as the correction to the wave amplitude du
averaging and hence it must be abandoned@33#.

From what has been said, it follows that high-multipo
media cannot be described in terms of local constitut
equations for just the averaging procedure to become no
cal.

There is another method of averaging which is employ
in so-called strong fluctuation theory~SFT! @34#. Unfortu-
nately, this method has an even more limited field of app
cation than averaging over the PIVE. The method impl
that the value of the field is completely determined by t
value of the local constitutive parameters. As a conseque
first, despite considering the correlation function one do
not really take into account that the field inside an inclus
depends upon its membership of a certain cluster. The
colation theory is best suited to illustrate this statement fo
static limit. The SFT, which is equivalent to the Bruggem
approximation with neglecting correlations, says that,
pending upon the component concentration, an inclusion
exist in only one of two possible positions: below the perc
lation threshold each inclusion is surrounded by a ma
material, while above the threshold all inclusions belong
the sole infinite single-connected cluster. The correlation
the inclusion distribution can change the value of the per
lation threshold. Obviously it is a rough approximation b
cause the formation of finite clusters, ‘‘dead ends,’’ and p
allel paths of the infinite cluster existing in real composit
are ignored.

Second, the SFT ignores the dynamic effect: the field d
tribution inside inclusions. Consideration of a correlatio
say in a bilocal approximation, does not improve the situ
tion. Indeed, the correction to the static value of permittiv
describes reradiation of the incident wave into a noncohe
component@35,34#. To describe effects connected with th
retardation of fields on the scale of inclusions~skin effect
@23#, artificial magnetic properties@4–6#, etc.! one needs a
more sophisticated theory.
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