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Stability of solitary wave trains in Hamiltonian wave systems
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A class of Hamiltonian nonlinear wave equations possessing complex solitary waves with exponential decay
is studied. It is shown that the interpulse interactions in a train of nearly identical solitary waves with large
separations between the individual solitary waves are approximately described by a double Toda lattice system,
with two variables at each lattice site. Under certain conditions, which are explicitly identified as Cauchy-
Riemann equations, the two dynamical variables are real and imaginary parts of a single complex variable,
leading to the complex Toda lattice equations, which is a discrete integrable dynamical system. This analysis
generalizes to certain nonintegrable partial differential equations a recent result for the nonlinedim§ehro
equation, and is important for the study of nonlinear communications channels in optical fibers. An example,
the cubic-quintic nonlinear Schidinger equation, is worked out in detail to show that the theory can be carried
through analytically. The theory is used to determine the stability of an infinite chain of nearly identical pulses
separated by large time intervals. The entire theory is nonperturbative in the sense that the nonlinear wave
equation need not be a weak perturbation of an integrable[81€63-651X%99)11705-7

PACS numbews): 42.65.Tg, 42.65.5f, 42.65.Re

I. INTRODUCTION grable system which has a known Lax pair, and involves
. . . . lengthy calculations before the final CTLE appears. The La-
The behavior of long trains of pulses in nonlinear wavegrangian method proposed|i] is a direct reduction proce-
systems is of great importance in theoretical descriptions ogure which does not depend on the integrability of the origi-
optical communication systems, mode-locked lasers angigl equations, and is applicable in principle to any
many other technological applications. There are several reHamiltonian system having sufficiently well behaved solitary
spects in which trains of nonlinear pulses do not behave simwaves.

ply as single pulses; for example, the nonlinear interaction In this paper the Lagrangian theory [#] is extended to
between the tails of neighboring pulses in the train causes thghow that a large class of nonintegrable Hamiltonian wave
train to undergo its own dynamical motion which is quite systems is re_duuble to a d(_)ublg Toda ]attlce in the limit of
separate from that of the individual pulses. In a communicala'9€ separations of nearly identical solitary waves, general-

tions channel, this dynamics causes the pulses to be mové%jng the results of3-5] quite considerably. The method

away from their initially allocated positions, and causes er-used here is similar to that of Gorshkov-Ostrov§RY, but is
Yy Y P ’ more explicitly variational and Hamiltonian than that used in

rors in dgtection of the information initially impregged on .the 7]. This approach greatly simplifies the internal computa-
pulse train. In studying any dynamical system it is particu-jons required to be made, since it completely eliminates
lary important to identify the stationary states of the systemmany of the technicalities of the earlier approach, such as
and to characterize their stability, as these states predetespecial orthogonality conditions, elimination of secular reso-
mine the entire topology of the trajectories of the system. Imances, requirements for adjoint functions and other arte-
communication systems, special attention attaches to peracts. Furthermore, the method|[af was applied principally
odic or quasiperiodic arrangements of pulses, since these ate equations with real-valued solutions such as Korteweg—de
the basic carriers of the information and are generally stavries (KdV), with only a cursory description of the simplest
tionary states in the case of nonlinear systems such as softossible complex case, which is the integrable NSE. Here a
tons on optical fibers. Indeed, one approach to the design afomplete treatment is obtained for the general nonintegrable
such communication systems involves the generation of &amiltonian wave system with complex-valued wave func-
stable stationary state of the pulse train, and the subsequetiins. An extensive illustration of the application of the
modification of the train by small modulations of parameterstheory to solitary waves of a nonintegrable partial differen-
such as pulse position to encode the information to be trangial equation(PDE), the cubic-quintic nonlinear Schaimger
mitted by the train1,2]. equation, is carried out, this example being chosen solely
It has recently been demonstrated that the dynamics dfecause of its relative simplicity. The interest here is focused
N-solitons of the nonlinear Schdimger equatioNSE) are  on the infinite lattice of nearly identical solitary pulses and
quite well approximated by complex Toda lattice equationghe dynamics specific to this lattice, representative of the
(CTLES9 in the limit of large separation of almost identical situation encountered in optical communications. Gorshkov
solitons with arbitrary phasel8—5]. The method used to and Papkd8] have earlier obtained stability criteria for pe-
demonstrate this if4,5] was the Karpman-Solov'eyKS)  riodic lattices of solitons of KdV-type equations which have
perturbation theory6], followed by some further simplify- real-valued solutions, and these were also studied experi-
ing assumptions to reduce the Karpman-Solov’ev dynamicamentally in electrical transmission lines. The stability of qua-
system to the complex Toda lattice. The KS perturbatiorsiperiodic lattices of solitons of the NSE, having complex-
method applies to sufficiently small perturbations of an inte-valued solutions, was obtained ifl] and [3]. In

1063-651X/99/6(Q1)/9798)/$15.00 PRE 60 979 ©1999 The American Physical Society



980 J. M. ARNOLD PRE 60

this paper a simple result for the stability of an infinite lattice integer powers of\ |?> when — \ ¢ for constanix € C), the

of solitary pulses of nonintegrable Hamiltonian wave sys-asymptotic form of the solitary wave satisfying the boundary
tems is derived which further extends the theory alreadyqngitionsy— 0 att— == is obtained by neglecting all the
known. This result shows that quasiperiodic trains of solitaryngnlinear terms from the Hamiltonian PDE, since these van-

pulses of a nonintegrable Hamiltonian wave equation can b, faster than the linear terms; this gives the linear differen-
stable under a wider range of conditions than those alreadyy| equation

known for the integrable NSE: nonintegrability stabilizes the
pulse train. {A(io)—ic™ro,— k} ¥ ~0 (5

Il. HAMILTONIAN WAVE EQUATIONS for the asymptotic behavior of the solitary wave functién
We consider the class of Hamiltonian wave systems charwhereA(i dy) Is a §elf—adjoint linear differential operator with
) constant coefficients. It follows from Eq(5) that the

acterized by asymptotic behavior of the solitary wave &t +« is ¥
i0,= 8,4 H( i, ") (1) —3,C;.e %=t whereQ;. belong to the set of complex
characteristic roots of Eq5) [i.e., zeros ofA(Q)—c 10
in the phase spacey(y*), where y is a complex-valued —«] and C;. are complex constants. The characteristic
function of the evolution variable and a transverse variable roots(); either are real or occur in complex conjugate pairs;
t which may often be time. The Hamiltoniad is a real- to ensure exponential decay of the solitary wave it is neces-
valued functional of this wave functior and its complex sary to select only those roots for which the condition
conjugate, along with any number bfderivatives of these +Im(};.>0. When the differential operatoh is second
functions, and is further assumed to be translationally invariorder int derivatives, such as the perturbed NSE of &g,
ant with respect to both andt. The symbols represents the there are only two characteristic rodis. = w*i 7, with o
variational derivative. In the following we consider only the and »>0 real constants. Higher-order operatorsAdead to
case of a scalar functiogt, but the theory is readily gener- more characteristic roots, but eventually the asymptotic be-
alized to arbitrary n-component vector functionsyy  havior of the solitary wave is dominated by the roots with

=(¢n, ... ¥,). Typical examples occurring in nonlinear smallest imaginary part. We shall assume throughouthhat
optics are related to the nonlinear Sdfirmer equation is such a translation-invariant real-valued polynomial func-
(NSE) tional on the phase space, and it follows that solitary waves,
if they exist at all, are exponentially decaying at infinity
[0+ 3070+ |¢|?y=0 (28 along the transverse variabie
) L If ¢=4yp(z,t) is a solitary wave, then by translation in-
for which the Hamiltonian is variance int it follows that iy(z,t—to) is also a solitary
v 1 wave for an arbitrary constant translatity) it follows also
H :f = (|ap]?—| 9™ dt. (2b)  from the homogeneity of each term in the Hamiltonian with
—a 2 respect to scaling of the complex field tiétoy,(z,t—t,) is

also a solitary wave for an arbitrary real constant phase shift

This model is integrable by the inverse scattering transform,  rhese global symmetries lead to two conserved quanti-
(IST). By deforming the Hamiltonian to ties, orNoether invariantsfor the solitary wave

» 1
H:f_w 5 (o=l + Pyt (%3 po=y f_‘ |ol2dt, (63

whereF is some Hamiltonian deformation which is a poly-
nomial in ,* and theirt derivatives, new nonintegrable
PDEs are generated. The example we shall take later con-
tainsF = — 2a|4|®, which leads to a nonintegrable perturbed
NSE in addition to the conserved Hamiltonian functiokklThese
_ 1o 5 4 two invariants are the masg§) and momentumify) of the
19+ 30+ Yy +aly|*y=0. (8D solitary wave. Any solitary wave depends on these two in-
. . variants as parameters, as also do the wave numbed the
. We further Suppose the eX|stenc-e3nﬂ|t.ary vyavesolu- decay raten. To denote this dependence we write the soli-
tions of the Hamiltonian wave equation with suitable bound-

" . tary wave function as =W (t;pg, o).
ary conditionsy— 0 as|t|— . Solitary waves can generally y (t:Po. o)
be constructed in the form

1 o
pO:Zij_w(¢0at¢g_¢sat¢o)dt (6b)

Ill. LAGRANGIAN VARIATIONAL FORMULATION
— QlKZ _~—1

plzt)=e"¥(t-c"72) ) We define theLagrangian
for some real constant and a function of one variabh#, 1
wherec™ " is th'e reciprocal velocity of the sohtgry wave in L== if (0 0,— o, * )dt—H )
the (z,t)-coordinate system. In the case thdtis a real- 2 )=
valued polynomial functional of the phase-space variables
(i.e., a superposition of homogeneous terms which scale witand an associategition functional
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5= | Loz ®) L=2) 3 (pdt-mdeb0-H|, (13

The Euler-Lagrange equatiofi,«S=0 of this Lagrangian

with respect to arbitrary variations in the figld is precisely  pejow). Variations are taken with respect to the parameters
the Hamiltonian wave equatiof). P, ik O t, and the resulting Euler-Lagrange equations

When the form(4) is introduced as a trial function in the 416 5 Hamiltonian set of discrete differential equations for
Lagrangian(7) and the Euler-Lagrange equation obtained,ipege parameters, having the form

the result is an ordinary differential equatié@DE) for the
solitary wave function?. Solutions of this ODE are a family d te=dp H, (143
of functions parametrized by invarian(6a and (6b). If a K
more general trial function

whereH is a function of all the parametelsee Sec. IV

~d, 0=, H, (14b)
P(z,t) =€ 0OV (t—1o(2);Po(2), o(2)) 9) _
.. . . . . _dek:atkH! (140)
is introduced, withW (t;pg,ug) being this family of ODE
solutions, and variations taken with respect to the parameters douv=0. H (14d)
Po.Mo.to, 0y with fixed W, then the resulting Euler- M= o9
Lagrange equations are the Hamiltonian dynamical system.l.he Hamiltonian equation&l4a—(14d) admit the complex
— variables
dyto=dp Ho, (103
Sk= 7]tk+i0k, (156)
—d,0=20, Hy, 10b ,
270 The 0 (100 o =P/ 7t ipy, (15b)
—dpo= (?toﬁo=0, (100  wherey is a real constant which will later be identified with
an average asymptotic decay rate of the solitary pulses, pro-
dzﬂozg%ﬁozo, (10d) vided that the Hamiltoniai is the real part of a holomor-

phic function of the complex variables. Under these condi-
tions the Hamiltonian equatiori$4a—(14d) are the real and

where the function EO is the wave Hamiltoniai evaluated . .
imaginary parts of

on the trial function(4); the last two equations of the system
(108—(100) arise becausp, and w are conserved quanti-

ties. d;s= 3, H, (16a
Next consider the superposition of solitary waves _
_dzo'k:‘?skH (16b)
lﬂ:Ek () a1 with real-valuedH.
with IV. CALCULATION OF THE AVERAGE LAGRANGIAN
— O (1t -
=€ (L=t ) (12 The calculations necessary to obtain the average Lagrang-

with arbitrary z-dependent parametepg , iy , 0y .ty for each ian L and the Hamiltonian functioil are giyen ess_entially
solitary wave. When the solitary waves are widely separate§y Gorshkov-Ostrovsk{7]. Here we summarize their execu-
in time, so thaflt,, ;—t,|~O(T) for T—, Eq.(11) is al- fuon in the Context of_t_he mte_ractlng pulse train. The ana_IyS|s
most a solution of Eq(1), and in the limit of infinitely large 'S here further S|mpI|f|e_d by introducing asymptonc sc.allngs
separations the superposition is an exact solution when eadf Select only the dominant terms, neglecting any which are
set of parameters for each indesatisfies Eq(10) (with the asymptotically smaI_Ier than the domman'g terms.'The scalings
subscript O replaced bi), on account of the exponential &€ ba_lsed on the idea t_hat the pulse interactions are very
decay of the individiual solitary waves. The limit of infinite Weak if the pulses are widely separated in time. Hence we
separation of the solitary waves is therefore a degenerafgtroduce the order parameter fiy. ,—t,|=O(T) for large
case. In order to improve the consistency of the solitary-T» @nd a small parameter such that the parameters of the
wave superposition with the Hamiltonian wave equation forsolitary wave depend on the scaled distaneg this makes
the case of finite but large separation between the solitondirst derivatives with respect tpordered aO(¢) for e —0.
the superpositiorf11) is used as a trial function in the La- It is further required that —0 asT—oo; it transpires later
grangian variational principle to determine the functionalthate=e~ 712 wherey is the average asymptotic decay rate
variations of the parameters wittthat best fit the evolution of the solitary pulses. It follows from this that the magnitude
equation. of the tails of the pulse centred ar-t, at the centers of its
When the trial function(11) is substituted in Eq(7) for  nearest neighbors=t,.; is O(e?), and the effect at the
the field ¢, and integrations over carried out, the reduced centers of pulses=t,.; is O(&?). This justifies retaining
Lagrangian has the form only nearest-neighbor interactions between solitons.
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A. Dynamical part of the Lagrangian whereV—0 ase—0, andHy is the Hamiltonian of a single
The dynamical part of the Lagrangian is the first term ofsolitary pulsey= i .
Eqg. (7), and is evaluated by substituting the trial function
(12), interchanging the order of integration and summations, 1. 1-pulse self-terms

and integrating over the variabtewith the result The tefmﬁm((pk,,uk) is the residual Hamiltonian for an

o isolated solitary pulse dt=t, after all the others have been
—Im f * 9,dt removed to infinity to reduce the interaction to zero. In gen-

eral the HamiltoniarHy, may be a rather complicated func-
tion of the parameters of each solitary pulse. However, under
—Im E i, 92, dt the conditions which are of interest here, of nearly identical
“rkuke solitary pulses with large separations in time, it can be ap-
proximated in a qwte general way. Introduce the asymptotlc

—Im 122 _ ‘ﬂkl 2, dt scalings px~ p+O(s) we~m+0(e), where p
=N*12E:1pk and u=N" Ekzl,uk are mean values over

—Im 2 f Wkkl z¢k2dt 17) theN sohtary puIsgs{wnh a limit taken ifN—o) ande IS.—?
small ll quantity. It is shown later that the average quantjies

andu are conserved by the dynamics of the lattice. With this

The first term ml—l represents a summation over 1-pulsechoice of reference, the Taylor expansion of the unperturbed
contributions which persist in the limit of infinite separation Rart ofH. EkHok -

between the pulses; the second term represents contributio
due to 2-pulse interactions, and tends to vanish when the

pulses become infinitely widely separated. The result for the 2 Hok(Pk . k)~ NHo(p, M)+E {3Hopp(Pk—P)?
first term consisting of 1-pulse contributions is

+ %HOI,L/,L(Mk_ Iu“)z

Cam - S [ viliunome @t (BB s B0
—o pu *

(22)
=22 (it~ mid 0. (18
K where
Corrections to the 1-pulse Lagrangian to account for the Hopp=2Ho(P, )] perp ue s (233
2-pulse interactions can be expressed in terms of modified Opp—"p0 lo=pn=
parameters, so that the entire dynamical parhas the form HOuu:‘;iﬁo(pvﬂﬂp:Eu:Ev (230
L1=22 (Picdati— iz, (19 Hopy= dpd,Ho(P, 1) |p=p. = (230
Here the linear parts of the Taylor expansion have summed
where to zero over the sum variable and the leading-order varia-
1 tion in Hy is therefore quadratic in the perturbations and
2 .
= et st 20 ordered atO(e“). For the purpose of later calculations, we
H 2 f wJ . (209 here define the parameters
, 1 - p-=3(n"Hopp*Hopu), (249
P= pk+§ Im j;k J_ g dupdt. (20b e
po="1Hopy - (24b

It will be shown later that under the asymptotic scaling in

force here the second terms on the right-hand sides of Eqs. The first term in the Taylor expansi@@2), NHo(p, 4), is

(208 and (20b) are negligible, ang;~ w, and p,~ py. independent of the dynamical variables, and can therefore be

subtracted off the Hamiltonian with no effect on the dynam-

ics. This also deals with the potential problem of nonfinite-

ness of this term when the number of lattice sikelsecomes
The Hamiltonian part of the Lagrangidf also decom- infinite.

poses into two parts, one which persists when the pulses are The second-order terms in the Taylor expang@2 can

infinitely separated and one which vanishes when the sep&¢€ transformed using Eq&43 and(24b) to the expression

rations are increased. This decomposition is written as

B. Hamiltonian part of the Lagrangian

1p-(n 2ApE—Aud) +pon AP py

_: H. —‘,—— I
H ; HotV, (21) +3p4 (7 2ApF+Auy),



PRE 60 STABILITY OF SOLITARY WAVE TRAINS IN . .. 983

where Ap,=p,—p and A u,= u— . If the complex vari-

able okzgflAkariA,uk is introduced, then the first two
terms of this expression are

V=2, {V1(Pi,Prs 10 Mk i 1) € TKtkr1 W™ =)
X

+ Vo Pr s Prcs 15 ks iy 1)€ Teriltier 1™l (lra =60y,
3p_ (17 2ApE—Aud)+pon *ApPKA (28

=3 R og(p_—ipo)] The two coefficients/, andV, absorb all the scale factors
andt integrals.

If all the solitary wave parameters are nearly identical,
and we choosethe asymptotic scale parameter to be
=e 772 whereT=mint,,;—t4|, then all the terms iV
are alreadyO(&?), and thek-dependent parameters appear-
Ing as arguments o¥; , can be replaced by their average

values, simplifyingv to

from which it follows that if and only ifp,. =0 then the
second-order part of the Hamiltonig2?) is the real part of a
holomorphic function of the complex variables,. Al-
though the parametes, has been included here for math-
ematical completeness, when time reversal symmetry a
plies, it generally happens thag=0.

2. 2-pulse interaction terms

If the original wave Hamiltoniam is polynomial ini, its V~— Ek: e~ M1 WReK (p, w)e 1"} (29)
t derivatives and the corresponding complex conjugates, as
assumed at the outset, therwill be a superposition of terms  ith ,=N-1sN_, 5,. HereK(p, u) is ak-independent con-

of the form stant; this constant may be complex if the solitary wave

" function ¥ is chirped. The negative sign of the interaction

Avmzcm > ¢(1)* ¢(f)* ¢(:rll) ¢l((:)dt, potential in Eq.(29) has been chosen purely for convenience
TR kn S later. Now both parts off, Egs.(22) and(29), areO(&?) in

(29) the variations about the mean values of the parameters.

where ¢(kj) denotesy or any of itst derivatives,C,,, are The results(22) and (29) can be used to show that the
complex constants, and<lr<n. The prime on the summa- average valuep andu are conserved by the dynamics. The
tion denotes the omission of the term for whikh=k, only part of the Hamiltoniam dependent on the variablgs
=---=k,. In the case where the original wave fiejdis a  and 6, is the interaction potential, up to the ordeO(&?).

scalar, then the phase invariance property of the or|g|na||t follows from the last two equations dfl4a—(14d) that
Hamiltonian requires that be an even integer, amd=3n.

The functlons¢(” are all localized int, aroundt=t,, and — _1% B _1§ —

decay e@onentially rapidly for Iargkl—y with a decay d,p=N &4 dzpi=—N & I V=0, (30)
rate n,~ . It follows that the dominanAV, , for n>2 are

those for whichn—1 of then indicesky, . .. k, are identi- _ L N L N _

cal and only one is different from the rest. Hence we can du=N" kgl dz=N" gl 9 V=0. (31)

express the dominant integrals in the form

3. Exceptional case: &2

AV, cZ ¢k<Dk2dt+C*Z f i, P

The interaction integrals with only two functiors'’) in
(25) the integrand are special cases, leading to secular asymptot-
ics with respect to the small parameteat leading order, of
where ¢ stands fory or any of its derivatives, an®, is a  the form O(e?In¢g). The principal types of these integrals
function localized around=t, and decaying exponentially are reducible to
with an approximate decay rate oh{1)#, since ®, is
composed of a product of— 1 functions each decaying with ()= f ¥t (329

. — . Jk -
an approximate decay ratg. The integrals are then evalu-
ated approximately by substituting fo,iskl its exponential

approximation neat=t,, I(Z)—|f (UF duh— ey} )dt, (32b)
¢k1~A+87 7k (U b)) 1 Oy (tk2>tk1) (279 .
|<3>=f O i dt. 32¢
~A_e+nk1(t7tk1)+iak1 (tk <ty ), Ik - td/] Wi ( )
2 1

(27D It is not possible here to replace one of the factors of the

integrand by an exponential approximation, as the resulting
integral may not converge. If eaahy is a solitary wave with
exponential decay, and the two functions have the same de-
o cay rates, then in the time interval lying between the two
the dominant contribution t& has the form pulse center§, <t<t, ., one pulse is exponentially decreas-

WhereAi(pkl,,u,kl) are complex numbers. The integral over

tis now carried out, noting that the integration variab&an
be replaced by—tkz. The end result of the integration is that
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ing and the other is exponentially increasing, so their productor some constan the system can be reduced to one with
is constant. Integrating this constant over the range of sepg;=0. By scaling the time variable

ration of the two pulses leads to a factofT)~O(In¢) in

the asymptotic value of the integral. Further, since this inte- — —

gral arises from a region at the midpoint of which both fac- Th—t, 7 TPk P (370
tors in the integrand are themselves exponentially small, the

integral also has a facto®(e 7")~0(e?). These two the system can be reduced to one W)Tﬁh 1. By scaling the
asymptotic factors in composition give a total asymptoticdistance
order ofO(e?In ¢) for the integralg328—(320).

This estimate can be applied directly to the remainder p-z—z, K—p_K, pilp_=p (370
terms in the modified invariants of Eq209 and(20b), and

the asymptotic estimates the coefficientp_ can be reduced tp_=1. After a second

, ) length scaling
M= kT O(eIne), (33

AZ—7zZ, APk, Vi—Aw, K—=N2K (37
pL=Pic+ O(eIne) (39 PP A e7d
the system reduces to one with arbitrdkg|. The phase

for e—0 are thereby established, as claimed after E233 transformation

and20b).

C. Canonical Hamiltonian Ok— O+ kargK (378

After discarding all terms which are to be neglected undefeqyces the system to one with &g 0. The net effect of
these rules, the result for the reduced Hamiltorlibhas the  all these transformations is to bring the general nonholomor-

form phic Hamiltonian dynamical system resulting from the per-
B turbation theory to a canonical form with=0, =1, p_
H= 2 {ﬁOK_ ReKe™ "t1-We (01— 0]} (35) =1, argK=0, having the general form
keZ
with a singlek-independent complex constakt H=> {3p(pi+vd)+Red 3(px+ing)?
It is evident from Eq.(35) that the complex variables, ke?
=yt +i 6, can be introduced in the exponentials, and the —Ke™ (k17 We (01— 007} (39

Hamiltonian is the real part of a holomorphic function of
these variables. Under certain conditions, noted after Eq
(159 and(15b), the Hamiltonian may also be the real part of

a holomorphic function of the complex conjugate momenta,~ 4T ¥k, p & constantK is an arbitrary real positive con-
= S . stant;K =4 turns out to be a convenient value. Here we have
o =7 "Pxtipg; this requires that

set po=0 assuming time-reversal symmetry of the wave
— —— Hamiltonian, but the theory is easily extended for the case
HO/L,u:_n HOpp (36) poaﬁO

) ) ) ) If p=0 in Eq. (38 then the complex variables, =t,
for each isolated solitary pulse, which follows directly from +i6,, o=pe+ir can be introduced, and the real Hamil-
the Cauchy-Riemann equations applied to each of the compnian system14a—(14d is compatible with the complex
plex variablesoy, . _In the case where the orlg_mal Hamil- yamiltonian system(16a and (16b). [It is unimportant
tonian wave equation is the NgEom Eq. (2b) in Sec. Il \yhether the momentum conjugate dg is defined asy, or

abovq this condition is satisfiedl3], and the resulting dis- — "+ 1. because both give rise to the same Hamiltonian
crete dynamical system is the complex Toda Lattice, whicH«~ # 7 Pk 9

is integrable by the inverse scattering transf¢8y5). When ~ System(143—(14d wheny is a constant.If, on the other
the PDE is nonintegrable then the holomorphicity condition?@nd,p#0, then there are no complex variables for which
(36) may not be satisfied, and the resulting discrete dynamith® two systems are compatible. It is noteworthy that the
cal system is not a complex Toda lattice; we refer to such £nly remnant in the canonical syste88) of the parameters
system as a double Toda lattice, since it has two degrees 8f the original wave system is the single dimensionless real
freedom at each lattice point, parametrizedtpgnd 6,.. An parametep, which represents the deviation qf the canonl_cal
interesting conjecture to explore would be that it is preciselySyStém from holomorphicity. The holomorphic case, leading
the integrable PDEs that reduce to the holomorphic complef@ the integrable complex Toda lattice, 4s=0, and arises
Toda lattice system, but this is not established so far. when the original PDE is the NSE. It is not known at present
Several scaling transformations can be made on the geff- the general nonholomorphic Toda lattice system is inte-
eral system which, in combination, reduce it to a canonica@rable; however, it is a significant conclusion of the theory
form. By means of transformations described here that the only possible deviation from the ho-
lomorphic case is the perturbatimezép(p%r vﬁ) in the
Ve YWt —t—wz (379 Hamiltonian of the discrete dynamical system.

?Or_conjugate variable pairsty(,p,) and (6,v,) with wy
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V. EXAMPLE: CUBIC-QUINTIC NONLINEAR whereg=%an? andg’ =$%au?, with analytic continuations
SCHRODINGER EQUATION in the casea<0.
The Cauchy-Riemann factors in E§6) can be computed

We consider now the application of this theory to thefrom Eq. (440 as

perturbed NSE, whose Hamiltonian is given by E2p). We

choose the perturbation D)= tanh\/? 2 s
F:—§a|¢|6, (39 7 9pMo p,u M \/a )
wherea is a real constant. Physically relevant cases occur tanh\/a

commonly whera< 0, representing the effect of a saturating 6’iﬁo(0#) =—u
nonlinearity [9,10]. The Euler-Lagrange equation resulting

Vo'
from the variations of the Lagrangian with respect to the o ) .
field ¢ is from which it follows that the Cauchy-Riemann condition

(36) can only be satisfied faa=0(g’ =0). This is precisely
i 0,0+ 332+ | g Py+alyly=0, (400  the case for which the NSE perturbation vanishes.
o . o The coefficienK in the potentiaV can also be computed
which is generally known as theubic-quinticNSE. Equa-  analytically for this example. The result is
tion (40) has solitary wave solutions obtained by the method

) seck\g’ (45b)

outlined in Eq.(4) [11], of the form K(p,u)=4731,+an’l,), (46)
_ sectfyt) where
W(t;p,p)=ne ' , (4D
{(1-2b)+b seck(7t)}*? 1 (= secR™ 1t
_ f ot dt. (@7)
with the relations Ji1-2bJ-»  (1-2b+bseckt)""1?
2k=n’+ w?, (429  These integrals can in turn be transformed to
cl=—0 (42b) o unt
= f du, (48
. . . . 0 {(U+ 1)2_g}n+1/2
required to satisfy Eq5). In addition, the constamt satisfies
the quadratic equation which evaluate to
b(1-b)=3%7a. (43 5
o l1=—{(1-9) V*-1}, (493
Here we choose the lower branch bfsatisfying <1, g
which containsb=0 at a=0, corresponding to the unper-
turbed NSE. The solitary wavetl) degenerates along this 2 am 4 39 a2
branch ofb to the one-soliton of the NSE l,=3(1-9) 1+ ? 1-5-1-9™.
(49b

¥ =pe '“'sechyt
Here the coefficient is expressed explicitly as a function of

the decay ratey, but Eq.(44a permits a direct relationship
betweenyn and u

whena=0.

In the following expressions th&nscaled parameters,
prior to the scalings(379—(37¢, are computed for this
model. Also the subscript 0 on the dynamical variables is 1
dropped, for better appearance of the complicated expres- n= ,u—tanh\/a ] (50)
sions. The masg and momentunp are given forb>0, \/a

corresponding t@>0, b
P 9 Y These expressions degenerate wren0 (b=0,9=0,9’

1 (= 1 =0) to

’U“ZEJ |W|?dt= »—=arctanh/g, (449
. Jg m=1, (519
1 o = - y 51b
p:Zif_m(\l,at\l,*—q’*&t‘l,)dt:_w/.b, (44b) p ©7 ( )
H, ! S+ P* 51
L1 i ., i o(P, )= 67 27 (519

Homy |5 (o= [wi*=aw|)ar

K(p,u)=47°, (510

__~
29’

1— S tanh /g,) + Zipz’ (449  Which are already known from previous studies of the NSE
g’ M

Vo' [3,12.
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VI. STABILITY OF AN INFINITE QUASIPERIODIC
TRAIN

We return now to the scaled canonical dynamical lattic
(38), and investigate the stability of its stationary states. Af-

ter eliminating the conjugate momenpg and w,, the re-

maining variabled, and 6, satisfy the differential equations

dgtk: (1+p)Re{K[e_(tk+l_tk)e_i(0k+l_ok)

— e (t—tk—1)@=i(6— ek_l)]}, (529
diak: (1-p) |m{K[e_(tk+1—tk)e—i(0k+l— )
—e~ (kg 1 ]y, (520

A stationary solution, for whicti?t,=0, d26,=0 for all k
e Z, is given by

e (17 We 1010 — g~ (ks 1~ W= (k—tk-1) = |
(53

which reduces to

Sk+1— 28t Sk-1=0, (54

wheres, =t,+i#6,. The solution of this difference equation

IS

sc=Ak+B (55)

with arbitrary complex coefficientd andB. This means that
the particles are placed at periodic poihts KT with a uni-
form phase incrementd,=ka, where T=ReA and «

=ImA. The constanB can be set to zero without loss of

generality.

The stability of these stationary states can be determine

by linearizing the system of equatiofE2a and(52b) about
its fixed points. Let,=kT+q, and §,=ka+ &, whereqy

and &, are assumed to be infinitesimally small. Introduce

complex variables

&=+ 16k (56)
and search for solutions of the form
§k=E+eikﬁei"z+5,e_ikﬁe_”‘*z (57)
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with complex amplitude€& . and complex eigenvalug to
be determined. Here w< < is the Floquet phase of the

eparticular Fourier mode, to be distinguished from the mean

interparticle phasex of the stationary lattice. Solving the
linear algebraic system that results from this substitution
yields the eigenvalue

A2=—\2sin(B/2)(cosa* \p?—sirfa)

with No=2|K]e 2. Stability of the lattice requires that
Im A =0 for all four values o\ corresponding to a particular
B, over all values of- w< 8< . This leads to the condition

(58)

m—|arcsinp| < a<w+|arcsinp|. (59

The result(59) is very significant. When the original
Hamiltonian wave equation is the N$&xample(2b) in Sec.
II], then we havep=0, leading from Eq(59) to = 7 as the
only interparticle(intersoliton) phase for which the station-
ary lattice is stable. This result has been derived several
times before[1,4]. However, when the NSE Hamiltonian
(2b) is deformed by a perturbation, as for example occurs in
the Hamiltonian for the cubic-quintic NSE Ea with Eq.
(39), thenp+# 0 and a band of stable interparticle phases may
open around the single value= 7, rendering the lattice of
nonintegrable solitary pulses more stable than the lattice of
integrable solitons.

VII. CONCLUSIONS

In conclusion, it is shown that the dynamics of multiple
solitary waves of a class of nonintegrable Hamiltonian wave
systems can be reduced to a nonholomorphic version of the
8omplex Toda lattice, generalizing recent res(i8s-6] for
solitons of an integrable wave system. This result applies in
the limit of nearly identical solitary pulses separated by large
intervals of time, which happens to be a case of particular
practical interest in applications of nonlinear optical pulses
to communication systems. This lattice model has been used
to determine the stability of quasiperiodic lattices, which are
stationary states. The analysis given here assumes the stabil-
ity of the individual solitary wave to be guaranteed, which
may not actually be the case for the solitary waves of some
Hamiltonians.
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