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Stability of solitary wave trains in Hamiltonian wave systems

J. M. Arnold
Department of Electronics and Electrical Engineering, University of Glasgow, Glasgow G12 8LT, Scotland, United Kingdom

~Received 30 September 1998!

A class of Hamiltonian nonlinear wave equations possessing complex solitary waves with exponential decay
is studied. It is shown that the interpulse interactions in a train of nearly identical solitary waves with large
separations between the individual solitary waves are approximately described by a double Toda lattice system,
with two variables at each lattice site. Under certain conditions, which are explicitly identified as Cauchy-
Riemann equations, the two dynamical variables are real and imaginary parts of a single complex variable,
leading to the complex Toda lattice equations, which is a discrete integrable dynamical system. This analysis
generalizes to certain nonintegrable partial differential equations a recent result for the nonlinear Schro¨dinger
equation, and is important for the study of nonlinear communications channels in optical fibers. An example,
the cubic-quintic nonlinear Schro¨dinger equation, is worked out in detail to show that the theory can be carried
through analytically. The theory is used to determine the stability of an infinite chain of nearly identical pulses
separated by large time intervals. The entire theory is nonperturbative in the sense that the nonlinear wave
equation need not be a weak perturbation of an integrable one.@S1063-651X~99!11705-7#

PACS number~s!: 42.65.Tg, 42.65.Sf, 42.65.Re
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I. INTRODUCTION

The behavior of long trains of pulses in nonlinear wa
systems is of great importance in theoretical description
optical communication systems, mode-locked lasers
many other technological applications. There are severa
spects in which trains of nonlinear pulses do not behave s
ply as single pulses; for example, the nonlinear interact
between the tails of neighboring pulses in the train causes
train to undergo its own dynamical motion which is qu
separate from that of the individual pulses. In a communi
tions channel, this dynamics causes the pulses to be m
away from their initially allocated positions, and causes
rors in detection of the information initially impressed on t
pulse train. In studying any dynamical system it is partic
lary important to identify the stationary states of the syst
and to characterize their stability, as these states pred
mine the entire topology of the trajectories of the system
communication systems, special attention attaches to p
odic or quasiperiodic arrangements of pulses, since these
the basic carriers of the information and are generally
tionary states in the case of nonlinear systems such as
tons on optical fibers. Indeed, one approach to the desig
such communication systems involves the generation o
stable stationary state of the pulse train, and the subseq
modification of the train by small modulations of paramet
such as pulse position to encode the information to be tra
mitted by the train@1,2#.

It has recently been demonstrated that the dynamic
N-solitons of the nonlinear Schro¨dinger equation~NSE! are
quite well approximated by complex Toda lattice equatio
~CTLEs! in the limit of large separation of almost identic
solitons with arbitrary phases@3–5#. The method used to
demonstrate this in@4,5# was the Karpman-Solov’ev~KS!
perturbation theory@6#, followed by some further simplify-
ing assumptions to reduce the Karpman-Solov’ev dynam
system to the complex Toda lattice. The KS perturbat
method applies to sufficiently small perturbations of an in
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grable system which has a known Lax pair, and involv
lengthy calculations before the final CTLE appears. The
grangian method proposed in@4# is a direct reduction proce
dure which does not depend on the integrability of the ori
nal equations, and is applicable in principle to a
Hamiltonian system having sufficiently well behaved solita
waves.

In this paper the Lagrangian theory of@3# is extended to
show that a large class of nonintegrable Hamiltonian wa
systems is reducible to a double Toda lattice in the limit
large separations of nearly identical solitary waves, gene
izing the results of@3–5# quite considerably. The metho
used here is similar to that of Gorshkov-Ostrovsky@7#, but is
more explicitly variational and Hamiltonian than that used
@7#. This approach greatly simplifies the internal compu
tions required to be made, since it completely elimina
many of the technicalities of the earlier approach, such
special orthogonality conditions, elimination of secular res
nances, requirements for adjoint functions and other a
facts. Furthermore, the method of@7# was applied principally
to equations with real-valued solutions such as Korteweg
Vries ~KdV!, with only a cursory description of the simple
possible complex case, which is the integrable NSE. He
complete treatment is obtained for the general nonintegra
Hamiltonian wave system with complex-valued wave fun
tions. An extensive illustration of the application of th
theory to solitary waves of a nonintegrable partial differe
tial equation~PDE!, the cubic-quintic nonlinear Schro¨dinger
equation, is carried out, this example being chosen so
because of its relative simplicity. The interest here is focu
on the infinite lattice of nearly identical solitary pulses a
the dynamics specific to this lattice, representative of
situation encountered in optical communications. Gorshk
and Papko@8# have earlier obtained stability criteria for pe
riodic lattices of solitons of KdV-type equations which ha
real-valued solutions, and these were also studied exp
mentally in electrical transmission lines. The stability of qu
siperiodic lattices of solitons of the NSE, having comple
valued solutions, was obtained in@1# and @3#. In
979 ©1999 The American Physical Society
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980 PRE 60J. M. ARNOLD
this paper a simple result for the stability of an infinite latti
of solitary pulses of nonintegrable Hamiltonian wave s
tems is derived which further extends the theory alrea
known. This result shows that quasiperiodic trains of solit
pulses of a nonintegrable Hamiltonian wave equation can
stable under a wider range of conditions than those alre
known for the integrable NSE: nonintegrability stabilizes t
pulse train.

II. HAMILTONIAN WAVE EQUATIONS

We consider the class of Hamiltonian wave systems ch
acterized by

i ]zc5dc* H~c,c* ! ~1!

in the phase space (c,c* ), where c is a complex-valued
function of the evolution variablez and a transverse variabl
t which may often be time. The HamiltonianH is a real-
valued functional of this wave functionc and its complex
conjugate, along with any number oft derivatives of these
functions, and is further assumed to be translationally inv
ant with respect to bothz andt. The symbold represents the
variational derivative. In the following we consider only th
case of a scalar functionc, but the theory is readily gener
alized to arbitrary n-component vector functionsc
5(c1 , . . . ,cn). Typical examples occurring in nonlinea
optics are related to the nonlinear Schro¨dinger equation
~NSE!

i ]zc1 1
2 ] t

2c1ucu2c50 ~2a!

for which the Hamiltonian is

H5E
2`

` 1

2
~ u] tcu22ucu4!dt. ~2b!

This model is integrable by the inverse scattering transfo
~IST!. By deforming the Hamiltonian to

H5E
2`

` 1

2
~ u] tcu22ucu41F !dt, ~3a!

whereF is some Hamiltonian deformation which is a pol
nomial in c,c* and their t derivatives, new nonintegrabl
PDEs are generated. The example we shall take later
tainsF52 2

3 aucu6, which leads to a nonintegrable perturb
NSE

i ]zc1 1
2 ] t

2c1ucu2c1aucu4c50. ~3b!

We further suppose the existence ofsolitary wavesolu-
tions of the Hamiltonian wave equation with suitable boun
ary conditionsc→0 asutu→`. Solitary waves can generall
be constructed in the form

c~z,t !5eikzC~ t2c21z! ~4!

for some real constantk and a function of one variableC,
wherec21 is the reciprocal velocity of the solitary wave i
the (z,t)-coordinate system. In the case thatH is a real-
valued polynomial functional of the phase-space variabl
~i.e., a superposition of homogeneous terms which scale
-
y
y
e

dy

r-

i-

n-

-

th

integer powers ofulu2 whenc→lc for constantlPC), the
asymptotic form of the solitary wave satisfying the bounda
conditionsc→0 at t→6` is obtained by neglecting all the
nonlinear terms from the Hamiltonian PDE, since these v
ish faster than the linear terms; this gives the linear differ
tial equation

$A~ i ] t!2 ic21] t2k%C;0 ~5!

for the asymptotic behavior of the solitary wave functionC,
whereA( i ] t) is a self-adjoint linear differential operator wit
constant coefficients. It follows from Eq.~5! that the
asymptotic behavior of the solitary wave att→6` is C
→( jCj 6e2 iV j 6t, whereV j 6 belong to the set of complex
characteristic roots of Eq.~5! @i.e., zeros ofA(V)2c21V
2k] and Cj 6 are complex constants. The characteris
rootsV j either are real or occur in complex conjugate pai
to ensure exponential decay of the solitary wave it is nec
sary to select only those roots for which the conditi
7Im V j 6.0. When the differential operatorA is second
order int derivatives, such as the perturbed NSE of Eq.~3a!,
there are only two characteristic rootsV65v7 ih, with v
andh.0 real constants. Higher-order operators forA lead to
more characteristic roots, but eventually the asymptotic
havior of the solitary wave is dominated by the roots w
smallest imaginary part. We shall assume throughout thaH
is such a translation-invariant real-valued polynomial fun
tional on the phase space, and it follows that solitary wav
if they exist at all, are exponentially decaying at infini
along the transverse variablet.

If c5c0(z,t) is a solitary wave, then by translation in
variance int it follows that c0(z,t2t0) is also a solitary
wave for an arbitrary constant translationt0; it follows also
from the homogeneity of each term in the Hamiltonian w
respect to scaling of the complex field thateiu0c0(z,t2t0) is
also a solitary wave for an arbitrary real constant phase s
u0. These global symmetries lead to two conserved qua
ties, orNoether invariants, for the solitary wave

m05
1

2 E
2`

`

uc0u2dt, ~6a!

p05
1

4
i E

2`

`

~c0] tc0* 2c0* ] tc0!dt ~6b!

in addition to the conserved Hamiltonian functionalH. These
two invariants are the mass (m0) and momentum (p0) of the
solitary wave. Any solitary wave depends on these two
variants as parameters, as also do the wave numberk and the
decay rateh. To denote this dependence we write the so
tary wave function asC5C(t;p0 ,m0).

III. LAGRANGIAN VARIATIONAL FORMULATION

We define theLagrangian

L5
1

2
i E

2`

`

~c* ]zc2c]zc* !dt2H ~7!

and an associatedaction functional
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PRE 60 981STABILITY OF SOLITARY WAVE TRAINS IN . . .
S5E Ldz. ~8!

The Euler-Lagrange equationdc* S50 of this Lagrangian
with respect to arbitrary variations in the fieldc* is precisely
the Hamiltonian wave equation~1!.

When the form~4! is introduced as a trial function in th
Lagrangian~7! and the Euler-Lagrange equation obtaine
the result is an ordinary differential equation~ODE! for the
solitary wave functionC. Solutions of this ODE are a family
of functions parametrized by invariants~6a! and ~6b!. If a
more general trial function

c~z,t !5eiu0(z)C„t2t0~z!;p0~z!,m0~z!… ~9!

is introduced, withC(t;p0 ,m0) being this family of ODE
solutions, and variations taken with respect to the parame
p0 ,m0 ,t0 ,u0 with fixed C, then the resulting Euler
Lagrange equations are the Hamiltonian dynamical syste

dzt05]p0
H̄0 , ~10a!

2dzu05]m0
H̄0 , ~10b!

2dzp05] t0
H̄050, ~10c!

dzm05]u0
H̄050, ~10d!

where the function 2H̄0 is the wave HamiltonianH evaluated
on the trial function~4!; the last two equations of the syste
~10a!–~10d! arise becausep0 and m0 are conserved quanti
ties.

Next consider the superposition of solitary waves

c5(
k

ck~z,t ! ~11!

with

ck5eiukC~ t2tk ;pk ,mk! ~12!

with arbitraryz-dependent parameterspk ,mk ,uk ,tk for each
solitary wave. When the solitary waves are widely separa
in time, so thatutk112tku;O(T) for T→`, Eq. ~11! is al-
most a solution of Eq.~1!, and in the limit of infinitely large
separations the superposition is an exact solution when
set of parameters for each indexk satisfies Eq.~10! ~with the
subscript 0 replaced byk), on account of the exponentia
decay of the individiual solitary waves. The limit of infinit
separation of the solitary waves is therefore a degene
case. In order to improve the consistency of the solita
wave superposition with the Hamiltonian wave equation
the case of finite but large separation between the solit
the superposition~11! is used as a trial function in the La
grangian variational principle to determine the function
variations of the parameters withz that best fit the evolution
equation.

When the trial function~11! is substituted in Eq.~7! for
the field c, and integrations overt carried out, the reduced
Lagrangian has the form
,

rs

d

ch

te
-
r
s,

l

L̄52H (
kPZ

~pkdztk2mkdzuk!2H̄J , ~13!

where H̄ is a function of all the parameters~see Sec. IV
below!. Variations are taken with respect to the paramet
pk ,mk ,uk ,tk , and the resulting Euler-Lagrange equatio
are a Hamiltonian set of discrete differential equations
these parameters, having the form

dztk5]pk
H̄, ~14a!

2dzuk5]mk
H̄, ~14b!

2dzpk5] tk
H̄, ~14c!

dzmk5]uk
H̄. ~14d!

The Hamiltonian equations~14a!–~14d! admit thecomplex
variables

sk5htk1 iuk , ~15a!

sk5pk /h1 imk , ~15b!

whereh is a real constant which will later be identified wit
an average asymptotic decay rate of the solitary pulses,
vided that the HamiltonianH̄ is the real part of a holomor
phic function of the complex variables. Under these con
tions the Hamiltonian equations~14a!–~14d! are the real and
imaginary parts of

dzsk5]sk
H̄, ~16a!

2dzsk5]sk
H̄ ~16b!

with real-valuedH̄.

IV. CALCULATION OF THE AVERAGE LAGRANGIAN

The calculations necessary to obtain the average Lagr
ian L̄ and the Hamiltonian functionH̄ are given essentially
by Gorshkov-Ostrovsky@7#. Here we summarize their execu
tion in the context of the interacting pulse train. The analy
is here further simplified by introducing asymptotic scalin
to select only the dominant terms, neglecting any which
asymptotically smaller than the dominant terms. The scali
are based on the idea that the pulse interactions are
weak if the pulses are widely separated in time. Hence
introduce the order parameter byutk112tku5O(T) for large
T, and a small parameter« such that the parameters of th
solitary wave depend on the scaled distance«z; this makes
first derivatives with respect toz ordered atO(«) for «→0.
It is further required that«→0 asT→`; it transpires later
that«5e2h̄T/2, whereh̄ is the average asymptotic decay ra
of the solitary pulses. It follows from this that the magnitu
of the tails of the pulse centred ont5tk at the centers of its
nearest neighborst5tk61 is O(«2), and the effect at the
centers of pulsest5tk6 j is O(«2 j ). This justifies retaining
only nearest-neighbor interactions between solitons.
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A. Dynamical part of the Lagrangian

The dynamical part of the Lagrangian is the first term
Eq. ~7!, and is evaluated by substituting the trial functio
~11!, interchanging the order of integration and summatio
and integrating over the variablet, with the result

L̄152Im E
2`

`

c* ]zcdt

52Im E
2`

`

(
k1 ,k2

ck1
* ]zck2

dt

52Im (
k15k2

E
2`

`

ck1
* ]zck2

dt

2Im (
k1Þk2

E
2`

`

ck1
* ]zck2

dt. ~17!

The first term inL̄1 represents a summation over 1-pul
contributions which persist in the limit of infinite separatio
between the pulses; the second term represents contribu
due to 2-pulse interactions, and tends to vanish when
pulses become infinitely widely separated. The result for
first term consisting of 1-pulse contributions is

L̄1152Im (
k
E

2`

`

ck* @ i ~dzuk!ck2~dztk!~] tck!#dt

52(
k

~pkdztk2mkdzuk!. ~18!

Corrections to the 1-pulse Lagrangian to account for
2-pulse interactions can be expressed in terms of mod
parameters, so that the entire dynamical partL̄1 has the form

L̄152(
k

~pk8dztk2mk8dzuk!, ~19!

where

mk85mk1
1

2 (
j Þk

E
2`

`

c j* ckdt , ~20a!

pk85pk1
1

2
Im (

j Þk
E

2`

`

c j* ] tckdt. ~20b!

It will be shown later that under the asymptotic scaling
force here the second terms on the right-hand sides of
~20a! and ~20b! are negligible, andmk8;mk andpk8;pk .

B. Hamiltonian part of the Lagrangian

The Hamiltonian part of the LagrangianH̄ also decom-
poses into two parts, one which persists when the pulses
infinitely separated and one which vanishes when the s
rations are increased. This decomposition is written as

H̄5(
k

H̄0k1V̄, ~21!
f

,

ns
e
e

e
d

s.

re
a-

whereV̄→0 as«→0, andH̄0k is the Hamiltonian of a single
solitary pulsec5ck .

1. 1-pulse self-terms

The termH̄0k(pk ,mk) is the residual Hamiltonian for an
isolated solitary pulse att5tk after all the others have bee
removed to infinity to reduce the interaction to zero. In ge
eral the HamiltonianH̄0k may be a rather complicated func
tion of the parameters of each solitary pulse. However, un
the conditions which are of interest here, of nearly identi
solitary pulses with large separations in time, it can be
proximated in a quite general way. Introduce the asympto
scalings pk; p̄1O(«), mk;m̄1O(«), where p̄

5N21(k51
N pk and m̄5N21(k51

N mk are mean values ove
theN solitary pulses~with a limit taken ifN→`) and« is a
small quantity. It is shown later that the average quantitiep̄

andm̄ are conserved by the dynamics of the lattice. With t
choice of reference, the Taylor expansion of the unpertur
part of H̄, (kH̄0k , is

(
k

H̄0k~pk ,mk!;NH̄0~ p̄,m̄ !1(
k

$ 1
2 H̄0pp~pk2 p̄!2

1 1
2 H̄0mm~mk2m̄ !2

1H̄0pm~pk2 p̄!~mk2m̄ !%1O~«3!,

~22!

where

H0pp5]p
2H̄0~p,m!up5 p̄,m5m̄ , ~23a!

H0mm5]m
2 H̄0~p,m!up5 p̄,m5m̄ , ~23b!

H0pm5]p]mH̄0~p,m!up5 p̄,m5m̄ . ~23c!

Here the linear parts of the Taylor expansion have summ
to zero over the sum variablek, and the leading-order varia
tion in H̄0 is therefore quadratic in the perturbations a
ordered atO(«2). For the purpose of later calculations, w
here define the parameters

r65 1
2 ~ h̄2H0pp6H0mm!, ~24a!

r05h̄H0pm . ~24b!

The first term in the Taylor expansion~22!, NH̄0( p̄,m̄), is
independent of the dynamical variables, and can therefor
subtracted off the Hamiltonian with no effect on the dyna
ics. This also deals with the potential problem of nonfini
ness of this term when the number of lattice sitesN becomes
infinite.

The second-order terms in the Taylor expansion~22! can
be transformed using Eqs.~24a! and~24b! to the expression

1
2 r2~ h̄22Dpk

22Dmk
2!1r0h̄21DpkDmk

1 1
2 r1~ h̄22Dpk

21Dmk
2!,
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whereDpk5pk2 p̄ and Dmk5mk2m̄. If the complex vari-
able sk5h̄21Dpk1 iDmk is introduced, then the first two
terms of this expression are

1
2 r2~ h̄22Dpk

22Dmk
2!1r0h̄21DpkDmk

5 1
2 Re@sk

2~r22 ir0!#

from which it follows that if and only ifr150 then the
second-order part of the Hamiltonian~22! is the real part of a
holomorphic function of the complex variablessk . Al-
though the parameterr0 has been included here for mat
ematical completeness, when time reversal symmetry
plies, it generally happens thatr050.

2. 2-pulse interaction terms

If the original wave HamiltonianH is polynomial inc, its
t derivatives and the corresponding complex conjugates
assumed at the outset, thenV̄ will be a superposition of terms
of the form

DV̄n,r5Cn,r ( 8
k1 , . . . ,kn

E
2`

`

fk1

(1)* •••fkr

(r )* fkr 11

(r 11)
•••fkn

(n)dt,

~25!

wherefk
( j ) denotesck or any of its t derivatives,Cn,r are

complex constants, and 1<r<n. The prime on the summa
tion denotes the omission of the term for whichk15k2
5•••5kn . In the case where the original wave fieldc is a
scalar, then the phase invariance property of the orig
Hamiltonian requires thatn be an even integer, andr 5 1

2 n.
The functionsfk

( j ) are all localized int, aroundt5tk , and
decay exponentially rapidly for largeut2tku with a decay
ratehk;h̄. It follows that the dominantDV̄n,r for n.2 are
those for whichn21 of then indicesk1 , . . . ,kn are identi-
cal and only one is different from the rest. Hence we c
express the dominant integrals in the form

DV̄n;Cn ( 8
k1 ,k2

E
2`

`

fk1
* Fk2

dt1Cn* ( 8
k1 ,k2

E
2`

`

fk1
Fk2

* dt,

~26!

wheref stands forc or any of its derivatives, andFk is a
function localized aroundt5tk and decaying exponentiall
with an approximate decay rate of (n21)h̄, since Fk is
composed of a product ofn21 functions each decaying wit
an approximate decay rateh̄. The integrals are then evalu
ated approximately by substituting forfk1

its exponential

approximation neart5tk2

fk1
;A1e2hk1

(t2tk1
)1 iuk1 ~ tk2

@tk1
! ~27a!

;A2e1hk1
(t2tk1

)1 iuk1 ~ tk2
!tk1

!,
~27b!

whereA6(pk1
,mk1

) are complex numbers. The integral ov
t is now carried out, noting that the integration variablet can
be replaced byt2tk2

. The end result of the integration is th

the dominant contribution toV̄ has the form
p-

as

al

n

V̄5(
k

$V1~pk ,pk11 ,mk ,mk11!e2hk(tk112tk)e2 i (uk112uk)

1V2~pk ,pk11 ,mk ,mk11!e2hk11(tk112tk)ei (uk112uk)%.

~28!

The two coefficientsV1 and V2 absorb all the scale factor
and t integrals.

If all the solitary wave parameters are nearly identic
and we choose the asymptotic scale parameter to be«

5e2h̄T/2, whereT5minkutk112tku, then all the terms inV̄
are alreadyO(«2), and thek-dependent parameters appea
ing as arguments ofV1,2 can be replaced by their averag
values, simplifyingV̄ to

V̄;2(
k

e2h̄(tk112tk)Re$K~ p̄,m̄ !e2 i (uk112uk)% ~29!

with h̄5N21(k51
N hk . HereK( p̄,m̄) is ak-independent con-

stant; this constant may be complex if the solitary wa
function C is chirped. The negative sign of the interactio
potential in Eq.~29! has been chosen purely for convenien
later. Now both parts ofH̄, Eqs.~22! and~29!, areO(«2) in
the variations about the mean values of the parameters.

The results~22! and ~29! can be used to show that th
average valuesp̄ andm̄ are conserved by the dynamics. Th
only part of the HamiltonianH̄ dependent on the variablestk

anduk is the interaction potentialV̄, up to the orderO(«2).
It follows from the last two equations of~14a!–~14d! that

dzp̄5N21(
k51

N

dzpk52N21(
k51

N

] tk
V̄50, ~30!

dzm̄5N21(
k51

N

dzmk5N21(
k51

N

]uk
V̄50. ~31!

3. Exceptional case: n52

The interaction integrals with only two functionsf ( j ) in
the integrand are special cases, leading to secular asym
ics with respect to the small parameter« at leading order, of
the form O(«2 ln «). The principal types of these integra
are reducible to

I jk
(1)5E

2`

`

c j* ckdt, ~32a!

I jk
(2)5 i E

2`

`

~c j* ] tck2ck] tc j* !dt, ~32b!

I jk
(3)5E

2`

`

] tc j* ] tckdt. ~32c!

It is not possible here to replace one of the factors of
integrand by an exponential approximation, as the resul
integral may not converge. If eachck is a solitary wave with
exponential decay, and the two functions have the same
cay rates, then in the time interval lying between the t
pulse centerstk,t,tk11 one pulse is exponentially decrea
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984 PRE 60J. M. ARNOLD
ing and the other is exponentially increasing, so their prod
is constant. Integrating this constant over the range of se
ration of the two pulses leads to a factorO(T);O(ln «) in
the asymptotic value of the integral. Further, since this in
gral arises from a region at the midpoint of which both fa
tors in the integrand are themselves exponentially small,
integral also has a factorO(e2h̄T);O(«2). These two
asymptotic factors in composition give a total asympto
order ofO(«2 ln «) for the integrals~32a!–~32c!.

This estimate can be applied directly to the remain
terms in the modified invariants of Eqs.~20a! and~20b!, and
the asymptotic estimates

mk85mk1O~«2 ln «!, ~33!

pk85pk1O~«2 ln «! ~34!

for «→0 are thereby established, as claimed after Eqs.~20a!
and~20b!.

C. Canonical Hamiltonian

After discarding all terms which are to be neglected un
these rules, the result for the reduced HamiltonianH̄ has the
form

H̄5(
kPZ

$H̄0k2Re@Ke2h̄(tk112tk)e2 i (uk112uk)#% ~35!

with a singlek-independent complex constantK.
It is evident from Eq.~35! that the complex variablessk

5h̄tk1 iuk can be introduced in the exponentials, and
Hamiltonian is the real part of a holomorphic function
these variables. Under certain conditions, noted after E
~15a! and~15b!, the Hamiltonian may also be the real part
a holomorphic function of the complex conjugate momen
sk5h̄21pk1 imk ; this requires that

H̄0mm52h̄2H̄0pp ~36!

for each isolated solitary pulse, which follows directly fro
the Cauchy-Riemann equations applied to each of the c
plex variablessk . In the case where the original Hami
tonian wave equation is the NSE@from Eq. ~2b! in Sec. II
above# this condition is satisfied@3#, and the resulting dis-
crete dynamical system is the complex Toda Lattice, wh
is integrable by the inverse scattering transform@3,5#. When
the PDE is nonintegrable then the holomorphicity condit
~36! may not be satisfied, and the resulting discrete dyna
cal system is not a complex Toda lattice; we refer to suc
system as a double Toda lattice, since it has two degree
freedom at each lattice point, parametrized bytk anduk . An
interesting conjecture to explore would be that it is precis
the integrable PDEs that reduce to the holomorphic comp
Toda lattice system, but this is not established so far.

Several scaling transformations can be made on the
eral system which, in combination, reduce it to a canon
form. By means of transformations

C→e2 ivtC, tk→tk2vz ~37a!
ct
a-

-
-
e

r

r

e

s.

,

-

h

i-
a
of

y
x

n-
l

for some constantv the system can be reduced to one w
p̄50. By scaling the time variable

h̄tk→tk , h̄21pk→pk ~37b!

the system can be reduced to one withh̄51. By scaling the
distance

r2z→z, K→r2K, r1 /r25r ~37c!

the coefficientr2 can be reduced tor251. After a second
length scaling

lz→z, pk→lpk , nk→lnk, K→l2K ~37d!

the system reduces to one with arbitraryuKu. The phase
transformation

uk→uk1k argK ~37e!

reduces the system to one with argK50. The net effect of
all these transformations is to bring the general nonholom
phic Hamiltonian dynamical system resulting from the p
turbation theory to a canonical form withp̄50, h̄51, r2

51, argK50, having the general form

H̄5(
kPZ

$ 1
2 r~pk

21nk
2!1Re@ 1

2 ~pk1 ink!
2

2Ke2(tk112tk)e2 i (uk112uk)#% ~38!

for conjugate variable pairs (tk ,pk) and (uk ,nk) with mk

5m̄1nk , r a constant.K is an arbitrary real positive con
stant;K54 turns out to be a convenient value. Here we ha
set r050 assuming time-reversal symmetry of the wa
Hamiltonian, but the theory is easily extended for the ca
r0Þ0.

If r50 in Eq. ~38! then the complex variablessk5tk
1 iuk , sk5pk1 ink can be introduced, and the real Ham
tonian system~14a!–~14d! is compatible with the complex
Hamiltonian system~16a! and ~16b!. @It is unimportant
whether the momentum conjugate touk is defined asnk or
mk5m̄1nk because both give rise to the same Hamilton
system~14a!–~14d! when m̄ is a constant.# If, on the other
hand,rÞ0, then there are no complex variables for whi
the two systems are compatible. It is noteworthy that
only remnant in the canonical system~38! of the parameters
of the original wave system is the single dimensionless r
parameterr, which represents the deviation of the canonic
system from holomorphicity. The holomorphic case, lead
to the integrable complex Toda lattice, isr50, and arises
when the original PDE is the NSE. It is not known at prese
if the general nonholomorphic Toda lattice system is in
grable; however, it is a significant conclusion of the theo
described here that the only possible deviation from the

lomorphic case is the perturbation(kPZ
1
2 r(pk

21nk
2) in the

Hamiltonian of the discrete dynamical system.



he

cu
g
g
he

o

r-
s

i
re

n

of

SE

PRE 60 985STABILITY OF SOLITARY WAVE TRAINS IN . . .
V. EXAMPLE: CUBIC-QUINTIC NONLINEAR
SCHRÖDINGER EQUATION

We consider now the application of this theory to t
perturbed NSE, whose Hamiltonian is given by Eq.~3a!. We
choose the perturbation

F52 2
3 aucu6, ~39!

wherea is a real constant. Physically relevant cases oc
commonly whena,0, representing the effect of a saturatin
nonlinearity @9,10#. The Euler-Lagrange equation resultin
from the variations of the Lagrangian with respect to t
field c is

i ]zc1 1
2 ] t

2c1ucu2c1aucu4c50 , ~40!

which is generally known as thecubic-quinticNSE. Equa-
tion ~40! has solitary wave solutions obtained by the meth
outlined in Eq.~4! @11#, of the form

C~ t;p,m!5he2 ivt
sech~ht !

$~122b!1b sech2~ht !%1/2
, ~41!

with the relations

2k5h21v2, ~42a!

c2152v ~42b!

required to satisfy Eq.~5!. In addition, the constantb satisfies
the quadratic equation

b~12b!5 2
3 h2a. ~43!

Here we choose the lower branch ofb satisfying 2b,1,
which containsb50 at a50, corresponding to the unpe
turbed NSE. The solitary wave~41! degenerates along thi
branch ofb to the one-soliton of the NSE

C5he2 ivt sechht

whena50.
In the following expressions theunscaledparameters,

prior to the scalings~37a!–~37e!, are computed for this
model. Also the subscript 0 on the dynamical variables
dropped, for better appearance of the complicated exp
sions. The massm and momentump are given forb.0,
corresponding toa.0, by

m5
1

2 E
2`

`

uCu2dt5h
1

Ag
arctanhAg, ~44a!

p5
1

4
i E

2`

`

~C] tC* 2C* ] tC!dt52vm, ~44b!

H̄05
1

2 E
2`

` 1

2
~ u] tCu22uCu42 2

3 auCu6!dt

52
m3

2g8
S 12

1

Ag8
tanhAg8D 1

1

2m
p2, ~44c!
r

d

s
s-

whereg5 8
3 ah2 andg85 8

3 am2, with analytic continuations
in the casea,0.

The Cauchy-Riemann factors in Eq.~36! can be computed
from Eq. ~44c! as

2h2]p
2H̄0~p,m!52mS tanhAg8

Ag8
D 2

, ~45a!

]m
2 H̄0~0,m!52mS tanhAg8

Ag8
D sech2Ag8 ~45b!

from which it follows that the Cauchy-Riemann conditio
~36! can only be satisfied fora50(g850). This is precisely
the case for which the NSE perturbation vanishes.

The coefficientK in the potentialV̄ can also be computed
analytically for this example. The result is

K~p,m!54h3~ I 11ah2I 2!, ~46!

where

I n5
1

A122b
E

2`

`

e2t
sech2n11 t

~122b1b sech2 t !n11/2
dt. ~47!

These integrals can in turn be transformed to

I n52E
0

` un21

$~u11!22g%n11/2
du, ~48!

which evaluate to

I 15
2

g
$~12g!21/221%, ~49a!

I 25
2

3
~12g!23/2H 11

4

g2 F12
3g

2
2~12g!3/2G J .

~49b!

Here the coefficient is expressed explicitly as a function
the decay rateh, but Eq.~44a! permits a direct relationship
betweenh andm

h5m
1

Ag8
tanhAg8. ~50!

These expressions degenerate whena50 (b50,g50,g8
50) to

m5h, ~51a!

p52vh, ~51b!

H̄0~p,m!52
1

6
h31

p2

2h
, ~51c!

K~p,m!54h3, ~51d!

which are already known from previous studies of the N
@3,12#.
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VI. STABILITY OF AN INFINITE QUASIPERIODIC
TRAIN

We return now to the scaled canonical dynamical latt
~38!, and investigate the stability of its stationary states.
ter eliminating the conjugate momentapk and mk , the re-
maining variablestk anduk satisfy the differential equation

dz
2tk5~11r!Re$K@e2(tk112tk)e2 i (uk112uk)

2e2(tk2tk21)e2 i (uk2uk21)#%, ~52a!

dz
2uk5~12r!Im$K@e2(tk112tk)e2 i (uk112uk)

2e2(tk2tk21)e2 i (uk2uk21)#%. ~52b!

A stationary solution, for whichdz
2tk50, dz

2uk50 for all k
PZ, is given by

e2(tk112tk)e2 i (uk112uk)2e2(tk112tk)e2 i (uk2uk21)50 ,
~53!

which reduces to

sk1122sk1sk2150, ~54!

wheresk5tk1 iuk . The solution of this difference equatio
is

sk5Ak1B ~55!

with arbitrary complex coefficientsA andB. This means that
the particles are placed at periodic pointstk5kT with a uni-
form phase incrementuk5ka, where T5ReA and a
5Im A. The constantB can be set to zero without loss o
generality.

The stability of these stationary states can be determ
by linearizing the system of equations~52a! and~52b! about
its fixed points. Lettk5kT1qk anduk5ka1dk , whereqk
and dk are assumed to be infinitesimally small. Introdu
complex variables

jk5qk1 idk ~56!

and search for solutions of the form

jk5J1eikbeilz1J2e2 ikbe2 il* z ~57!
.

i-
e
-

d

with complex amplitudesJ6 and complex eigenvaluel to
be determined. Here2p<b<p is the Floquet phase of th
particular Fourier mode, to be distinguished from the me
interparticle phasea of the stationary lattice. Solving the
linear algebraic system that results from this substitut
yields the eigenvalue

l252l0
2 sin~b/2!~cosa6Ar22sin2a! ~58!

with l052AuKue2T/2. Stability of the lattice requires tha
Im l50 for all four values ofl corresponding to a particula
b, over all values of2p<b<p. This leads to the condition

p2uarcsinru<a<p1uarcsinru. ~59!

The result ~59! is very significant. When the origina
Hamiltonian wave equation is the NSE@example~2b! in Sec.
II #, then we haver50, leading from Eq.~59! to a5p as the
only interparticle~intersoliton! phase for which the station
ary lattice is stable. This result has been derived sev
times before@1,4#. However, when the NSE Hamiltonia
~2b! is deformed by a perturbation, as for example occurs
the Hamiltonian for the cubic-quintic NSE Eq.~3a! with Eq.
~39!, thenrÞ0 and a band of stable interparticle phases m
open around the single valuea5p, rendering the lattice of
nonintegrable solitary pulses more stable than the lattice
integrable solitons.

VII. CONCLUSIONS

In conclusion, it is shown that the dynamics of multip
solitary waves of a class of nonintegrable Hamiltonian wa
systems can be reduced to a nonholomorphic version of
complex Toda lattice, generalizing recent results@3–6# for
solitons of an integrable wave system. This result applies
the limit of nearly identical solitary pulses separated by la
intervals of time, which happens to be a case of particu
practical interest in applications of nonlinear optical puls
to communication systems. This lattice model has been u
to determine the stability of quasiperiodic lattices, which a
stationary states. The analysis given here assumes the s
ity of the individual solitary wave to be guaranteed, whi
may not actually be the case for the solitary waves of so
Hamiltonians.
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