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xuv resonant transition radiations from periodic stratified media
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General formulation of the xuv intensity emitted when relativistic electrons cross through any periodic
stratified medium is presented in the framework of electromagnetism in continuous media. Application is made
to the resonant transition radiation emitted in the geometries of both normal and oblique incidence. In the first
case, agreement is found between our calculated results and published values. Intensity emitted by a periodic
multilayer stack used in the Bragg conditions is determined and the practical interest of a such a radiation
source is discussed.@S1063-651X~99!08007-1#
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I. INTRODUCTION

When a fast charged particle travels through an optic
heterogeneous medium, an electromagnetic radiation is e
ted @1–3#. This emission is a consequence of the readju
ment of the field associated with the charged particle whe
moves in a material showing a sudden change, or a grad
of polarization. Such a change exists at the interface betw
two media and, consequently, x-ray emission, named tra
tion radiation~TR!, has been observed when relativistic ele
trons cross a stack of thin foils@4–7#. The emission takes
place in a narrow cone centered on the electron direction
having angular spread of the order 1/g5(12b2)1/2. For in-
cident electrons of 10 to 100 MeV, the emission lies in t
soft-x-ray energy range.

Conditions giving intense transition radiation have be
researched@8–10#. Periodic arrangements of interfaces ha
been proposed. Indeed, when the distance between the
faces is such that the waves emitted at different interfa
interfere constructively, an enhancement of radiation occ
and this is named resonant transition radiation~RTR! @11–
13#. Coherence of the transition radiation leading to an
tensity enhancement has been observed. In these ex
ments, incident electrons cross perpendicularly stacks of
foils and only interfaces between low atomic number ma
rial and vacuum have been experimented. The period of s
systems cannot be lower than some microns and the fab
tion of this kind of radiator is no easy task. Moreover, irreg
larities in the spacing between the foils can rapidly dest
the coherence of the emission.

An alternative method has been proposed@14–16#. In this
method, the radiator is a periodic multilayered structure. P
liminary theoretical study of the radiation emitted by a stra
fied structure, crossed by an incident particle perpendicul
to the layer planes, has been made. It suggests that parti
phenomena should occur in the vicinity of the Bragg con
tions @15,17#. On the other hand, it is well known that xu
radiation of a chosen wavelength can be reflected in
Bragg conditions by multilayered arrangements. The prin
pal aim of this paper is to show theoretically that xuv tra
sition radiation can be obtained from periodic multilayer a
geometry in which both relativistic charged particles and
PRE 601063-651X/99/60~1!/968~11!/$15.00
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diation have directions satisfying the Bragg conditions. W
refer to this emission asBragg resonanttransition radiation
~Bragg RTR!.

In the hard x-ray range, crystals are used as Bragg diff
tors and it has been theoretically shown that hard x-ray
diation is emitted when a relativistic charged particle im
pinges through a monocrystal in conditions close to
Bragg direction@18–24#. This phenomenon was designed
parametric x-ray radiation~PXR!. Dialetis @18# has devel-
oped a theoretical model valuable to describe the PXR bu
numerical values of intensity have been calculated from
model. Independently models have been proposed and
for comparison with the PXR experimental results@25–33#.

In this paper, starting from a model which treat the pr
cess in the framework of the classical electromagnetism@18#,
we establish the general expression of the radiative ene
emitted by a stratified medium during the crossing by a re
tivistic electron in any incidence angle. Moreover, we sh
that our model accounts for both RTR and Bragg RTR. O
model assumes that the incident beam is not perturbed by
presence of the material and the energy lost by the partic
negligible compared with its kinetic energy. These appro
mations are usual for fast particles. Because the system u
consideration is a stratified medium described in the fram
work of continuous media, our final expression is not
rectly applicable to crystals.

From the analytical expression that we obtain, a first c
culation is performed in the spectral range of 1 keV for
periodic stack of Be films separated by the vacuum a
crossed perpendicularly by an electron. The calculated in
sity is compared with the previous published values@34#.
Agreement is good at the precision of the optical constant
this energy range. A second calculation is made in the sa
spectral range for an artificial periodic multilayer structu
crossed by an electron in the Bragg conditions. The num
of photons radiated by an actual periodic structure@35# is
compared with the intensity of the synchrotron radiation
the same energy.

The paper is organized as follows. Section II is devoted
establishing general formulas giving the electromagnetic
tensity radiated by a charged particle moving uniform
through a multilayer stack. In Sec. III we establish the m
968 ©1999 The American Physical Society
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PRE 60 969xuv RESONANT TRANSITION RADIATIONS FROM . . .
formulas useful for a qualitative discussion of both RTR a
Bragg RTR. Numerical examples and comparison with s
chrotron radiation are given in Sec. IV and conclusion
Sec. V.

II. RADIATED ENERGY

We treat the problem in the framework of the electroma
netism of continuous media within the Gaussian unit syst
c is the celerity of light in vacuum. The optical properties
the medium at a pointR for the angular frequencyv are
described by the dielectric constant, or electric permittiv
«(R,v). In the spectral range of interest, the magnetic p
meabilitym of the medium is equal to unity. We consider a
electrically charged particle—in practice an electron—
charge denotedq, moving through a periodic medium wit
the constant velocityv. b stands forv/c. The geometry and
the relevant notations of the problem are given in Fig. 1. T
medium is made up of alterned layers of materiala and ma-
terial b. The period of the structure, that is, the sum of t
thickness of the layera and of the thickness of the layerb, is
denoted byd. The particle travels through the~X,Z! plane
along theZ direction, which makes the anglea with the
plane of the layers. The observation pointr has the spherica
coordinatesr,u,w.

The electricE(r ,v) and magneticH(r ,v) fields can be
obtained from the electric Hertz vectorP(r ,v) according to
~cf. Appendix A!

E~r ,v!5“3“3P~r ,v!24pP~r ,v!2 i
4p

v
J~r ,v!

3H~r ,v!52 ik“3P~r ,v!, ~1!

FIG. 1. Geometry of the problem.
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wherek5v/c is the wave number in vacuum.J(R,v) is the
time-Fourier transform of the current associated with
traveling particle andP(R,v) is the polarization vector in-
duced by the traveling charged particle. At the location of
observator, that is, outside of the matter and of the elec
beam,P(r ,v) andJ(r ,v) vanish.

Let us recall that the vectorP(R,v) is related to the elec-
tric field E(R,v) through the dielectric susceptibility
x(R,v) by the relation

P~R,v!5x~R,v!E~R,v! ~2!

and the susceptibility is related to the dielectric const
«(R,v) by

x~R,v!5
«~R,v!21

4p
. ~3!

The electric Hertz vector obeys the following differenti
equation~cf. Appendix A!:

“

2P~r ,v!1k2P~r ,v!524pP~r ,v!2 i
4p

v
J~r ,v!

~4!

whose solution is given in terms of the outgoing Green fu
tion G(r ,R,v) of the Helmholtz equation by

P~r ,v!5E S P~R,v!1
i

v
J~R,v! DG~r ,R,v!d3R. ~5!

The interest of the Hertz vector formulation is to lea
straightforwardly to a method that we call the ‘‘mean-field
approximation. In this approach, the following applies.

~i! At large distance of the material, i.e., in the far-fie
approximation, only the component of the Hertz vector as
ciated with the polarization vectorP is important so that the
relevant Hertz vector can be written

P~r ,v!5
exp~ ikr !

r
P̄~k,v! ~6!

with

P̄~k,v!5E x~R,v!E~R,v!exp~2 ik•R!d3R, ~7!

where

k5kr̂5k~sinu coswX̂1sinu sinwŶ1cosuẐ!. ~8!

r̂ andk are, respectively, the unit vector and the wave vec
in the observation direction.

~ii ! The electric fieldE(R,v) in the integrand of Eq.~7! is
approximated by the electric fieldE0(R,v) radiated by the
electron moving uniformly in a ‘‘mean’’ medium of spatiall
averaged dielectric constant«(v)5114px̄. In these condi-
tions, P̄(k,v) is given by

P̄~k,v!'E x~R,v!E0~R,v!exp~2 ik•R!d3R. ~9!
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The energy radiated in far-field per unit frequency inter
dv and per steradiandV is expressed in terms ofP̄(k,v) as
follows ~cf. Appendix B!:

d2I

dv dV
5

c

~2p!2 k4u$P* ~k,v!•P̄~k,v!2@P* ~k,v!• r̂ #

3@P̄~k,v!• r̂ #%u, ~10!

where* stands for the complex conjugation.
The expression of the electric fieldE0 , radiated by an

electron traveling uniformly through the medium of diele
tric constant«(v), is given in electromagnetic textbook
@36,37#. One notes thatE0 has a radial symmetry along theZ
axis and its radialE0

r(r,v) and longitudinalE0
Z(r,v) com-

ponents are, respectively,

E0
r~r,v!5

2q

v

L

«~v!
K1~Lr!expS i

v

v
ZD ,

~11!

E0
Z~r,v!52 i

2q

v

L2

«~v!
K0~Lr!expS i

v

v
ZD ,

wherer5AX21Y2 is the distance to the electron trajector
K1 andK0 are the first- and zero-order Bessel function, a

L5
k

b
A@12b2«~v!#5kS 1

~gb!2
14px̄ D 1/2

, ~12a!

whereg is the Lorentz parameter:

g5
1

A12b2
. ~12b!

In the limit case where«(v) tends toward unity~case of
vacuum!, L becomes

L5
k

bg
. ~13!

For a periodic material of periodd, the susceptibility can
be expanded in Fourier series:

x~R,v!5 (
p52`

1`

xp~v!exp~ ipgXX!exp~ ipgZZ!, ~14!

where

gX5
2p

d
cosa,

~15!

gZ5
2p

d
sina,

and
l

d

x0~v!5
«~v!21

4p
,

~16!

xp~v!5exp~2 ippG!
Dx~v!

pp
sin~Gpp!, pÞ0.

xp(v) is obtained as the Fourier transform of the susce
bility profile and Dx~v! is the difference of susceptibility
between the materialsa andb; G is the ratio of the thickness
of materiala to the periodd.

In the directionZ, the material has a finite size corre
sponding toN periods. This is taken into account by mea
of the rectangle function„rect@(Z2L/2)/L#51 for Z be-
tween2L/2 and1L/2 and50 outside…. Using the relations
~9!, ~11!, and~14!, the Hertz vector in far-field is given by

P̄~k,v!5(
p

Pp~k,v! ~17a!

with

Pp~k,v!5xp~v!E
2`

1`

dZ exp@ iQpZ#rectFZ2L0/2

L0
G

3S 2
2q

v«~v!
D S E

2`

1`

dXE
2`

1`

dY
]

]X
@K0~aZr!#

3exp~2 iaX,pX!exp~2 iaYY!X̂

1E
2`

1`

dXE
2`

1`

dY
]

]Y
@K0~aZr!#

3exp~2 iaX,pX!exp~2 iaYY!Ŷ

1E
2`

1`

dXE
2`

1`

dYS iaZ
2v

v
D K0~aZr!

3exp~2 iaX,pX!exp~2 iaYY!ẐD , ~17b!

where use is made of the relation

K1~z!52
]K0~z!

]z
.

In Eq. ~17!,

Qp5
v

v
2kA«~v! cosu1pgZ ,

aX,p5k sinu cosw1pgX ,

aY5k sinu sinw,
~18!

aZ5L,

d05d/sina,

L05Nd0 .



ts
ing

e

s

-
dia-

e-

ed
s

R
tion
to
is

de-
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After integration~cf. Appendix C!, Eq. ~17! becomes

Pp~k,v!5xp~v!
22iq

cb«~v!

L0

2
expF iQp

L0

2
GsincFQp

L0

2
G

3
2p

~aX,p!21~aY!21~aZ!2 H aX,pX̂1aYȲ

1
aZ

2v

v
ẐJ , ~19!

where sincx5sinx/x.
From Eq.~10!, the radiated energy is

d2I

dv dV
5

c

~2p!2 k4U(
p

(
n

$Pp* ~k,v!•Pn~k,v!

2@Pp* ~k,v!• r̂ #@Pn~k,v!• r̂ #%U. ~20!

Generally,L0 is sufficiently large so that no overlap exis
between terms of different order. Then, by substitut
Pp(k,v) from Eq. ~19! in Eq. ~20!, the expression of the
energy for a given orderp and for both normal and obliqu
incidences is

S d2I

dv dV
D

p

5
k4

c

q2

b2u«~v!u2
uxp~v!u2L0

2UsincFQp

L0

2
GU2

3exp@2L0 Im~Qp!#

3U 1

~aX,p!21~aY!21~aZ!2U2F ~aX,p!2

3~12sin2 u cos2 w!1~aY!2~12sin2 u sin2 w!

1S uaZ
2uv

v
D 2

sin2 u22aX,paY sin2 u sinw cosw

22aX,pS Re@aZ
2#v

v
D cosu sinu cosw

22aYS Re@aZ
2#v

v
D cosu sinu sinwG . ~21!

In the limit case where«(v) tends towards unity, Eq.~21! is
written as follows:

S d2I

dv dV D
p

5
q2

c
k2uxp~v!u2L0

2UsincFQp

L0

2 GU2

uF~u,w,v!u

~22!

with

F~u,w,v!5
1

D~u,w,v!2 FD~u,w,v!2S b

g D 2

2
@D~u,w,v!1S~u,v!#2

4b2 G , ~23a!
D~u,w,v!5b2F S sinu1
pgX

k D 2

22 sinu
pgX

k
~12cosw!G ,

~23b!

S~u,v!5b2Fsin2 u2S pgX

k D 2G1
2b cosu21

g2 . ~23c!

III. NORMAL AND OBLIQUE INCIDENCES

A. Normal incidence

For normal incidence,

a5
p

2
, d05d, gX50, gZ5

2p

d
,

aX,p5k sinu cosw. ~24!

By introducing in Eq.~21! the normal incidence condition
given by Eq.~24! and establishing that«(v) tends towards
unity, the intensity reads

d2I

dv dV
5

q2

c
k2uxp~v!u2L2UsincFQp

L

2 GU2

uG@u,b#u2

~25!

with

G@u,b#5
sinu~12b cosu2b2!

12b2 cos2 u
. ~26!

Equations~25! and~26! are easily identified with the expres
sions generally used to describe the resonant transition ra
tion ~RTR! emitted by a periodic system@14,16#. From the
general expression~21!, Cherenkov intensity can also be d
duced by settingp50.

It is known that the RTR of wavelengthl/p is emitted in
a cone of opening angle denoted 2u here, centered on the
electron trajectory. The resonance condition is obtain
whenl/p and 2u have values such as the ‘‘sinc’’ function i
maximum, that is,Qp50. From Eq.~18!, we obtain the reso-
nance condition

A«~v! cosup5
1

b
1p

l

d
. ~27!

The angleup is real only for negative values of the integerp.
From the variation ofG@u,b# versusb @Eq. ~26!# and the
condition~27!, we have verified that the intensity of the RT
is only significant when the angle between the observa
direction and the trajectory of the incident particle is close
1/g. Then, for relativistic electrons, the maximum intensity
in the angle of opening 2/g.

The efficiency of RTR as a radiation source can be
duced from the spatially integrated energy

dI

dv
5

q2

c
k2uxp~v!u2L2E

0

2p

dwE
0

pUsincFQp

L

2 GU2

3uG@u,b#u2 sinu du. ~28!
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The variation ofG@u,b# is slow within the angular width of
the functionusinc@Qp(u)L/2#u2. This behavior is verified all
the better that the number of periodsN is large. In this case
it is usual to perform the following substitution:

UsincFQp

L

2 GU2

→
2

L
pd@Qp#. ~29!

Then the integration overu becomes simple and

dI

dv
'

~2p!2q2

c
kuxp~v!u2LuG@up#u2, ~30!

where up satisfies the resonance condition~27!. Equation
~29! is generally a convenient approximation. However,
us underline that the value ofN is bounded~less than 102!
and the introduction of the Dirac function is an approxim
tion. Morever, the dielectric constant has been assum
equal to unity. Indeed, in the xuv domain, the dielectric co
stant is a complex parameter whose imaginary part acco
for the absorption of the radiation by the matter.

B. Oblique incidence

In the general case of oblique incidence, we are able
find another configuration for which an enhanced radiat
emission occurs. To do so, we search the conditions
which the intensity becomes maximum. As for the RTR,
‘‘sinc’’ term peaks if Qp50, i.e., if the resonance conditio

A«~v! cosup5
1

b
1p

l

d0
~31!

is satisfied. This condition is analogous to Eq.~27! with d0
instead ofd.

1. Limit case: «„v…˜1

In the limit case where«(v) tends toward unity, it is easy
to obtain from Eqs.~22! and ~23! the condition leading to a
maximum intensity. The derivative ofF given by Eq.~23a!
is

dF52
dD

D2 12S b

g D 2 dD

D3 1FSdD2DdS

D2 GF 1

2b2 S S

D
11D G .

~32!

A sufficient condition fordF50 is

D~u,v!52S~u,v!52S b

g D 2

. ~33!

With this condition, the radiated energy reaches a maxim
given by

d2I

dv dV
5

q2

c
k2uxp~v!u2L0

2UsincFQp

L0

2 GU2S g

2b D 2

. ~34!

Then, in the oblique incidence case, a maximum in the ra
ated intensity is expected if the conditions~31! and ~33! are
simultaneously satisfied. By associating to the glancing an
denotedap the Bragg wavelengthlp defined by the Bragg
relation
t

-
d

-
ts

to
n
r

e

m

i-

le

2d sinap5upulp , ~35!

the quantitiespgX /k and pgZ /k are, respectively, equal to
l/lp sin 2ap and l/lp2 sin2 ap . Then the wavelengthlmax
for which the intensity is maximum is given by

lmax5lp

b

2 F11S 11
2

b2g2 sin2 u0,p
D 1/2G . ~36!

The anglesumax corresponding to this maximum are given b

cosumax5
1

b
2b sin2 apF11S 11

2

b2g2 sin2 ap
D 1/2G .

~37!

By combining Eqs.~23b! and~33!, the azimuthal angleswmax
which maximize the intensity can be determined. Both co
ditions are verified for two opposite values6uwmaxu. Then
two directions are expected for maxima of emission; th
direction are located symmetrically on each side of the pl
of incidence.

In the relativistic case (b'1,g@1), the conditions~36!
and ~37! show that enhanced emission occurs in the nei
borhood of the Bragg conditions. Indeed

lmax'lpF11
1

2g2 sin2 ap
G , ~38!

umax'2ap2
1

g2 sin 2ap
. ~39!

In this case, the energydI/dv is determined by integrating
spatially Eq.~22!.

This set of formulas displays the advantage of show
simply the general characteristics of the emitted radiation
this geometry.

2. General case

In this case, the radiated energy must be determined
means of Eq.~21!. No simple analytical formula can be ob
tained and numerical treatment must be used. Results
calculation made for a typical radiator with the true dielect
constant are presented in the next section. From this,
show that the spatial distribution of the radiated intensity
more spread in the direction defined by the anglew than it is
in the limit case«̄→1. Moreover, at low incident electron
energies, the radiated intensity is approximately the sam
in the limit case but the variation of the intensity with th
electron energy is different. It does not increase withg as
expected from the formula~34!, which is no longer valid,
and a saturation effect occurs for«(v)Þ1. This saturation
starts when the condition 1/(gb)2!4px̄ is satisfied. Then
the parameterL, as given by Eq.~12!, is practically indepen-
dent ofg; it tends to the constant valuekA4px̄, so that the
electric field radiated by the electron@cf. Eq. ~11!# becomes
independent ofg, thus of the electron energy.
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FIG. 2. Angular distribution of the RTR vs the angleu. The electron energy is 25 MeV. The energy of the photons is 1 keV. The ta
consists in a periodic arrangement of 1-mm-thick 18 Be foils separated by 2mm of vacuum.
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IV. NUMERICAL APPLICATIONS AND COMPARISON
BETWEEN THE VARIOUS RADIATION SOURCES

Numerical applications are made for a radiation
1 keV(l51.24 nm). In all the cases, we calculate the nu
ber of photons radiated per electron, per steradian, in a
photon energy interval centered about 1 keV.

A. Resonant transition radiation „RTR…

Electrons of 25 MeV (g549) traveling through a peri
odic arrangment of 1-mm-thick 18 Be foils separated by
mm of vacuum have been previously considered@34#. From
Eq. ~21!, we have calculated the angular distribution of t
RTR versus the angleu for such an arrangement. The resu
is presented in Fig. 2. The emission occurs in cones cent
along the trajectory of the electron with opening angles cl
to (231.2)° for the first order (p51) and to (232)° for the
second order (p52). The third order cancels because t
ratio G of the foil thickness~1 mm! to the period of the stack
~3 mm! is equal to1

3 @cf. the expression ofxp from Eq.~16!#.
The number of photons radiated per electron, per eV,
steradian is about 431022 while the value calculated from
Eq. ~1! of Ref. @34# is '5.631022. For this case, the differ
ence between the two values is of the order of magnitud
the imprecision on the optical constants, which can be e
mated to be about 20%. Let us underline that our formulat
is general while the model of Ref.@34# is valuable only in the
x-ray range and for small emission angles.

B. Bragg resonant transition radiation „Bragg RTR…

from multilayer systems

Calculation is performed for an existing multilayer stru
ture composed of 35 molybdenum/carbon bilayers@35#. The
thicknesses of the Mo and C layers are 1.13 and 2.27
respectively. The stack is deposited onto a 300-nm-thick
con carbide film. Such thin substrate made up of low-Z ele-
ments enables us to reduce the bremsstrahlung emissio
the wavelength of 1.24 nm, the Bragg angle is 10.5° for
order upu51. We consider a relativistic electron with an e
ergy equal to 25 MeV, impinging the multilayer structure
the Bragg angle. The angular distribution of the radiat
versus the anglesu andw is shown in a 3D plot, Fig. 3~a! for
«(v)51 and Fig. 3~b! for the true value of«(v), respec-
f
-
it

ed
e

er

of
ti-
n

,
i-

At
e

t
n

tively. As expected, the radiation is divided into two pea
corresponding to the two values ofwmax, separated by a
central dip.

In Fig. 4 the peak intensity and the spatially integrat
intensity versus the electron energy are plotted simu
neously for«(v)51 and for the true value of«(v). As
already discussed, saturation appears from 20 MeV for
true value of«(v). At the peak intensity, the number o
photons radiated at 25 MeV is 431026 per electron per
steradian per eV.

C. Synchrotron radiation

A general expression for the instantaneous power radia
by an electron of energyE at a trajectory point of radiusr,
into all angles, per unit frequency interval centered about
frequencyv, has been derived by Schwinger@38#. In terms
of the photon energy\v rather than the angular frequenc
this expression reduces to

P~\v,t !5
31/2

h

e2

r S E

m0c2D
3S \vc

\v D 2

GS \v

\vc
D in C.G.S. units,

~40!

where\vc is the so-called critical energy and is defined
the relation

\vc5
3

4p

\c

r S E

m0c2D 3

and the functionG(y) is given by

G~y!5y3E
y

`

K5/3~h!dh.

The integrand inG(y) involves Bessel functions of imagi
nary argument.

Let us consider an hypothetic machine having its criti
energy equal to 1 keV. This is obtained with electrons
about 766 MeV maximum energy moving with consta
speed along a circular orbit of 1 m radius. From Eq.~40!, one
obtains the number of photons radiated per electron avera
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on one second and the total energy emitted by the machin
determined by taking into account only the number of el
trons present on the orbit at each rotation. Consequently
number of photons radiated by an electron in a straight m
ing must be compared with the number of photons radia
by an electron during passing through a point of the or
this last is 831024 photons per electron per steradian per
about the critical energy.

V. CONCLUSION

We have shown that resonant transition radiation in n
mal incidence as well as Bragg RTR from periodic stratifi
structures can be described by the same theoretical mod
the framework of the electromagnetism of continuous me
On the other hand, analogy between Bragg RTR and PX
evident. Consequently, the use of multilayer stacks as a
diator with a period in the nanometric scale would ma
possible the extension of the parametric radiation in the
domain.

FIG. 3. Angular distribution of the Bragg resonant transiti
radiation vs the anglesu and w in a three-dimensional plot. The
electron energy is 25 MeV. The energy of the photons is 1 k
Calculation is performed for a target consisting in a perio
multilayer structure composed of 35 molybdenum/carbon bilay
The thicknesses of the Mo and C layers are 1.13 and 2.27
respectively. The glancing angle of the incident electron is 10
which is the Bragg angle for photons of energy equal to 1 keV
is
-
he
v-
d

t;

r-

l in
a.
is
a-

v

Performances of various types of sources are difficult
deduce only from the theoretical values calculated in the p
ceding paragraph. Technical and experimental considerat
must be taken into account. Among the technical parame
average current, temporal, and spatial structures of the i
dent particle beam are predominant. Thus, in compari
with the synchrotron radiation, insertion devices can incre
the intensity by several orders of magnitude. On the ot
hand, the average current in a storage ring can be two
three orders of magnitude larger than in an electron accel
tor. Contrary, the peak current of an electron accelerato
orders of magnitude larger than the current associated to
electron bunch in a storage ring, making the RTR attract
for time-resolved measurements in the x-ray field.

Another important factor is the spectral distribution.
the case of the Bragg RTR, the width of the spectral dis
bution is narrow, i.e., the radiation is quasimonochroma
in contrast with the continuous radiation of the synchrotr
source. This presents an appreciable advantage in ex
ments which require a narrow spectral bandwidth.

It must be underlined that the possibility exists to real
multilayer-substrate systems only a few hundred nanome
thick. Such a radiator minimizes the production of brem
strahlung and the self-absorption and tends to increase
efficiency of the proposed source. Using an electron beam
a few tens of MeV with an average current of 1 mA and
convenient multilayer radiator, a Bragg RTR of 1010 photons
per second per steradian per unit photon energy interval
be achieved with a spectral broadening of only 10 eV c
tered about 1 keV. Then Bragg RTR offers the possibility
dispose relatively compact and simple efficient xuv sour
for scientific and industrial applications.

APPENDIX A

The electricE and magneticH fields are related to the
scalarf and vectorA potentials by

.

s.
,

°,

FIG. 4. Number of photons at the peak and spatially integra
number of photons vs the electron energy, for«(v)51 and for the
true value of«(v). Curvea, spatially integrated number of photon
~photons/electron/eV! for «(v)51; curveb, number of photons at
the peak~photons/electron/steradian/eV! for «(v)51; curvec, spa-
tially integrated number of photons~photons/electron/eV! for the
true dielectric constant; curved, number of photons at the pea
~photons/electron/steradian/eV! for true dielectric constant. The en
ergy of the photons is 1 keV. The target is the same as for Fig
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E~r ,t !52“f~r ,t !2
]A~r ,t !

c]t
, ~A1!

H~r ,t !5“3A~r ,t !. ~A2!

From the Maxwell equation

“3H~r ,t !5
]D~r ,t !

c]t
1

4p

c
J~r ,t !, ~A3!

whereJ is the electric current density andD is the electric
displacement vector defined by

D~r ,t !5E~r ,t !14pP~r ,t !. ~A4!

One has

“3H~r ,t !5
]E~r ,t !

c]t
1

4p]P~r ,t !

c]t
1

4p

c
J~r ,t !.

~A5!

If one introduces the electric Hertz vectorP such that

A~r ,t !5
]P~r ,t !

c]t
~A6!

and

f~r ,t !52“•P~r ,t !, ~A7!

then by combining Eqs.~A1!, ~A2!, and Eq.~A5!, one finds
that the Hertz vector satisfies the following equation:

2“

2
]P~r ,t !

c]t
1

]3P~r ,t !

c3]t2 5
4p]P~r ,t !

c]t
1

4p

c
J~r ,t !.

~A8!

Assuming the fields to be harmonics, one obtains

“

2P~r ,v!1v2
1

c2 P~r ,v!524pP~r ,v!2 i
4p

v
J~r ,v!.

~A9!

The solution of the above differential equation is obtained
means of the outgoing Green functionG(r ,R,v) of the
Helmholtz equation, which verifies

“

2G~r ,R,v!1v2
1

c2 G~r ,R,v!524pd~r•R!

~A10!

by

P~r ,v!5E FP~R,v!1
i

v
J~R,v!GG~r ,R,v!d3R.

~A11!

It is well known that the Green functionG(r ,R,v) reads

G~r ,R,v!5

expS i
v

c
ur2Ru D

ur2Ru
. ~A12!
y

Now we turn to the expression of the magnetic and elec
fields in terms of the Hertz vector.

Combining Eq.~A2! and Eq.~A6!, it is straightforward to
show that in terms of the harmonic field,

H~r ,v!52
iv

c
“3P~r ,v!. ~A13!

Combining Eq.~A1!, Eq. ~A6!, and Eq.~A7! yields

E~r ,t !5““•P~r ,t !2
1

c2

]2

]t2 P~r ,t !. ~A14!

In terms of the harmonic field, one obtains

E~r ,v!5““•P~r ,v!1
v2

c2 P~r ,v!, ~A15!

that is,

E~r ,v!5“3@“3P~r ,v!#1“

2P~r ,v!1
v2

c2 P~r ,v!.

~A16!

By virtue of Eq.~A9!, it comes

E~r ,v!5“3@“3P~r ,v!#24pP~r ,v!2 i
4p

v
J~r ,v!.

~A17!

At the location of the observator, that is, outside the ma
and the electron beam, the electric field is simply given b

E~r ,v!5“3@“3P~r ,v!#. ~A18!

APPENDIX B

The energy detected by a 4p detector~which has a total
surfaceS! surrounding the radiator during the experiment
given by

I 5
c

4p E
2`

1`

dtE
S
dS E~ t !3H~ t !. ~B1!

Performing a Fourier transform of the electric and magne
field gives

I 5
c

4p E
2`

1`

dtE
2`

1` dv

2p E
2`

1` dv8

2p E
S
dS E~v!exp~ ivt !

3H~v8!exp~ iv8t !. ~B2!

The integration over time yields

I 5
c

4p E
2`

1` dv

2p E
2`

1` dv8

2p E
S
2pd~v1v8!dS E~v!

3H~v8!. ~B3!

The integration overv8 yields

I 5
c

2~2p!2 E
2`

1`

dvE
S
dS E~v!3H~2v!, ~B4!
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that is

I 5
c

~2p!2 E
0

1`

dvE
S
ddS E~v!3H* ~v!. ~B5!

Consequently, the energy radiated through a elementary
facedS per angular frequency intervaldv is given by

dI

dv
5

c

~2p!2 u@E~v!3H* ~v!#•dSu. ~B6!

One has

E~v!5“3“3P~v! ~B7!

and

H~v!52 ik“3P~v!. ~B8!

The Hertz vectorP~v! is expressed by the formula~6! in the
main text. In far-field this vector behaves as a plane wave
that one has

“3P~v!' ik3P~v!. ~B9!

Consequently,

E~v!3H* ~v!52k3@k3P~v!#32k@k3P* ~v!#.

~B10!

Using the identity

A3~B3C!5~A•C!B2~A•B!C ~B11!

it follows that

E~v!3B* ~v!5k4$@ r̂•P~v!#@ r̂•P* ~v!#

2P~v!•P* ~v!% r̂ . ~B12!

Using Eq.~6! yields

dI

dv
5

c

~2p!2

k4

r 2 u$@ r̂•P̄~v!#@ r̂•P̄* ~v!#

2P̄~v!•P̄* ~v!% r̂•dSu. ~B13!

Finally the energy radiated per angular frequency inter
dv and per steradiandV is given by

d2I

dv dV
5

c

~2p!2 k4u$P* ~k,v!•P̄~k,v!2@P* ~k,v!• r̂ #

3@P̄~k,v!• r̂ #%u. ~B14!

APPENDIX C

The integration overZ is direct and the result is given i
terms of the ‘‘sincx5sinx/x’’ function by

L0

2
sincS Qp

L0

2 D , ~C1!

where

L05Nd0 . ~C2!
ur-

o

l

The integration overX andY can be carried out by parts an
then the following integrals appear:

I X~a,h,b!5E
2`

1`

dYE
2`

1`

dX
]

]X
@K0~bAX21Y2!#

3exp~2 iaX!exp~2 ihY!, ~C3!

I Y~a,h,b!5E
2`

1`

dYE
2`

1`

dX
]

]Y
@K0~bAX21Y2!#

3exp~2 iaX!exp~2 ihY!, ~C4!

and

I Z~a,h,b!5E
2`

1`

dYE
2`

1`

dX K0~bAX21Y2!

3exp~2 iaX!exp~2 ihY!. ~C5!

Since the above integral is given by~see below!

I Z~a,h,b!5
2p

a21h21b2 , ~C6!

it follows that

I X~a,h,b!52 iaI Z~a,h,b!52 ia
2p

a21h21b2 .

~C7!

and

I Y~a,h,b!52 ihI Z~a,h,b!52 ih
2p

a21h21b2 .

~C8!

After introduction of these integrals, Eq.~17! can be rewrit-
ten as follows:

P̄~k,v!5(
p

xp~v!
22iq

cb«~v!

3expF iQp

L0

2
G L0

2

3sincFQp

L0

2
G 2p

~aX,p!21~aY!21~aZ!2

3H aX,pX̂1aYŶ1
aZ

2v

v
ẐJ . ~C9!

Calculation ofI Z(a,h,b)
I Z(a,h,b) can be rewritten as follows:

I Z~a,h,b!5I Z~ t,b!5E
0

2p

dfE
0

`

K0~br!

3exp~2 i tr cosf!r dr ~C10!

with t5Aa21b2.
Transforming Eq.~C10! leads to
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I Z~ t,b!5E
0

`

K0~br!F E
0

p

exp@v~r!cosf#df

1E
0

p

exp@2v~r!cosf#dfGr dr, ~C11!

wherev(r)52 i tr.
From Eq.~3.339! of @39#, one has

I Z~ t,b!5pE
0

`

K0~br!$I 0@v~r!#1I 0@2v~r!#%rdr,

~C12!
s

cs

.

F

S.

.
D

iz.

H.
um

I.

,
th

th
H

pt
whereI 0 is the Bessel functionI of zero order.
Taking into account the relation

J0@ iv#5I 0@v#, ~C13!

where J0 is the Bessel functionJ of zero order, and the
equation~6.521! of @39#, it follows that

I Z~ t,b!5
2p

b21t2 5
2p

b21a21b2 . ~C14!
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Schöpe, and Th. Walcher, Z. Phys. A358, 107 ~1997!.

@33# K.-H. Brenzinger, B. Limburg, H. Backe, S. Dambach, H. E
teneuer, F. Hagenbuck, C. Herberg, K. H. Kaiser, O. Kettig,
Kube, W. Lauth, H. Scho¨pe, and Th. Walcher, Phys. Rev. Let
79, 2462~1997!.

@34# P. J. Ebert, M. J. Moran, B. A. Dahling, B. L. Berman, M. A
Piestrup, J. O. Kephart, H. Park, R. K. Klein, and R. H. Pa
tell, Phys. Rev. Lett.54, 893 ~1985!.

@35# C. Khan Malek, J. Susini, A. Madouri, R. Rivoira, F.-R
Ladan, Y. Lepeˆtre, and R. Barchewitz, Opt. Eng.~Bellingham!
29, 597 ~1990!.

@36# M. Nieto-Vesperinas,Scattering and Diffraction in Physica
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