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We study the modifications of synchrotron radiation of charges in a storage ring as they are cooled. The pair
correlation lengths between the charges are manifest in the synchrotron radiation and coherence effects exist
for wavelengths longer than the coherence lengths between the charges. Therefore, the synchrotron radiation
can be used as a diagnostic tool to determine the @ate liquid, crystalof the charged plasma in the storage
ring. We show also that the total power of the synchrotron radiation is significantly reduced for crystallized
beams, both coasting and bunched. This opens the possibility of accelerating particles to ultrarelativistic
energies using small-sized cyclic acceleratp8d.063-651X99)07407-3

PACS numbgs): 29.20—c, 29.27-a, 41.75-i, 41.60.Ap

I. INTRODUCTION priate limits[7]) than the radiation from the same number of
randomly located particles. This opens the possibility for ac-
lon-beam crystallization is an exciting and relatively new celerating particles to ultrarelativistic energies with little ra-
field of physics in which a new state of matter is sought.diation loss, which is currently the main limitation of circular
Namely, ions which rapidly circulate in a storage ring andelectron accelerators. Thus the suppression of synchrotron
are cooled are expected to form geometrically ordered struaadiation by beam crystallization may eventually lead to the
tures(crystalg which have a density much smaller than nor- construction of smaller-sized circular electron accelerators.
mal crystalline solid$1,2]. Although great effort is currently In the following we shall detail the connection between
invested in achieving such crystdl2-5], there is still no beam crystals and synchrotron radiation. It is important to
clear-cut experimental evidence for them. It is hoped, howemphasize that currently researchers are trying to obtain
ever, that crystalline beams will be produced in the neabeam crystals of heavy ions that can be cooled with electrons
future. and lasers. For heavy ions, however, the synchrotron radia-
Synchrotron radiation, on the other hand, is a very well-tion is small. Even for protons, e.g., the lightest of the
established field of physics that has been investigated cortheavy ions,” the synchrotron radiation is about a factor of
tinuously from the early days of particle accelerators. Manyl10~ 3 smaller than for electrons with the same energy. Thus,
synchrotron sources are operating around the wpeld., we expect that realistically the effects predicted in this paper
DESY (Hamburg, Germany NSLS (Brookhaven, USA  will be important only for liquid or crystallized electron
KEK (Tsukuba, Japamh and many applications already exist beams. This, however, poses the challenge of obtaining crys-
[6]. tallized electron beams. Thus we hope that the ideas put
It is the purpose of this paper to establish a link betweerforward in this paper will motivate experimentalists to work
beam crystallization and synchrotron radiation. This link istowards obtaining crystallized electron beams. In any case,
twofold: however, the analysis presented below applies to any species
(i) To use synchrotron radiation and modifications thereobf charged particles. Thus the theory can in principle be veri-
in order todetectthe creation and existence of beam crystalsfied for ion-beam crystals. Also we stress from the outset that
This is required since for fast beams direct detection methodthe effects discussed below go beyond what is known as
are difficult to implemenf2]. Thus synchrotron radiation can “coherent synchrotron radiation” which is the coherent en-
be used as an indirect diagnostic method to detect the formdzancement of synchrotron radiation of small electron
tion of beam crystals. The diagnostic methods discussed bé&unches for wavelengths that are longer than the bunch size
low are also applicable to liquid and gaseous beams. (see, e.g.[8-11] and Sec. IV below
(i) Even more importantly, once beam crystals are The paper is structured in the following way. In Sec. Il we
formed, they can be used toodifythe synchrotron radiation discuss the general theory that underlies the suppression and
with respect to the ordinary incoherent case. Therefore, onenhancement effects of synchrotron radiation. In Sec. Il the
can achieve dramatic suppression and enhancement effed¢kseory is applied to the three phases of a coasting charged-
of synchrotron radiation using crystallized beg¥k In par-  particle beam that occur in practice: gaseous, liquid, and
ticular, the total power that is radiated from an equispacedrystal. In Sec. IV the necessary modifications of the theory
circulating chain of particles is much smallgén the appro- for a bunched beam are discussed. In Sec. V we present
analytical and numerical results concerning the suppression
of synchrotron radiation by crystalline beams, both coasting
*Electronic address: harel@phyc1.physik.uni-freiburg.de and bunched. Finite temperature effects are discussed explic-
"Electronic address: rblumel@wesleyan.edu itly. In Sec. VI we discuss our results and conclude the paper
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with proposals for experimental applications of the effects 27
discussed in this paper. (9n) = jo d;---doNP(0y, ... .0)
Il. GENERAL THEORY N .
X X exdin(6,—6;)]. (2.6)
We consideN charged particles with charggcirculating =1

in a circular storage ring of radiys with velocity v. The
charges are assumed to be coherent with a reference circlihis can be rewritten as

lating charge, but are allowed to have constant time bigs

as well as constant spatial displacemehkits from the refer- B i

ence orbit. According to the theory of rzdiation of moving (gn)= sz daemR(4), @7
sources, the total power that is emitted from bheharges is
given by[12,13

where
(N) = (1) 2w
' nzl Gnln " (2.3) RZ(A)EJ’O d6y---dOyP(6y, . . . ,0n)
where (! is the power that is emitted with frequenay, N
=nw=nv/p due to a single circulating particle, amy is X Zﬂ A= (6= 6;1)] 2.9
the form factor of the beam. The explicit expressionli‘,d? b
s [14] is the two-point correlation function, i.e., thénon-
20 normalized chance of finding a pair of’'s a distanceA
B . .
1)_ q 2 2 2 apart. Therefore, we conclude that the crucial quantity that
I 2W60y2p2[ﬂ YN Jzn(2nB)—n J;, JZ”(an)dg}’ determines the maodifications of synchrotron radiation due to

(2.2  coherence effects R,, our main object of study. The phys-
ics of the particle beanitemperature, structures reflected
whereB=v/c, cis the speed of lighty=1/J1— 82, andJ, N Rp andis consequently linked to modifications of the syn-
are the ordinary Bessel functiofi$5]. The form factor is ~chrotron radiation.

given by Before applying the above formulas, we make some fur-
ther simple manipulations. To avoid complications with the
N 2 N 21 periodicity, we define
9=| 2, exing)| = X exdin(¢~¢;)] )
hir=1 2.3 Ro(A)=2[Ry(A) +Ry(27m—A)]. (2.9
and the angles; are given by[16] Using the relatiorR,(A) =R,(—A), easily derived from Eq.

(2.8), we obtain

B. -
=wAt;+n-Ar;, 2.4 K &
$i= @Al N Ar 24 <gn>:fo dA cognA)Ry(A). (2.10

wheren is the unit vector pointing from the center of the ring

to the observation point. We observe that in the form factor,This can finally be recast as

the role of the time delays and the spatial displacements is

equivalent. Thus we restrict ourselves hereafter to time de- m ~

lays only. This simplifies the calculations and yields qualita- (g =N+ fo dA cognA)Ry(4), (2.19
tively the same results. It is also compatible with the current

experimental trend according to which linear ion crystals

(one-dimensional crystalsre sought. We shall denote the WhereR,(A), defined in[0,7], is the two-point correlator

phase differences in the following b= wAt; . that does not include the “diagonal” parth\a5(A), emerg-
Suppose now that we treat the quantiti@;sas random ing from thej=j’ terms ofR,.

variables distributed according to the normalized probability ~An important special case is the case of independent par-

density P(64, ...,0y). Then the expectation value of the ticles, i.e.,

total power is

P01, ....00=I1 Pu(6)), (2.12
(109)= E (gm15”, 29 "

where P, is the (normalized one-point density of the par-
where ticles. For this case the resulting form factor is
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27 |2 plies to the limiting case of a bunched but very hot beam of
<9n>:N+N(N—1)U doP.(0)e"’ . (213  particles in which the particles within the bunch are uncor-
0 related.
In the following we shall introduce the correlations be-
ll. APPLICATION TO COOLED PARTICLE BEAMS tween the particles as the beam is cooled and use the full

expression$2.5—(2.11) rather than Eq(2.13. These corre-

aticl)rr]15th§f fg”ogvr't?gewgezf::l;t?td?/s ab:;?r\:v rig:}?sgn;ﬁgvgrsggll_ations are neglected in the field of coherent synchrotron ra-
. P o ; 9 yStalyiation since the beam is assumed to be very hot. But the
lized. We shall qualitatively infer the form of the two-point

~ correlations become more and more important as the beam is
correlatorR, for each of the cases, and calculate the resultyejng cooled. To simplify the treatment, we focus in this

ing form factor of the synchrotron radiation. Thus the focussection on coasting beams. In Sec. IV we introduce the nec-
in this section is on the spectral modifications of the synchroassary modifications to describe bunched beams.

tron radiation expressed by the behavior(gf). We shall If the temperature of the beam is moderately high, we
show that the modifications ofg,) as the temperature is expect that the particles start to show repulsion from each
lowered define an excellent tool for the diagnostics of thepther. That is, they will avoid the vicinity of each other due
thermodynamic state of the beam. The modifications due tgy the Coulomb repulsion and act like a nonideal “gas.”

bunching are considered in Sec. IV. The suppression of thehjs can be described phenomenologically by
total emitted power is discussed in Sec. V.

We start with a very hot particle beam. In such a case, we ~ 5 A2
expect the particles to be completely independent. Therefore, RI*(A)=c,RI(A)| 1— exp( - —2) , (3.6
Egs.(2.12 and(2.13 apply. For a particle beam that fills the 2a
whole ring(coasting beam we expect on the basis of sym- h
metry a uniform distribution where
~o, . N(N-1) e
Pl(a):%. (3.0 Ra(4) o OsAsT 3.7

is the trivial two-point correlator for a uniformly coasting
The form factor becomes beam of independent particles aads the (angulay “hard-
core” scale of repulsion. Interpreting E(.6), we modified

(g=N, n=12.... 8.2 ~Rg by a narrow “dip” of width a nearA=0 (the “correla-

ThUS, for a hot Coasting beam’ tion hOle”) such that~R2(O)=0 (tOtal repu|Si0n a.tAZO)
The constant, is for normalization. It is approximately (1

(1N =N1®, (3.3 —al\2m) "1 for small values ofa (a<). Actually, since

we are still in the high-temperature regime, we need to as-
This is what we expect from totally incoherent radiatio\of ~sume thaa<27/N=d,, i.e., the hard-core repulsion occurs

particles. on scales smaller than the mean distance between the par-
For beams that are bunched, a typical shape is a Gaussiditles. ForN>1, which is the interesting case here, the two
The resulting density is conditions ore are consistent. We note thatlepends on the
temperature and increases as the temperature decreases. For
1 e (60— 0p+ 27rm)?2 a<<1 we obtain the following form factor:
P.(6)= > exg - ————|,
2ot m=e 20 (3 4) ga N N(N—l)a [( n2a2 12
(92% o ex 5] n=12,....
where 6, is the location of the center of the bunch amds (3.9

its angular width. The summation overis to ensure the 2
periodicity. For6y,> o, 27— 6> o, only them=0 compo-
nent in Eq.(3.4) is significant. The resulting form factor is

Since the form factor is a non-negative quantity, we imme-
diately infer an upper limit ora:

(9n) =N+ N(N—1)exp( - n’c?). (3.5 _N2m_dy
as N N (3.9

In the bunched case, therefore, in addition to the incoherent
term N, we also obtain a term that represents the cohererithis result is intuitively clear since the hard core cannot be
synchrotron radiation for low harmonigs<1/o. One ob- larger than the mean distance of the particles. It is also com-
tains qualitatively the same results for other shapes of theatible with the assumptions above concerran&hysically,
bunch[17,18. we observe that there is suppressionof the synchrotron
The above results are well-known and form the basis ofadiation forn<1/a (lower harmonics We can therefore
the field of “coherent synchrotron radiation” in which en- estimate the hard-core scaland hence the temperature
hancement of the radiation is predict&j12,16,17T and ex-  from the coherent modifications of the synchrotron radiation
perimentally measurefP—11] due to the collection of the for the gaslike state of the particle beam. We note that the
charges(electron$ into small bunches. In our case this ap- overall suppression effect is small. For snmailalues, where
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FIG. 1. The two-point correlatdi@) and the form factotb) for FIG. 2. The two-point correlatai@) and the form factotb) for

the “gaseous” state of the beam, described by E&$) and(3.8), the “liquid” state of the beam, described by Eq8.11) and(3.12.

respectively. We used the parametarsd, /10, N=100.

ally reaches the asymptotic limit of uncorrelated particles.
the reduction of the emitted power is largest, the relativeThus it represents an intermediate situatihquid” ) be-
suppression with respect to the incoherent case amounts toeen the slight mutual repulsiatigas”) treated above and

only long-range ordef“crystal” ) discussed below. The above ex-
pression was obtained as a result of an exact calculation for a
(gﬁas)—N‘N V2ma one-dimensional chain of particles with logarithmic repul-
N ‘” d, <1 (310  sjon by Dyson in the context of random matrix thedid)].

The resulting form factor is

The situation is illustrated in Fig. 1.

When the temperature becomes smaller such that the Cou- (gl =min(n,N). (3.12
lomb energy is comparable to the thermal energy, we expect
the particle beam to become somewhat ordered and to form a ) ] ) ) o
liquidlike plasma. The partial order is a precursor to crystal-1NUs, the suppression effect is very prominent in this situa-
lization. In particular, the(angulay distance on which the tion, and there_|s_ effectively complete suppression of the
repulsion between particles is manifestis, and the order Synchrotron radiation for small values pf(see also Fig.

effects should persist over a few mean distances. The twdD t€rms of a wavelength, the suppression is felt for wave-
point correlator is qualitatively given by lengths that are comparable to or longer than the mean dis-

tance between the particles. Comparing E§<8) and(3.12,

o B Sir(7A/d ) we conclude that as the order becomes more mar(ifesst-
RY(A)=c,R(A) 1——2‘9 . (3.11) perature decreasesthe suppression effect becomes more
(mAldy) prominent, but the onset of suppression is shifted to longer

o o wavelengths.
wherec,~(1—1/N)~" is a normalization factor. As before,  Ag crystallization takes place, long-range order effects be-
we assuméN>1. The above two-point correlator displays a come important. We consider in the following the simplest
strong repulsion for small distanc{aR'z'q(O)=0] as well as  crystal, namely the linear chain. To describe the situation, we
oscillations that persist for a few mean distances. It eventudse a distribution function that corresponds to a thermal dis-
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tribution of small displacements around the crystalline state  10°
with only nearest-neighbor interactions taken into account
for simplicity:

N 10

P01, ....,0n)=C3 exr{— 77121 (€01+1—<Pj)2}-
(3.13

o A i l !
Here c¢; is a normalization  constant, » v L \ /\ |
=(g°N?)/(16m3€,dkgT), T is the temperature, andl N I ,-\ \j U
=2mp/N is the mean distance between the charges. The 10 | \ '\\///\/ \/ 4 \/
small displacementg; are defined as follows: / \_/ P10t
P r=10°
p1=01, (3.1 10° L — r=10°
) ) 0 1 2 3 4 5 6 7 8 9 10
¢j=(0;—01)—(j—1)dy, j=23,...N, (319 n/N
ON+1= @1 (3.16 FIG. 3. The form factor for the crystalline state of the beam,
described by Eq.(3.19. We considered the casdd=1CFT
The exponent; can be rewritten as =10',10%,1C.
[N 2/ typical potential ener [N 2 tion in passing that the resuiB.20 can also be obtained
7=\on typical kinetic energy/ om directly from calculating the form factor for a completely

(3.17 frozen crystal7,12,13. The other limit of Eq.(3.19 is for
the first exponential factorl €1) to be already small, such

wherel is the plasma parameter in one dimensiap that only the first term needs to be considered. That is, for
e n2x2/(I'N?)>1, we obtain
= drepdks T’ (3.18 n?m?

(gi¥)~N+2N cos( ZLn) exp( - ) (3.21
We note that the assumption of only nearest-neighbor inter- N I'N?
actions is not severe since for small displacements the inter-
action with thenth neighbor reduces asnf/ which describes small “ripples” over the incoherent radia-
In this case it is easier to obtain the form factor directly,tion, with a decaying amplitude that has oscillations with
without explicitly calculating the two-point correlator. A PeriodN. In Fig. 3 we plot the numerically computed form

straightforward but lengthy calculation gives the following factor (3.19 for the specific casei=10°,I'=10",1¢,10.
and thus Eq(3.20 holds approximately for the range af
I'N3
(3.19 I'=10P the sharp peaks will eventually die away.
In order to interpret this result, we consider two limiting order in 1I', we obtain

result for the form factor: For I'=10° we see a series of sharp peaks located/at

shown in Fig. 3. For smaller values bfwe observe a tran-
In order to obtain the above result, we assurhedl, i.e., a The depression af,” atn~1 can be computed analyti-
cases. If the maximal exponent in £§.19 (as a function of

=1,2,....This is expected since in this caEBds very large
NE 2mnl n2w2 (N—1)
(gY)=N+2> (N—I)cos( N )ex -
=1 sition from sharp peaks to decaying ripples. Even in the case
cold beam. This is a necessary condition for crystallizationcally. Expanding the exponential factor in H.19 to first

1), given byn?#?/(4I'N), is much smaller than 1, we can igcry%i (3.22
replace the exponential in E¢B.19 with 1 and get Nt 2r '
e N2, N divides n, (3.20 This is in perfect agreement with the results displayed in Fig.
(gn”)=~ 0 otherwise. ' 3.

The above results concerning the crystalline state indicate
This means that for very cold crystals there is a total supthat the plasma parametér can be determined from the
pression of the radiation for all harmonics, except the oneform factor of the synchrotron radiatiotprovided N is
that are divisible by the number of particlés For these known). This defines a usefudiagnostictool for measuring
special harmonics we get total constructive interference. Théhe temperature of the crystal. We also conclude that crystal-
suppression of the leading harmonics results in an enormouime beams can bapplied to selectively suppress and en-
reduction of thetotal power emitted by the synchrotron ra- hance harmonics of the radiation, achieving up to total sup-
diation (see Sec. ¥ In case crystallized electron beams canpression ¢,=0) or total constructive interferencegy(
be produced, this effect gives rise to the possibility of sig-=N?).
nificantly reducing the synchrotron radiation, currently the To summarize this section, we have shown that the syn-
main limitation for circular electron accelerators. We men-chrotron radiation and its modifications with respect to the
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incoherent state are strongly connected with the physical For the crystalline statdinear chain with finite tempera-
state of the beam. The form factor reflects the importanture we model the bunch by adding two limiting “ficticious”
scales and can be used to diagnose the state of the beamarges at both ends of the bunch. These charges are station-

(“gas,” “liquid,” “solid” ) as well as its temperature. ary with respect to the bunch’s reference frame. They do not
radiate and serve only for confinement. To make the calcu-
IV. MODIFICATIONS FOR BUNCHED BEAMS lations tractable, we assume only nearest-neighbor interac-

_ o . _ tions. Lengthy but straightforward calculation yields the
Experimentally it is sometimes useful to work with form factor

bunched beams in which the particles occupy only a small

fraction of the ring. Thus we consider in this section the N-1

modifications of the above theory for bunched beams. These (gEY P =N+2 > (N—1)cognld,)
modifications are straightforward. It turns out that only the (=1

lowest harmonic$up ton~ 2/ (bunch angular lengjhare n2d2l(N+1—1)

affected. Qualitatively this can be understood by examining xex;{ _ - 7 (4.5
Eq. (2.6), since the bunching will be felt only for values of 4(N+1)

such than(¢;— 6;,)=<2. This yields the above estimate. In

the following we detail the theory quantitatively. For small values oh we replace the exponents by 1 and
We start with the gaseous phase and consider a narro@ptain

bunch of N particles with an(effective angular widtho

=27/Q, Q>1. In order to be specific, we shall assume that ery, bunc

the shape of the bunch is a Gaussian, and thatthe-poinj (gi Py~

charge density is given by E¢B.4) above. In the absence of

correlations, the two-point correlation function of the Gauss-WhiCh is the form factor of a frozen linear crvstalline bunch
ian bunch(GB) reads Y :

In particular, it exhibits an enhancement for the low harmon-

icsn=Q. If nis so large that only the first term is significant,

we essentially recover the res(B.21). Results for the case

N=5+2%10°, Q=100y2, andI'=10"10? are shown in
4.1 Fig. 4. The parameters were chosen such dhas the same
i as for the coasting case. We observe that significant enhance-
from which we calculate the form factdB.5). In order 0 antindeed occurs for the lower harmonics, which is essen-
include the hard-core repulsion betwegn the charges, we ORally independent of the temperature as suggested by Eq.
erate as in the coasting case and mo@ff with a narrow  (4.6). Otherwise, the form factdnormalized by the number
dip, of chargesis the same as for the coasting case.

, To summarize this section, we investigated the modifica-
A
1 exp( 2a2) .

tions that result from the bunching of the particle beam. In
(4.2) all cases, we found that a significant enhancement occurs for
As before,c,~1 to leading order ifN. When calculating the
form factor, the first term in the brackets gives E85). For

the low harmonicei<Q. Otherwise, we get qualitatively the
same results as for a coasting beam.

the second term, we can u&§®~1 since we assumed V. TOTAL POWER

<. Hence, we obtain

sir?(7n/Q)

si[ #n/(QN)]’ 49

RSB(A)=

2 E 2

TOS m=-=

N(N-1) exp[ _(A+27m)?

4o

ﬁgas, bunctlA) — CJQSB(A)

In Secs. Ill and IV we concentrated on a discussion of the
form factorg,, of the beam. We showed that important infor-

2 2,2
(ges Dol — - N"a exd — & mation on the thermodynamic state of the beam is already
n N 2 contained ing,,. The total emitted power, however, the sub-
ject of this section, depends on the interplay betwgeand
2 2
+N(N—1)exp(—n“o) the partial power levels(") of a single radiating chardesee
—(g%9+N(N—1)exp(—n2s?). (4.3 Eq.(2.1)]. The total powet ™ of a single radiating charge is
0 . . )

given by

That is, the form factor of the gaseous coasting beam con- .

tains an additional enhancement feature for low harmonics, =S 0= g%c 44 5.1

n<Q. This is suggestive, because of the scale separation & _eweopZﬁ v (5.9)

between the length of the bunch and the hard-core seale,

<o. For the liquid phase, a similar analysis applies. Werhjs result agrees with Larmor’s well-known formula for the
need to replace the ter®Rj in Eq. (3.1) with R$®, and  total radiated power of a single charge in the nonrelativistic
similar considerations will lead to the conclusion that we getimit [13]. We introduce the parametsr= B7y. It character-
the same type of enhancement of the low harmonics due t@es the three relativistic regimes important for the discus-
bunching, sion in this paper: Nonrelativistics&1), relativistic &
g, bund iq 5 ~1), and ultrarelativistic $=>1). With the help of the total
(g "N =(ga) +N(N=1)exp(—n?c?). (4.4  power(5.1) we define the normalized power levels
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Since the purpose of this section is to discuss suppression 10°
effects in the total emitted synchrotron-radiation power, we

define the suppression factor

10 10

10°

10
n

FIG. 5. The normalized partial power§” as a function of for

(@ s=0.1, (b) s=1, and(c) s=100. The analytical asymptotic

| (N)

1 (e
= — T@)
a(N, )= NI o Nn; Onlr - (5.3 panels. The arrow ific) points atn=°.
In the case ofN incoherently radiating charges, we have (1) 3(n+1)n2“+1182n72 p<1
a(N,B)=1. A suppression effect corresponds ¢@N, ) " (2n+1)(2n)! ' '

<1. Enhancement of synchrotron radiation corresponds to
a(N,B)>1.
The behavior ofl(!) as a function ofn is the key for ~we obtain
understanding the suppression effect of the total emitted syn-
chrotron power. It is qualitatively different in the three rela-
tivistic regimes(see Fig. 5. Fors<1 we haveg<1 andi (!
decays exponentially in. This is illustrated in Fig. &). It
showsI (" as a function of for s=0.1. Expanding Eq2.2)
to leading order in3, we obtain

T 3(n+1)yVn
" 22n+1)Jmp?

|

ep
B

results(5.5), (5.6), (5.7), and(5.8) are also shown in the respective

(5.9

We verify thatl {¥'~1 in this limit. Using Stirling’s formula,

2n
) , B<1, n>1, (5.9

which proves the exponential decaydp for largen. The
result(5.5) is also shown in Fig. ®). The exponential decay
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for large n persists in the case~1, albeit with a much
smaller decay constant. This is illustrated in Figo)5In this
case we also have an analytical approximation. It is given by
[14]

1/y\ 2n

Bve
1+y

T~ 3Vn
n 4\/;3279/2

The analytical approximatiokb.6) is shown as the dashed
line in Fig. 9b). It describes the numerical data very well.
The same figure also shows that a qualitative change with
respect to the nonrelativistic cafiéig. 5a)] occurs only for
small n, where (" starts with a near-zero slope. In the ul-

trarelativistic caseg>1) the behavior 07&1) changes quali-
tatively. For smalln it shows an initial power-law increase
according tg14]

, 1=vy.n>y3 (5.6

TW~0.78%n18,  y>1,1<n</. (5.7 N T

At n~0.29y® it reaches a maximum and then decays expo-
nentially according tg14]

SIS
~ 3vn 2n
|<1>~—exp< - —) y>1, n>43 (5.8
n 4\/;,)/9/2 3,)/3 e
i . i . . R B 1"= 100
This behavior is illustrated in Fig.() for the cases=100 | — r=10
(full line). The analytical resultg5.7) and (5.8) (dashed oo Asymptotic
lines) are also shown in Fig.(6). They compare well with ! 10 » N % 10 50

the data in the appropriate limits. We now show that the

behavior ofl () in conjunction with the behavior af,, leads
to substantial suppression of synchrotron radiation for cold
beams.

We first discuss the case of a coasting crystallized linear
chain atT=0. It consists ol equispaced particles according
to 6;=2mj/N, j=1,2,...N. For g, we have the result
(3.20. For the suppression factar we obtain in this case

a(N,/s)szZ:ngql,L. (5.9

We saw above that independentlysathe normalized partial
powersTf}) always decay exponentially for large enough 10° Y

~ 1
Thus, there is always aN, such thafl () decays exponen- N x 10°
tially for n>Ng and, therefore, foN> N,

-+ Asymptotic

1.5 2

FIG. 6. Suppression factors for the crystallized chain for three
different plasma parameter§' € 10,100%) in the three relativistic
regimes:(a) s=0.1, (b) s=1, and(c) s=100. The asymptotic the-
oretical curves correspond to Eq5.13), (5.12, and(5.13.

to a very good approximation. But sindé&" decays expo-
nentially for N>Ng, « is exponentially small. In other 3N%? [ep
words, for large enough particle number we obtain exponen- a(N,B)“W(7
tial suppression of synchrotron radiation independently of A7
the relativistic regime of the beam. This result is illustrated

2N
) , s<1, N>1, (5.11

. . X 3N3/2 ,8 e1/7 2N
in Fig. 6 ("= case. It shows the suppression factor for ~ 4 = > +3
. . a(NIB) 2 92 ’ S~11 N>’y 1

s=0.1, 1, and 100 as a function of the particle numiem 4\mp2y 1ty
all three cases we indeed obtain exponential suppression as (5.12
predicted from the structure of E(b.9). o

Using Eq.(5.10 and the above expressions fgr in the a(N,B)~ 3N exn — ﬂ s>1, N>»5.
relevant relativistic regimes, we obtain explicit analytical T4 mp2y 343/’ '

formulas fora(N, 8): (5.13
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Figure 6 shows that the analytical formulas are very goodrherefore, the subrelativistic case is irrelevant as far as sup-
approximations of the numerical data in their respectivepression is concerned. We now turn to the ultrarelativistic
ranges of validity. casey>1. We first consideQ> y®>1. Since, as we saw

Next we consider the linear chain at finite temperature. Irmbove, most of the radiation power is concentrated in the
this case the form factdB.19 applies. Because of the struc- harmonics &=n<0(y®), we obtain also in this regime al-
ture of Eqg.(3.19 and the asymptotic exponential decay of most constructive interference, and consequently

T for largen, we can compute the asymptotic behavior of
n 9 P ymp apna(N,Q: B T)=N, Q>+%>1,  (5.19

a(N,B) for largeN. Using Eq.(3.22, we obtain
meaning no suppression in this case. Also the cade

1 @ o~ >NQ>1 is not interesting from the suppression point of
_ )~ 1)_ : > N9
a(N.B)=g ngl s T~ N giryngl IH=g5MIN view. Considering the form factor of the frozen bunch, Eq.
(4.6), it can be approximated by rectangles of heiyAtand
1 N5 3 - width Q near the harmonics=NQp, wherep is an integer.
~ore NEY (5.14 Sincey®>NQ, the functionl , varies only mildly fromNQp

to NQ(p+1), and therefore the form factor can be replaced

Thus, for largeN and in all three relativistic regimes, the by its averageN. But this average is the same as for the
asymptotic suppression is independenfo&ind saturates at €xtremely hot case, and hence in both extremes we get al-
a=1/(2T"). This behavior is clearly illustrated in Fig. 6, Most the same suppression factor:

which shows the suppression factor 6. 10, 100, ande ) _ 33 .

for all three values of considered. The onset of saturation in @punc N, Q: 8.1)~1,  y*>NQ>1. (5.19

the vicinity of someN= N, is physically clear because of the \yie are left with the regim&lQ> y3>Q>1, in which sup-

following reason. Finitd™ corresponds to a finite tempera- pression effects are possible at all. Simple consideratass

ture, which furthermore corresponds to a finite correlationere ysed aboyeean be used to decompoasin this regime
length of the particles in the linear chain. But since the supxg follows:

pression of the synchrotron radiation is a coherent process, it
is intuitively clear that no further suppression can be wgqenpunchN,Q;B)=~ @iow(N,Q; B) + irozen-crysd NQ; B),

achieved once the total particle number exceeds the correla- (5.18
tion length. Consequently the suppression effect has to satu- o o
rate. where «,,, originates from the contributions of the lower

In Sec. |1l we pointed out that measuring the depth of themodes ’=n=Q and ajozen-crystal IS given by Eq.(5.13.
correlation hole ing® for small values of defines an ex- Since in the regime consideretozen.crysil NQ; 8) <1, the
perimental method for measuring the plasma parameter d¥verall suppression factor will be much smaller than 1 only
the beam. Since the saturation valuexadepends only offr, if aw<l. Using the asymptotic expressi@b.7) for |, in
measuring the suppression factor of coasting beams for largee lower regime, this is equivalent to requiring
N defines yet another experimental procedure for measuring
T. NQ4/3

We now turn to the case of bunched beams, which is very v
important experimentally. We shall consider short bunches

of angular width c=27/Q, Q>1, which consist ofN  Assembling all the requirements, we arrive at the following

charges. The distinctive feature of short bunched beams igonditions under which suppression is important for bunched
that for lower modes there is an enhancement of the synchrgyegms:

tron radiation which is due to the short length of the bunch,
and is independent of the internal structure. This can be seen, Y3\ 43
e.g., by comparing Eq$3.5) and(4.6) for the hot and frozen 6)
cases, respectively: In both cases there is an enhancement
O(N?) for n=<0O(Q). This renders the task of observing sig- From these conditions it is evident that a fairly larges
nificant suppression of the synchrotron radiation more diffi-required in order for the suppression effect to be significant.
cult. Thus we carefully consider in the following a few pa- In Fig. 7 we computeda,,,, as a function ofN for s
rameter regimes in order to identify the ones in which the=100, Qzlo(\/g_l), and various values df. (The choice
suppression effect is prominent. It is helpful to first analyzeof Q was such as to make it a “generic” irrational thus
the frozen =0, maximally correlated compared to the preventing number-theoretical peculiaritiest is evident
very hot (T— <, uncorrelateficase since suppression effects from the figure that indeed the maximal suppression occurs
are maximally manifest in the frozen case. Finite temperaturgvhere predicted by the theory, and that this suppression is
interpolates between the two extremes. In the subrelativistiguite large. It should be noted that in experiments one may
casepB<1, essentially all of the radiation power is concen-start with a hot bunch and cool it down, keeping the angular
trated in the first harmonif¢see Eq.(5.5 and Fig. %a)].  width constant(e.g., by strong bunchingIn that case, the
Thus, forQ>1 there is an almost complete constructive in-observedsuppression factor will bexyync @hot-bunch  BUL
terference and consequently since in the interesting domaid,q.punci= 1, the results pre-
sented in the figure apply also to the actual experimental
apunc N,Q; B8, I')=N, B<1. (5.19  situation.

<1. (5.19

3
>N>%>1, 0>1. (5.20
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chrotron radiation is exponentially small. It should be borne
in mind, however, that synchrotron radiation is not very im-
portant for heavy ion beams that can easily be cooled with
electrons and lasers. Dramatic effects are expected to occur
only for crystallized electrons where the synchrotron radia-
tion is orders of magnitude stronger. The drawback is that
electrons cannot be cooled directly with lasers. We hope,

S 5 however, that this paper will stimulate experimentalists to
develop cooling schemes for electron beams. One possibility
would be to use sympathetic cooling of electrons with a
N e beam of heavy ions that can be cooled by lasers.
.| =100 In this paper we dealt only with one-dimensional crystals,

0 —r=10 l the simplest crystalline structures, and assumed that the stor-
age ring under consideration supports such a crystal. For a

given storage ring with fixed confining forces, however,
there will be a transition to more complicated crystalline

FIG. 7. Suppression factor for the crystallized bunched bean$tructures as the number of particles grows. For example,
[Q=10(y5—1)] for four different plasma parametersT' ( Hasse and Schiffef21] predict that the one-dimensional
=0,10,100%) in the ultrarelativistic regimes=100. The arrows chain will be transformed into a two-dimensional zigzag
point to N=%%/Q andN=(¥°/Q)*3. crystalline structure as the density grows, and a further tran-

sition to three-dimensional helical crystals will follotgee

In this section we dealt exclusively with the crystalline also[22] for computations with realistic storage-ring param-
state. It is also clear by inspection of Fig. 5 and of Figh)2 eters. These expectations were verified by experiments with
that for large enougi, substantial suppression of synchro- @ mini-storage-ring in which the ions are essentially station-
tron radiation can be achieved fiimuid beams. This, again, ary [23]. Dealing with structures more complicated than the
is important since modern electron coolers are close to proene-dimensional crystalline chain goes beyond the scope of
viding a liquid beam of electrons. Thus it may soon be posthe current study and requires further work.
sible to check our theory with the help of liquid electron  This paper discusses various forms of ordered beams that

10 10* 10

N

beams. may occur in practice: Gaseous, liquid and crystalline, coast-
ing, and bunched. It is pointed out that the suppression effect
V1. DISCUSSION, SUMMARY, AND CONCLUSIONS occurs on two levels: In the form factor of the beam and in

the total radiated power. While the modifications in the form

The suppression of the radiation of geometrically orderedactor may be used as a diagnostic tool for inferring the
charges was first noticed by Thoms@20]. He employed thermodynamic state of the beam, the suppression of the to-
this effect for motivating the stability of atoms, which, ac- tal power may eventually lead to the construction of small-
cording to classical theory, should radiate and decay. Sugsized cyclic electron accelerators.
pression of synchrotron radiation in the context of accelera-
tors was first noted by SchiffLl2]. But in Schiff's time, a
mechanism for establishing the order in a beam of charged
particles was not available. Only recently, with progress in H.P. is grateful to MINERVA for financial support. R.B.
the cooling of beams by electrons and lasers, was it possiblie grateful for financial support by the Deutsche For-
to envision the production of crystallized beams whose synschungsgemeinschatft.
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