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Synchrotron radiation of crystallized beams
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Department of Physics, Wesleyan University, Middletown, Connecticut 06459-0155
~Received 29 October 1998; revised manuscript received 19 January 1999!

We study the modifications of synchrotron radiation of charges in a storage ring as they are cooled. The pair
correlation lengths between the charges are manifest in the synchrotron radiation and coherence effects exist
for wavelengths longer than the coherence lengths between the charges. Therefore, the synchrotron radiation
can be used as a diagnostic tool to determine the state~gas, liquid, crystal! of the charged plasma in the storage
ring. We show also that the total power of the synchrotron radiation is significantly reduced for crystallized
beams, both coasting and bunched. This opens the possibility of accelerating particles to ultrarelativistic
energies using small-sized cyclic accelerators.@S1063-651X~99!07407-3#

PACS number~s!: 29.20.2c, 29.27.2a, 41.75.2i, 41.60.Ap
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I. INTRODUCTION

Ion-beam crystallization is an exciting and relatively ne
field of physics in which a new state of matter is soug
Namely, ions which rapidly circulate in a storage ring a
are cooled are expected to form geometrically ordered st
tures~crystals! which have a density much smaller than no
mal crystalline solids@1,2#. Although great effort is currently
invested in achieving such crystals@2–5#, there is still no
clear-cut experimental evidence for them. It is hoped, ho
ever, that crystalline beams will be produced in the n
future.

Synchrotron radiation, on the other hand, is a very w
established field of physics that has been investigated
tinuously from the early days of particle accelerators. Ma
synchrotron sources are operating around the world@e.g.,
DESY ~Hamburg, Germany!, NSLS ~Brookhaven, USA!,
KEK ~Tsukuba, Japan!#, and many applications already exi
@6#.

It is the purpose of this paper to establish a link betwe
beam crystallization and synchrotron radiation. This link
twofold:

~i! To use synchrotron radiation and modifications ther
in order todetectthe creation and existence of beam crysta
This is required since for fast beams direct detection meth
are difficult to implement@2#. Thus synchrotron radiation ca
be used as an indirect diagnostic method to detect the for
tion of beam crystals. The diagnostic methods discussed
low are also applicable to liquid and gaseous beams.

~ii ! Even more importantly, once beam crystals a
formed, they can be used tomodifythe synchrotron radiation
with respect to the ordinary incoherent case. Therefore,
can achieve dramatic suppression and enhancement e
of synchrotron radiation using crystallized beams@7#. In par-
ticular, the total power that is radiated from an equispa
circulating chain of particles is much smaller~in the appro-
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priate limits@7#! than the radiation from the same number
randomly located particles. This opens the possibility for
celerating particles to ultrarelativistic energies with little r
diation loss, which is currently the main limitation of circula
electron accelerators. Thus the suppression of synchro
radiation by beam crystallization may eventually lead to
construction of smaller-sized circular electron accelerato

In the following we shall detail the connection betwe
beam crystals and synchrotron radiation. It is important
emphasize that currently researchers are trying to ob
beam crystals of heavy ions that can be cooled with electr
and lasers. For heavy ions, however, the synchrotron ra
tion is small. Even for protons, e.g., the lightest of t
‘‘heavy ions,’’ the synchrotron radiation is about a factor
10213 smaller than for electrons with the same energy. Th
we expect that realistically the effects predicted in this pa
will be important only for liquid or crystallized electron
beams. This, however, poses the challenge of obtaining c
tallized electron beams. Thus we hope that the ideas
forward in this paper will motivate experimentalists to wo
towards obtaining crystallized electron beams. In any ca
however, the analysis presented below applies to any spe
of charged particles. Thus the theory can in principle be v
fied for ion-beam crystals. Also we stress from the outset t
the effects discussed below go beyond what is known
‘‘coherent synchrotron radiation’’ which is the coherent e
hancement of synchrotron radiation of small electr
bunches for wavelengths that are longer than the bunch
~see, e.g.,@8–11# and Sec. IV below!.

The paper is structured in the following way. In Sec. II w
discuss the general theory that underlies the suppression
enhancement effects of synchrotron radiation. In Sec. III
theory is applied to the three phases of a coasting char
particle beam that occur in practice: gaseous, liquid, a
crystal. In Sec. IV the necessary modifications of the the
for a bunched beam are discussed. In Sec. V we pre
analytical and numerical results concerning the suppres
of synchrotron radiation by crystalline beams, both coast
and bunched. Finite temperature effects are discussed ex
itly. In Sec. VI we discuss our results and conclude the pa
957 ©1999 The American Physical Society
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with proposals for experimental applications of the effe
discussed in this paper.

II. GENERAL THEORY

We considerN charged particles with chargeq circulating
in a circular storage ring of radiusr with velocity v. The
charges are assumed to be coherent with a reference c
lating charge, but are allowed to have constant time lagsDt j

as well as constant spatial displacementsDrW j from the refer-
ence orbit. According to the theory of radiation of movin
sources, the total power that is emitted from theN charges is
given by @12,13#

I (N)5 (
n51

`

gnI n
(1) , ~2.1!

where I n
(1) is the power that is emitted with frequencyvn

[nv5nv/r due to a single circulating particle, andgn is
the form factor of the beam. The explicit expression forI n

(1)

is @14#

I n
(1)5

q2cb

2pe0g2r2 Fb2g2nJ2n8 ~2nb!2n2E
0

b

J2n~2nj!djG ,
~2.2!

whereb[v/c, c is the speed of light,g[1/A12b2, andJn
are the ordinary Bessel functions@15#. The form factor is
given by

gn5U(
j 51

N

exp~ inf j !U2

5 (
j , j 851

N

exp@ in~f j2f j 8!#

~2.3!

and the anglesf j are given by@16#

f j5vDt j1
b

r
nW •DrW j , ~2.4!

wherenW is the unit vector pointing from the center of the rin
to the observation point. We observe that in the form fac
the role of the time delays and the spatial displacement
equivalent. Thus we restrict ourselves hereafter to time
lays only. This simplifies the calculations and yields quali
tively the same results. It is also compatible with the curr
experimental trend according to which linear ion cryst
~one-dimensional crystals! are sought. We shall denote th
phase differences in the following byu j[vDt j .

Suppose now that we treat the quantitiesu i as random
variables distributed according to the normalized probabi
density P(u1 , . . . ,uN). Then the expectation value of th
total power is

^I (N)&5 (
n51

`

^gn&I n
(1) , ~2.5!

where
s

cu-

r,
is
e-
-
t

s

y

^gn&5E
0

2p

du1•••duNP~u1 , . . . ,uN!

3 (
j , j 851

N

exp@ in~u j2u j 8!#. ~2.6!

This can be rewritten as

^gn&5E
22p

12p

dDeinDR2~D!, ~2.7!

where

R2~D![E
0

2p

du1•••duNP~u1 , . . . ,uN!

3 (
j , j 851

N

d@D2~u j2u j 8!# ~2.8!

is the two-point correlation function, i.e., the~non-
normalized! chance of finding a pair ofu ’s a distanceD
apart. Therefore, we conclude that the crucial quantity t
determines the modifications of synchrotron radiation due
coherence effects isR2, our main object of study. The phys
ics of the particle beam~temperature, structure! is reflected
in R2 and is consequently linked to modifications of the sy
chrotron radiation.

Before applying the above formulas, we make some f
ther simple manipulations. To avoid complications with t
2p periodicity, we define

R̂2~D![2@R2~D!1R2~2p2D!#. ~2.9!

Using the relationR2(D)5R2(2D), easily derived from Eq.
~2.8!, we obtain

^gn&5E
0

p

dD cos~nD!R̂2~D!. ~2.10!

This can finally be recast as

^gn&5N1E
0

p

dD cos~nD!R̃2~D!, ~2.11!

where R̃2(D), defined in@0,p#, is the two-point correlator
that does not include the ‘‘diagonal’’ part 2Nd(D), emerg-
ing from the j 5 j 8 terms ofR2.

An important special case is the case of independent
ticles, i.e.,

P~u1 , . . . ,uN!5)
j 51

N

P1~u j !, ~2.12!

where P1 is the ~normalized! one-point density of the par
ticles. For this case the resulting form factor is
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PRE 60 959SYNCHROTRON RADIATION OF CRYSTALLIZED BEAMS
^gn&5N1N~N21!U E
0

2p

duP1~u!einuU2

. ~2.13!

III. APPLICATION TO COOLED PARTICLE BEAMS

In the following we shall study a few representative si
ations of a particle beam as it is being cooled and crys
lized. We shall qualitatively infer the form of the two-poin
correlatorR̃2 for each of the cases, and calculate the res
ing form factor of the synchrotron radiation. Thus the foc
in this section is on the spectral modifications of the synch
tron radiation expressed by the behavior of^gn&. We shall
show that the modifications of̂gn& as the temperature i
lowered define an excellent tool for the diagnostics of
thermodynamic state of the beam. The modifications du
bunching are considered in Sec. IV. The suppression of
total emitted power is discussed in Sec. V.

We start with a very hot particle beam. In such a case,
expect the particles to be completely independent. Theref
Eqs.~2.12! and~2.13! apply. For a particle beam that fills th
whole ring ~coasting beam!, we expect on the basis of sym
metry a uniform distribution

P1~u!5
1

2p
. ~3.1!

The form factor becomes

^gn&5N, n51,2, . . . . ~3.2!

Thus, for a hot coasting beam,

^I (N)&5NI (1). ~3.3!

This is what we expect from totally incoherent radiation ofN
particles.

For beams that are bunched, a typical shape is a Gaus
The resulting density is

P1~u!5
1

A2ps2 (
m52`

1`

expF2
~u2u012pm!2

2s2 G ,

~3.4!

whereu0 is the location of the center of the bunch ands is
its angular width. The summation overm is to ensure the 2p
periodicity. Foru0@s, 2p2u0@s, only them50 compo-
nent in Eq.~3.4! is significant. The resulting form factor is

^gn&5N1N~N21!exp~2n2s2!. ~3.5!

In the bunched case, therefore, in addition to the incohe
term N, we also obtain a term that represents the cohe
synchrotron radiation for low harmonicsn&1/s. One ob-
tains qualitatively the same results for other shapes of
bunch@17,18#.

The above results are well-known and form the basis
the field of ‘‘coherent synchrotron radiation’’ in which en
hancement of the radiation is predicted@8,12,16,17# and ex-
perimentally measured@9–11# due to the collection of the
charges~electrons! into small bunches. In our case this a
-
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plies to the limiting case of a bunched but very hot beam
particles in which the particles within the bunch are unc
related.

In the following we shall introduce the correlations b
tween the particles as the beam is cooled and use the
expressions~2.5!–~2.11! rather than Eq.~2.13!. These corre-
lations are neglected in the field of coherent synchrotron
diation since the beam is assumed to be very hot. But
correlations become more and more important as the bea
being cooled. To simplify the treatment, we focus in th
section on coasting beams. In Sec. IV we introduce the n
essary modifications to describe bunched beams.

If the temperature of the beam is moderately high,
expect that the particles start to show repulsion from e
other. That is, they will avoid the vicinity of each other du
to the Coulomb repulsion and act like a nonideal ‘‘gas
This can be described phenomenologically by

R̃2
gas~D!5c1R̃2

0~D!F12 expS 2
D2

2a2D G , ~3.6!

where

R̃2
0~D!5

N~N21!

p
, 0<D<p ~3.7!

is the trivial two-point correlator for a uniformly coastin
beam of independent particles anda is the ~angular! ‘‘hard-
core’’ scale of repulsion. Interpreting Eq.~3.6!, we modified
R̃2

0 by a narrow ‘‘dip’’ of width a nearD50 ~the ‘‘correla-

tion hole’’! such thatR̃2(0)50 ~total repulsion atD50).
The constantc1 is for normalization. It is approximately (1
2a/A2p)21 for small values ofa (a!p). Actually, since
we are still in the high-temperature regime, we need to
sume thata!2p/N[du , i.e., the hard-core repulsion occu
on scales smaller than the mean distance between the
ticles. ForN@1, which is the interesting case here, the tw
conditions ona are consistent. We note thata depends on the
temperature and increases as the temperature decrease
a!1 we obtain the following form factor:

^gn
gas&5N2

N~N21!a

A2p
expS 2

n2a2

2 D , n51,2, . . . .

~3.8!

Since the form factor is a non-negative quantity, we imm
diately infer an upper limit ona:

a&
A2p

N
5

du

A2p
. ~3.9!

This result is intuitively clear since the hard core cannot
larger than the mean distance of the particles. It is also c
patible with the assumptions above concerninga. Physically,
we observe that there is asuppressionof the synchrotron
radiation for n&1/a ~lower harmonics!. We can therefore
estimate the hard-core scale~and hence the temperature!
from the coherent modifications of the synchrotron radiat
for the gaslike state of the particle beam. We note that
overall suppression effect is small. For smalln values, where
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960 PRE 60HAREL PRIMACK AND REINHOLD BLÜMEL
the reduction of the emitted power is largest, the relat
suppression with respect to the incoherent case amoun
only

U^gn
gas&2N

N
U' A2pa

du
!1. ~3.10!

The situation is illustrated in Fig. 1.
When the temperature becomes smaller such that the C

lomb energy is comparable to the thermal energy, we exp
the particle beam to become somewhat ordered and to fo
liquidlike plasma. The partial order is a precursor to cryst
lization. In particular, the~angular! distance on which the
repulsion between particles is manifest isdu , and the order
effects should persist over a few mean distances. The t
point correlator is qualitatively given by

R̃2
liq~D!5c2R̃2

0~D!F12
sin2~pD/du!

~pD/du!2 G , ~3.11!

wherec2'(121/N)21 is a normalization factor. As before
we assumeN@1. The above two-point correlator displays
strong repulsion for small distances@R̃2

liq(0)50# as well as
oscillations that persist for a few mean distances. It even

FIG. 1. The two-point correlator~a! and the form factor~b! for
the ‘‘gaseous’’ state of the beam, described by Eqs.~3.6! and~3.8!,
respectively. We used the parametersa5du /10, N5100.
e
to

u-
ct
a

l-

o-

u-

ally reaches the asymptotic limit of uncorrelated particl
Thus it represents an intermediate situation~‘‘liquid’’ ! be-
tween the slight mutual repulsion~‘‘gas’’ ! treated above and
long-range order~‘‘crystal’’ ! discussed below. The above e
pression was obtained as a result of an exact calculation f
one-dimensional chain of particles with logarithmic repu
sion by Dyson in the context of random matrix theory@19#.
The resulting form factor is

^gn
liq&5min~n,N!. ~3.12!

Thus, the suppression effect is very prominent in this sit
tion, and there is effectively complete suppression of
synchrotron radiation for small values ofn ~see also Fig. 2!.
In terms of a wavelength, the suppression is felt for wa
lengths that are comparable to or longer than the mean
tance between the particles. Comparing Eqs.~3.8! and~3.12!,
we conclude that as the order becomes more manifest~tem-
perature decreases!, the suppression effect becomes mo
prominent, but the onset of suppression is shifted to lon
wavelengths.

As crystallization takes place, long-range order effects
come important. We consider in the following the simple
crystal, namely the linear chain. To describe the situation,
use a distribution function that corresponds to a thermal

FIG. 2. The two-point correlator~a! and the form factor~b! for
the ‘‘liquid’’ state of the beam, described by Eqs.~3.11! and~3.12!.
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tribution of small displacements around the crystalline st
with only nearest-neighbor interactions taken into acco
for simplicity:

P~u1 , . . . ,uN!5c3 expF2h(
j 51

N

~w j 112w j !
2G .

~3.13!

Here c3 is a normalization constant, h
[(q2N2)/(16p3e0dkBT), T is the temperature, andd
[2pr/N is the mean distance between the charges.
small displacementsw j are defined as follows:

w1[u1 , ~3.14!

w j[~u j2u1!2~ j 21!du , j 52,3, . . . ,N, ~3.15!

wN11[w1 . ~3.16!

The exponenth can be rewritten as

h5S N

2p D 2S typical potential energy

typical kinetic energyD5S N

2p D 2

G,

~3.17!

whereG is the plasma parameter in one dimension@2#,

G5
q2

4pe0dkBT
. ~3.18!

We note that the assumption of only nearest-neighbor in
actions is not severe since for small displacements the in
action with thenth neighbor reduces as 1/n3.

In this case it is easier to obtain the form factor direct
without explicitly calculating the two-point correlator. A
straightforward but lengthy calculation gives the followin
result for the form factor:

^gn
cry&5N12 (

l 51

N21

~N2 l !cosS 2pnl

N DexpF2
n2p2l ~N2 l !

GN3 G .

~3.19!

In order to obtain the above result, we assumedG@1, i.e., a
cold beam. This is a necessary condition for crystallizati
In order to interpret this result, we consider two limitin
cases. If the maximal exponent in Eq.~3.19! ~as a function of
l ), given byn2p2/(4GN), is much smaller than 1, we ca
replace the exponential in Eq.~3.19! with 1 and get

^gn
cry&'H N2, N divides n,

0 otherwise.
~3.20!

This means that for very cold crystals there is a total s
pression of the radiation for all harmonics, except the o
that are divisible by the number of particlesN. For these
special harmonics we get total constructive interference.
suppression of the leading harmonics results in an enorm
reduction of thetotal power emitted by the synchrotron ra
diation ~see Sec. V!. In case crystallized electron beams c
be produced, this effect gives rise to the possibility of s
nificantly reducing the synchrotron radiation, currently t
main limitation for circular electron accelerators. We me
e
t

e

r-
r-

,

.

-
s

e
us

-

-

tion in passing that the result~3.20! can also be obtained
directly from calculating the form factor for a complete
frozen crystal@7,12,13#. The other limit of Eq.~3.19! is for
the first exponential factor (l 51) to be already small, such
that only the first term needs to be considered. That is,
n2p2/(GN2)@1, we obtain

^gn
cry&'N12N cosS 2pn

N DexpS 2
n2p2

GN2 D , ~3.21!

which describes small ‘‘ripples’’ over the incoherent radi
tion, with a decaying amplitude that has oscillations w
periodN. In Fig. 3 we plot the numerically computed form
factor ~3.19! for the specific casesN5106,G5101,102,106.
For G5106 we see a series of sharp peaks located atn/N
51,2, . . . .This is expected since in this caseG is very large
and thus Eq.~3.20! holds approximately for the range ofn
shown in Fig. 3. For smaller values ofG we observe a tran-
sition from sharp peaks to decaying ripples. Even in the c
G5106 the sharp peaks will eventually die away.

The depression ofgn
cry at n'1 can be computed analyti

cally. Expanding the exponential factor in Eq.~3.19! to first
order in 1/G, we obtain

1

N
g1

cry'
1

2G
. ~3.22!

This is in perfect agreement with the results displayed in F
3.

The above results concerning the crystalline state indic
that the plasma parameterG can be determined from th
form factor of the synchrotron radiation~provided N is
known!. This defines a usefuldiagnostictool for measuring
the temperature of the crystal. We also conclude that crys
line beams can beapplied to selectively suppress and en
hance harmonics of the radiation, achieving up to total s
pression (gn50) or total constructive interference (gn
5N2).

To summarize this section, we have shown that the s
chrotron radiation and its modifications with respect to t

FIG. 3. The form factor for the crystalline state of the bea
described by Eq.~3.19!. We considered the casesN5106,G
5101,102,106.
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962 PRE 60HAREL PRIMACK AND REINHOLD BLÜMEL
incoherent state are strongly connected with the phys
state of the beam. The form factor reflects the import
scales and can be used to diagnose the state of the b
~‘‘gas,’’ ‘‘liquid,’’ ‘‘solid’’ ! as well as its temperature.

IV. MODIFICATIONS FOR BUNCHED BEAMS

Experimentally it is sometimes useful to work wit
bunched beams in which the particles occupy only a sm
fraction of the ring. Thus we consider in this section t
modifications of the above theory for bunched beams. Th
modifications are straightforward. It turns out that only t
lowest harmonics@up ton'2p/ ~bunch angular length!# are
affected. Qualitatively this can be understood by examin
Eq. ~2.6!, since the bunching will be felt only for values ofn
such thatn(u j2u j 8)&2p. This yields the above estimate. I
the following we detail the theory quantitatively.

We start with the gaseous phase and consider a na
bunch of N particles with an~effective! angular widths
[2p/Q, Q@1. In order to be specific, we shall assume th
the shape of the bunch is a Gaussian, and that the~one-point!
charge density is given by Eq.~3.4! above. In the absence o
correlations, the two-point correlation function of the Gau
ian bunch~GB! reads

R̃2
GB~D!5

N~N21!

Aps2 (
m52`

1`

expF2
~D12pm!2

4s2 G ,

~4.1!

from which we calculate the form factor~3.5!. In order to
include the hard-core repulsion between the charges, we
erate as in the coasting case and modifyR̃2

GB with a narrow
dip,

R̃2
gas, bunch~D!5c4R̃2

GB~D!F12 expS 2
D2

2a2D G . ~4.2!

As before,c4'1 to leading order inN. When calculating the
form factor, the first term in the brackets gives Eq.~3.5!. For
the second term, we can useR̃2

GB'1 since we assumeda
!s. Hence, we obtain

^gn
gas, bunch&5N2

N2a

A2p
expS 2

n2a2

2 D
1N~N21!exp~2n2s2!

5^gn
gas&1N~N21!exp~2n2s2!. ~4.3!

That is, the form factor of the gaseous coasting beam c
tains an additional enhancement feature for low harmon
n&Q. This is suggestive, because of the scale separa
between the length of the bunch and the hard-core scala
!s. For the liquid phase, a similar analysis applies. W
need to replace the termR̃2

0 in Eq. ~3.11! with R̃2
GB, and

similar considerations will lead to the conclusion that we
the same type of enhancement of the low harmonics du
bunching,

^gn
liq, bunch&5^gn

liq&1N~N21!exp~2n2s2!. ~4.4!
al
t
am

ll

se

g

w

t

-

p-

n-
s,
on

e

t
to

For the crystalline state~linear chain! with finite tempera-
ture we model the bunch by adding two limiting ‘‘ficticious
charges at both ends of the bunch. These charges are sta
ary with respect to the bunch’s reference frame. They do
radiate and serve only for confinement. To make the ca
lations tractable, we assume only nearest-neighbor inte
tions. Lengthy but straightforward calculation yields th
form factor

^gn
cry, bunch&5N12 (

l 51

N21

~N2 l !cos~nldu!

3expF2
n2du

2l ~N112 l !

4G~N11!
G . ~4.5!

For small values ofn we replace the exponents by 1 an
obtain

^gn
cry, bunch&'

sin2~pn/Q!

sin2@pn/~QN!#
, ~4.6!

which is the form factor of a frozen linear crystalline bunc
In particular, it exhibits an enhancement for the low harmo
icsn&Q. If n is so large that only the first term is significan
we essentially recover the result~3.21!. Results for the case
N55A23103, Q5100A2, and G5101,102 are shown in
Fig. 4. The parameters were chosen such thatdu is the same
as for the coasting case. We observe that significant enha
ment indeed occurs for the lower harmonics, which is ess
tially independent of the temperature as suggested by
~4.6!. Otherwise, the form factor~normalized by the numbe
of charges! is the same as for the coasting case.

To summarize this section, we investigated the modifi
tions that result from the bunching of the particle beam.
all cases, we found that a significant enhancement occurs
the low harmonicsn&Q. Otherwise, we get qualitatively th
same results as for a coasting beam.

V. TOTAL POWER

In Secs. III and IV we concentrated on a discussion of
form factorgn of the beam. We showed that important info
mation on the thermodynamic state of the beam is alre
contained ingn . The total emitted power, however, the su
ject of this section, depends on the interplay betweengn and
the partial power levelsI n

(1) of a single radiating charge@see
Eq. ~2.1!#. The total powerI (1) of a single radiating charge i
given by

I (1)5 (
n51

`

I n
(1)5

q2c

6pe0r2 b4g4. ~5.1!

This result agrees with Larmor’s well-known formula for th
total radiated power of a single charge in the nonrelativis
limit @13#. We introduce the parameters5bg. It character-
izes the three relativistic regimes important for the disc
sion in this paper: Nonrelativistic (s!1), relativistic (s
'1), and ultrarelativistic (s@1). With the help of the total
power ~5.1! we define the normalized power levels



si
w

ve

sy
a-

ed

e

PRE 60 963SYNCHROTRON RADIATION OF CRYSTALLIZED BEAMS
Ĩ n
(1)[

I n
(1)

I (1)
. ~5.2!

Since the purpose of this section is to discuss suppres
effects in the total emitted synchrotron-radiation power,
define the suppression factor

a~N,b![
I (N)

NI (1)
5

1

N(
n51

`

gnĨ n
(1) . ~5.3!

In the case ofN incoherently radiating charges, we ha
a(N,b)51. A suppression effect corresponds toa(N,b)
,1. Enhancement of synchrotron radiation corresponds
a(N,b).1.

The behavior ofĨ n
(1) as a function ofn is the key for

understanding the suppression effect of the total emitted
chrotron power. It is qualitatively different in the three rel
tivistic regimes~see Fig. 5!. Fors!1 we haveb!1 andĨ n

(1)

decays exponentially inn. This is illustrated in Fig. 5~a!. It
showsĨ n

(1) as a function ofn for s50.1. Expanding Eq.~2.2!
to leading order inb, we obtain

FIG. 4. The form factor for the crystalline state of a bunch
beam described by Eq.~4.5!. We considered the casesN55A2
3103, Q5100A2, G5101 ~upper plot!, G5102 ~lower plot!.
on
e

to

n-

Ĩ n
(1)'

3~n11!n2n11

~2n11!~2n!!
b2n22, b!1. ~5.4!

We verify thatĨ 1
(1)'1 in this limit. Using Stirling’s formula,

we obtain

Ĩ n
(1)'

3~n11!An

2~2n11!Apb2S eb

2 D 2n

, b!1, n@1, ~5.5!

which proves the exponential decay ofĨ n
(1) for largen. The

result~5.5! is also shown in Fig. 5~a!. The exponential decay

FIG. 5. The normalized partial powersĨ n
(1) as a function ofn for

~a! s50.1, ~b! s51, and ~c! s5100. The analytical asymptotic
results~5.5!, ~5.6!, ~5.7!, and~5.8! are also shown in the respectiv
panels. The arrow in~c! points atn5g3.
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for large n persists in the cases'1, albeit with a much
smaller decay constant. This is illustrated in Fig. 5~b!. In this
case we also have an analytical approximation. It is given
@14#

Ĩ n
(1)'

3An

4Apb2g9/2 S bge1/g

11g D 2n

, 1&g,n@g3. ~5.6!

The analytical approximation~5.6! is shown as the dashe
line in Fig. 5~b!. It describes the numerical data very we
The same figure also shows that a qualitative change
respect to the nonrelativistic case@Fig. 5~a!# occurs only for
small n, where Ĩ n

(1) starts with a near-zero slope. In the u

trarelativistic case (s@1) the behavior ofĨ n
(1) changes quali-

tatively. For smalln it shows an initial power-law increas
according to@14#

Ĩ n
(1)'0.78g24n1/3, g@1,1!n!g3. ~5.7!

At n'0.29g3 it reaches a maximum and then decays ex
nentially according to@14#

Ĩ n
(1)'

3An

4Apg9/2
expS 2

2n

3g3D , g@1, n@g3. ~5.8!

This behavior is illustrated in Fig. 5~c! for the cases5100
~full line!. The analytical results~5.7! and ~5.8! ~dashed
lines! are also shown in Fig. 5~c!. They compare well with
the data in the appropriate limits. We now show that
behavior ofĨ n

(1) in conjunction with the behavior ofgn leads
to substantial suppression of synchrotron radiation for c
beams.

We first discuss the case of a coasting crystallized lin
chain atT50. It consists ofN equispaced particles accordin
to u j52p j /N, j 51,2, . . . ,N. For gn we have the resul
~3.20!. For the suppression factora we obtain in this case

a~N,b!5N (
m51

`

Ĩ mN
(1) . ~5.9!

We saw above that independently ofs the normalized partia
powers Ĩ n

(1) always decay exponentially for large enoughn.

Thus, there is always anN0 such thatĨ n
(1) decays exponen

tially for n.N0 and, therefore, forN.N0,

a'NĨN ~5.10!

to a very good approximation. But sinceĨ n
(1) decays expo-

nentially for N.N0 , a is exponentially small. In othe
words, for large enough particle number we obtain expon
tial suppression of synchrotron radiation independently
the relativistic regime of the beam. This result is illustrat
in Fig. 6 (G5` case!. It shows the suppression factor fo
s50.1, 1, and 100 as a function of the particle numberN. In
all three cases we indeed obtain exponential suppressio
predicted from the structure of Eq.~5.9!.

Using Eq.~5.10! and the above expressions forĨ n in the
relevant relativistic regimes, we obtain explicit analytic
formulas fora(N,b):
y

th

-

e

d

r

n-
f

as

l

a~N,b!'
3N3/2

4Apb2 S eb

2 D 2N

, s!1, N@1, ~5.11!

a~N,b!'
3N3/2

4Apb2g9/2S bge1/g

11g D 2N

, s&1, N@g3,

~5.12!

a~N,b!'
3N3/2

4Apb2g9/2
expS 2

2N

3g3D , s@1, N@g3.

~5.13!

FIG. 6. Suppression factors for the crystallized chain for th
different plasma parameters (G510,100,̀ ) in the three relativistic
regimes:~a! s50.1, ~b! s51, and~c! s5100. The asymptotic the-
oretical curves correspond to Eqs.~5.11!, ~5.12!, and~5.13!.
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Figure 6 shows that the analytical formulas are very go
approximations of the numerical data in their respect
ranges of validity.

Next we consider the linear chain at finite temperature
this case the form factor~3.19! applies. Because of the struc
ture of Eq.~3.19! and the asymptotic exponential decay
Ĩ n

(1) for largen, we can compute the asymptotic behavior
a(N,b) for largeN. Using Eq.~3.22!, we obtain

a~N,b!5
1

N (
n51

`

gn
cryĨ n

(1)'
1

N
g1

cry(
n51

`

Ĩ n
(1)5g1

cry/N

'
1

2G
, N@g3. ~5.14!

Thus, for largeN and in all three relativistic regimes, th
asymptotic suppression is independent ofN and saturates a
a51/(2G). This behavior is clearly illustrated in Fig. 6
which shows the suppression factor forG510, 100, and̀
for all three values ofs considered. The onset of saturation
the vicinity of someN5Nc is physically clear because of th
following reason. FiniteG corresponds to a finite tempera
ture, which furthermore corresponds to a finite correlat
length of the particles in the linear chain. But since the s
pression of the synchrotron radiation is a coherent proces
is intuitively clear that no further suppression can
achieved once the total particle number exceeds the cor
tion length. Consequently the suppression effect has to s
rate.

In Sec. III we pointed out that measuring the depth of
correlation hole ingn

cry for small values ofn defines an ex-
perimental method for measuring the plasma paramete
the beam. Since the saturation value ofa depends only onG,
measuring the suppression factor of coasting beams for l
N defines yet another experimental procedure for measu
G.

We now turn to the case of bunched beams, which is v
important experimentally. We shall consider short bunc
of angular width s52p/Q, Q@1, which consist ofN
charges. The distinctive feature of short bunched beam
that for lower modes there is an enhancement of the sync
tron radiation which is due to the short length of the bun
and is independent of the internal structure. This can be s
e.g., by comparing Eqs.~3.5! and~4.6! for the hot and frozen
cases, respectively: In both cases there is an enhance
O(N2) for n<O(Q). This renders the task of observing si
nificant suppression of the synchrotron radiation more d
cult. Thus we carefully consider in the following a few p
rameter regimes in order to identify the ones in which
suppression effect is prominent. It is helpful to first analy
the frozen (T50, maximally correlated! compared to the
very hot (T→`, uncorrelated! case since suppression effec
are maximally manifest in the frozen case. Finite tempera
interpolates between the two extremes. In the subrelativ
caseb!1, essentially all of the radiation power is conce
trated in the first harmonic@see Eq.~5.5! and Fig. 5~a!#.
Thus, forQ@1 there is an almost complete constructive
terference and consequently

abunch~N,Q;b,G!'N, b!1. ~5.15!
d
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Therefore, the subrelativistic case is irrelevant as far as s
pression is concerned. We now turn to the ultrarelativis
caseg@1. We first considerQ@g3@1. Since, as we saw
above, most of the radiation power is concentrated in
harmonics 1<n<O(g3), we obtain also in this regime al
most constructive interference, and consequently

abunch~N,Q;b,G!'N, Q@g3@1, ~5.16!

meaning no suppression in this case. Also the caseg3

@NQ@1 is not interesting from the suppression point
view. Considering the form factor of the frozen bunch, E
~4.6!, it can be approximated by rectangles of heightN2 and
width Q near the harmonicsn5NQp, wherep is an integer.
Sinceg3@NQ, the functionĨ n varies only mildly fromNQp
to NQ(p11), and therefore the form factor can be replac
by its averageN. But this average is the same as for t
extremely hot case, and hence in both extremes we ge
most the same suppression factor:

abunch~N,Q;b,G!'1, g3@NQ@1. ~5.17!

We are left with the regimeNQ@g3@Q@1, in which sup-
pression effects are possible at all. Simple considerations~as
were used above! can be used to decomposea in this regime
as follows:

a frozen-bunch~N,Q;b!'a low~N,Q;b!1a frozen-crystal~NQ;b!,
~5.18!

where a low originates from the contributions of the lowe
modes 1<n&Q and a frozen-crystal is given by Eq. ~5.13!.
Since in the regime considereda frozen-crystal(NQ;b)!1, the
overall suppression factor will be much smaller than 1 o
if a low!1. Using the asymptotic expression~5.7! for Ĩ n in
the lower regime, this is equivalent to requiring

NQ4/3

g4
!1. ~5.19!

Assembling all the requirements, we arrive at the followi
conditions under which suppression is important for bunch
beams:

S g3

Q D 4/3

@N@
g3

Q
@1, Q@1. ~5.20!

From these conditions it is evident that a fairly largeg is
required in order for the suppression effect to be significa
In Fig. 7 we computedabunch as a function ofN for s
5100, Q510(A521), and various values ofG. ~The choice
of Q was such as to make it a ‘‘generic’’ irrational thu
preventing number-theoretical peculiarities.! It is evident
from the figure that indeed the maximal suppression occ
where predicted by the theory, and that this suppressio
quite large. It should be noted that in experiments one m
start with a hot bunch and cool it down, keeping the angu
width constant~e.g., by strong bunching!. In that case, the
observedsuppression factor will beabunch/ahot-bunch. But
since in the interesting domainahot-bunch'1, the results pre-
sented in the figure apply also to the actual experime
situation.
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In this section we dealt exclusively with the crystallin
state. It is also clear by inspection of Fig. 5 and of Fig. 2~b!
that for large enoughN, substantial suppression of synchr
tron radiation can be achieved forliquid beams. This, again
is important since modern electron coolers are close to
viding a liquid beam of electrons. Thus it may soon be p
sible to check our theory with the help of liquid electro
beams.

VI. DISCUSSION, SUMMARY, AND CONCLUSIONS

The suppression of the radiation of geometrically orde
charges was first noticed by Thomson@20#. He employed
this effect for motivating the stability of atoms, which, a
cording to classical theory, should radiate and decay. S
pression of synchrotron radiation in the context of accele
tors was first noted by Schiff@12#. But in Schiff’s time, a
mechanism for establishing the order in a beam of char
particles was not available. Only recently, with progress
the cooling of beams by electrons and lasers, was it poss
to envision the production of crystallized beams whose s

FIG. 7. Suppression factor for the crystallized bunched be
@Q510(A521)# for four different plasma parameters (G
50,10,100,̀ ) in the ultrarelativistic regimes5100. The arrows
point to N5g3/Q andN5(g3/Q)4/3.
.
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chrotron radiation is exponentially small. It should be bor
in mind, however, that synchrotron radiation is not very im
portant for heavy ion beams that can easily be cooled w
electrons and lasers. Dramatic effects are expected to o
only for crystallized electrons where the synchrotron rad
tion is orders of magnitude stronger. The drawback is t
electrons cannot be cooled directly with lasers. We ho
however, that this paper will stimulate experimentalists
develop cooling schemes for electron beams. One possib
would be to use sympathetic cooling of electrons with
beam of heavy ions that can be cooled by lasers.

In this paper we dealt only with one-dimensional crysta
the simplest crystalline structures, and assumed that the
age ring under consideration supports such a crystal. F
given storage ring with fixed confining forces, howeve
there will be a transition to more complicated crystalli
structures as the number of particles grows. For exam
Hasse and Schiffer@21# predict that the one-dimensiona
chain will be transformed into a two-dimensional zigz
crystalline structure as the density grows, and a further tr
sition to three-dimensional helical crystals will follow~see
also@22# for computations with realistic storage-ring param
eters!. These expectations were verified by experiments w
a mini-storage-ring in which the ions are essentially stati
ary @23#. Dealing with structures more complicated than t
one-dimensional crystalline chain goes beyond the scop
the current study and requires further work.

This paper discusses various forms of ordered beams
may occur in practice: Gaseous, liquid and crystalline, co
ing, and bunched. It is pointed out that the suppression ef
occurs on two levels: In the form factor of the beam and
the total radiated power. While the modifications in the fo
factor may be used as a diagnostic tool for inferring t
thermodynamic state of the beam, the suppression of the
tal power may eventually lead to the construction of sma
sized cyclic electron accelerators.
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