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Quantum kinetics and thermalization in a particle bath model
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We study the dynamics of relaxation and thermalization in an exactly solvable model of a particle interacting
with a harmonic oscillator bath. Our goal is to understand the effects of non-Markovian processes on the
relaxational dynamics and to compare the exact evolution of the distribution function with approximate Mar-
kovian and non-Markovian quantum kinetics. There are two different cases that are studied in detail:~i! a
quasiparticle~resonance! when the renormalized frequency of the particle is above the frequency threshold of
the bath and~ii ! a stable renormalized ‘‘particle’’ state below this threshold. The time evolution of the
occupation number for the particle is evaluated exactly using different approaches that yield to complementary
insights. The exact solution allows us to investigate the concept of the formation time of a quasiparticle and to
study the difference between the relaxation of the distribution of bare particles and that of quasiparticles. For
the case of quasiparticles, the exact occupation number asymptotically tends to a statistical equilibrium distri-
bution that differs from a simple Bose-Einstein form as a result of off-shell processes whereas in the stable
particle case, the distribution of particles does not thermalize with the bath. We derive a non-Markovian
quantum kinetic equation which resums the perturbative series and includes off-shell effects. A Markovian
approximation that includes off-shell contributions and the usual Boltzmann equation~energy conserving! are
obtained from the quantum kinetic equation in the limit of wide separation of time scales upon different
coarse-graining assumptions. The relaxational dynamics predicted by the non-Markovian, Markovian, and
Boltzmann approximations are compared to the exact result. The Boltzmann approach is seen to fail in the case
of wide resonances and when threshold and renormalization effects are important.@S1063-651X~99!02107-8#

PACS number~s!: 05.30.2d, 76.20.1q, 72.10.Bg, 72.15.Lh
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I. INTRODUCTION AND MOTIVATION

Recent advances in semiconductor femtosecond spec
copy @1,2# highlight the need for a deeper theoretical und
standing of the relaxational dynamics of hot carriers t
goes beyond Boltzmann kinetics. Boltzmann or semicond
tor Bloch equations, are based on strict energy conserva
and result in a Markovian description as a consequenc
averaging over microscopic time scales. On short ti
scales, the time-energy uncertainty principle comes into p
and off-shell~nonenergy conserving! processes lead to quan
tum kinetic equations with memory effects, i.e., no
Markovian effects.

Ultrafast relaxation in semiconductors are typically stu
ied by exciting a semiconductor sample with a femtosec
laser @3–6#. The subsequent dynamics of the photoexci
carriers is then studied by measuring the optical or trans
properties of the sample at different time delays. These
periments demonstrate the breakdown of Boltzmann kine
for periods less than the optical lattice oscillation peri
~around 115 fs in GaAs@5#! and emphasize the need for
quantum kinetic description of the relaxational dynamics

Motivated by these new developments, there is a
kindled interest on a deeper theoretical understanding
quantum kinetics and critical analysis of transport and

*Electronic address: smast15@vms.cis.pitt.edu
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netic approaches are beginning to emerge@6–29#. In particu-
lar recently the initial stages of pre-equilibration durin
which quasiparticle correlations begin to build had been
vestigated in a many body system@8#. The pre-equilibrium
stage cannot be studied within a Boltzmann approach
cause the early time dynamics depends on the initial pre
ration of the state and is determined by virtual processes
do not conserve energy on short times~off shell!.

Besides semiconductor systems, the interest in quan
kinetics is truly interdisciplinary: in dense plasma@9#,
nuclear matter@8,10,11#, and high-energy physics and co
mology @12–14# to cite but a few applications. For exampl
one of the main goals of the theoretical program associa
with ultrarelativistic heavy ion collisions is to study the d
namical evolution of the highly contracted nuclei after col
sion. The important ingredient in this program is a Marko
ian relativistic transport equations@15–18# whose validity in
the extreme situations envisaged to arise during the e
stages of heavy ion collisions at RHIC and LHC is questio
able at best.

A very powerful method to derive quantum kinetic equ
tions uses the nonequilibrium Green’s functions within t
Keldysh formalism@19# which leads to the Kadanoff-Baym
equations@20#. In order to derive quantum kinetic equation
some assumptions must be invoked. Usually the general
Kadanoff-Baym ansatz@21–26# with renormalized one par
ticle Green’s function propagators@27# is used to relate the
two-time correlation functions with the one-time distributio
function. An alternative approach to derive quantum kine
equations is by truncating the Bogolyubov-Born-Gree
94 ©1999 The American Physical Society



on
ic
p
th

el
dy
ve
tia

n
n

th

n
a
in

ia

u
i

d
n
e
e

r

in
rt
a
th

r-
ro

a
o
tic
io
si

n
he
m

n
m

s
ro
icl
-
is
te
th

ex

en
bu

he
d
he
en
ibu-

o-
he
I

and
tor
na-

-

ri-
ur

s of
ap-
act
tua-

the

ors

to
an-
y
in

re-

m-

-
ac-
he

l-
th
e
g

PRE 60 95QUANTUM KINETICS AND THERMALIZATION IN A . . .
Kirkwood-Yvon ~BBGKY! hierarchy@28,29#.
Although there is ample experimental and numerical c

firmation of kinetics described by Boltzmann or kinet
Bloch equations in processes in which there is a wide se
ration between relaxational and microscopic time scales,
situation for non-Markovian quantum kinetics is less w
understood. An important limitation in the numerical stu
of non-Markovian kinetic equations is the very intensi
computational requirements to analyze integrodifferen
equations with memory@30#. Thus it is important to try to
test relaxation via non-Markovian quantum kinetic equatio
in systems which afford an exact solution. Recently no
Markovian quantum kinetics has been studied within
context of hot electron relaxation@26# in one dimension.
This model affords an exact solution via bosonization a
allows a direct comparison to an approximate kinetic tre
ment. Furthermore, improved transport equations that
clude the effects of correlations leading to a non-Markov
description have been recently proposed@29# and compared
to available exact solutions in low-dimensional models. Th
the current experimental efforts in femtosecond relaxation
semiconductors and the necessity for a deeper understan
of quantum kinetics via non-Markovian transport equatio
justifies the study of model systems that can be solved
actly and thus provide a testing ground for the different typ
of approximations.

The goal of this article is to study the description of the
malization and relaxational dynamics in a simple andexactly
solvablemany body theory to obtain a deeper understand
of the off-shell processes~not energy conserving on sho
time scales! involved in thermalization and to provide
yardstick to test different approximations. The aspects
we seek to study in this article are the following.

~i! How do off-shell effects modify the dynamics of the
malization and relaxation? By off shell we here refer to p
cesses that do not conserve energy on short time scales
threshold effects that are not incorporated in the usual B
zmann equation. These are responsible for quasipar
properties such as widths and wave function renormalizat

~ii ! A detailed understanding of the relaxation of qua
particles versus that of bare and dressed particles and to
plore the definition of a quasiparticle distribution functio
that is valid beyond the narrow width approximation. T
model under consideration also allows us to study the for
tion time of the quasiparticle.

~iii ! A comparison of the validity of Markovian~coarse
grained! approximations including the Boltzmann equatio
to a non-Markovian description of relaxation which is a si
plified form of the Kadanoff-Baym equations.

Although we anticipate that the answer to many of the
questions will in general depend on the details of the mic
scopic model, we propose to study a model of a part
~harmonic oscillator! interacting linearly with a bath of har
monic oscillators. As it will be seen in what follows th
model bears many of the properties of more realistic in
acting systems. By studying different couplings between
particle and the bath, we provide answers to these~and other!
questions and obtain further intuition into more compl
situations.

In Sec. II we introduce the model and discuss the differ
approaches to study the dynamical evolution of the distri
-
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tion function. In Sec. III we analyze the dynamics from t
point of view of the time evolution of an initially prepare
density matrix which allows us to establish contact with t
fluctuation dissipation relation. Here we distinguish betwe
bare particle and dressed particle and quasiparticle distr
tions. The exact solution of the Heisenberg equations of m
tion is presented in Sec. IV. In Sec. V we study in detail t
long time dynamics of the distribution function. In Sec. V
we discuss the exact solution in terms of normal modes
analyze the definition of the quasiparticle number opera
that describes the relaxational dynamics. In Sec. VII we a
lyze theapproximaterelaxational dynamics in terms of~i!
the Boltzmann equation,~ii ! the non-Markovian quantum ki
netic equation, and~iii ! a Markovian approximation to the
quantum kinetic equation. We provide a numerical compa
son of the exact and approximate kinetics in Sec. VIII. O
conclusions are summarized in Sec. IX.

II. THE MODEL

As stated in the Introduction, we seek to study aspect
quantum kinetics in a model that allows us to compare
proximate treatments of the relaxational dynamics to ex
solutions. The model that we choose to describe this si
tion is that of an oscillator of bare frequencyv0 ~represent-
ing the physical mass of the in particle states before
interaction! coupled linearly with a bath with an infinite
number of degrees of freedom given by harmonic oscillat
with frequenciesvk . Although this is a drastic simplification
of microscopic interacting theories, this model continues
serve as a testing ground for studies of dissipation in qu
tum systems@31–37#. Recently, this model was used to stud
dissipation of a particle coupled to electromagnetic field
the dipole approximation@38#.

The Lagrangian is given by

L@q,Qk#5
1

2
~ q̇22v0

2q2!

1
1

2 (
k

~Q̇k
22vk

2Qk
2!2q(

k
CkQk ,

where the different coefficients ofq̇2; Q̇k
2 ~oscillator masses!

had been absorbed by a canonical transformation into a
definition of the couplingsCk . We now refer to the oscillator
q as the ‘‘system,’’ i.e., the degree of freedom whose dyna
ics we are interested in studying, and the oscillatorsQk as
the ‘‘bath,’’ these will be integrated out in the nonequilib
rium effective action. This model also describes the inter
tion of an electron with a phonon or photon bath in t
dipole approximation@36,37#.

We will eventually take the limit in which the bath osci
lators are distributed continuously by introducing the ba
spectral densityJ(v) and where appropriate replacing th
discrete distribution with a continuum one in the followin
manner:

J~v!5
p

2 (
k

Ck
2

vk
d~v2vk!

in such a way that
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(
k

Ck
2f ~vk!→

2

pE dvvJ~v! f ~v!. ~2.1!

Our main goal is to study the evolution of the number
excitations or ‘‘particle distribution’’ associated with th
quanta of the system. Anticipating self-energy renormali
tion effects by the bath, we define a reference frequencV
and introduce the operator that counts the number of qu
of the system’s degrees of freedom associated with this
quency

n̂~ t !5
1

2V
@p2~ t !1V2q2~ t !#2

1

2
, ~2.2!

wherep(t) is the momentum of the particle. The referen
frequency could either be taken to be the bare frequencyv0,
or the frequency renormalized by the interaction with t
bath, we will leave this choice unspecified for the mome

Since the theory is quadratic we can resort to a numbe
different ways to study the dynamical evolution.

~1! Given an initial density matrix we can evolve it i
time exactly and obtain all of the nonequilibrium correlati
functions.

~2! The Heisenberg equations of motion for the operat
can be solved exactly and again we can obtain any corr
tion function.

~3! The normal modes can be found exactly, from whi
we can find theexactground state and also obtain the ope
tors that create the particle or quasiparticle states to study
asymptotic evolution of nonequilibrium states.

~4! We compute exactly the expectation value of the p
posed number operator in the canonical ensemble of the
tem plus bath and compare the result to the asymptotic f
of the nonequilibrium distribution function. This allows a
unequivocal description of thermalization in terms of t
density matrix.

We will pursue all of the above different approache
since each particular method provides different insights
the main goal is to understand this simpler model in detai
provide intuition into more realistic cases.

III. TIME EVOLUTION OF AN INITIAL DENSITY
MATRIX

The first method is to calculate the time evolution of t
reduced density matrixr r(t) of the particle that has bee
prepared at some initial timet i . This can be achieved b
treating the infinite set of harmonic oscillatorsQk as a
‘‘bath’’ and obtaining an influence functional@32–36# by
tracing out the bath degrees of freedom. We assume tha
total density matrix for the particle-bath system decouple
the initial time t i , i.e.,

r~ t i !5rs~ t i ! ^ rR~ t i !,

where rR(t i) is the density matrix of the bath which de
scribes infinite set of harmonic oscillators in thermal equil
rium at a temperatureT and rs(t i) is the density matrix of
the particle which is taken to be that of a harmonic oscilla
in thermal equilibrium at temperatureT0. More complicated
initial density matrices, including correlations between s
f
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tem and bath degrees of freedom can be studied by follow
the methods found in Ref.@33#.

The complete information of nonequilibrium expectatio
values and correlation functions is completely contained
the time-dependent density matrix

r~ t !5U~ t,t i !r~ t i !U
21~ t,t i !

with U(t,t i) the time evolution operator. Real time nonequ
librium expectation values and correlation functions can
obtained via functional derivatives with respect to sources
the generating functional@19,39#

Z@ j 1, j 2#5Tr@U~`,t i ; j 1!r~ t i !U
21~`,t i ; j 2!#/Trr~ t i !,

wherej 6 are sources coupled to the particle coordinate. T
generating functional is readily obtained using t
Schwinger-Keldysh method which involves a path integra
a complex contour in time@19,39#. Real time, nonequilib-
rium Green’s functions are now obtained as functional
rivatives with respect to the sources. There are four type
free propagators@19,39#

^Qk
1~ t !Qk

1~ t8!&52 i Gk
11~ t,t8!

52 i @Gk
.~ t,t8!u~ t2t8!

1Gk
,~ t,t8!u~ t82t !#,

^Qk
2~ t !Qk

2~ t8!&52 i Gk
22~ t,t8!

52 i @Gk
.~ t,t8!u~ t82t !

1Gk
,~ t,t8!u~ t2t8!#,

^Qk
1~ t !Qk

2~ t8!&5 i Gk
12~ t,t8!52 i Gk

,~ t,t8!,

^Qk
2~ t !Qk

1~ t8!&5 i Gk
21~ t,t8!

52 i Gk
.~ t,t8!52 i Gk

,~ t8,t !, ~3.1!

where the signs6 in the above expressions correspond
the fields and sources on the forward (1) and backward
(2) branches and

Gk
.~ t,t8!5

i

2vk
@~11Nk!exp$2 ivk~ t2t8!%

1Nk exp$ ivk~ t2t8!%#,

Gk
,~ t,t8!5

i

2vk
@~11Nk!exp$ ivk~ t2t8!%

1Nk exp$2 ivk~ t2t8!%#,

Nk5
1

exp$bvk%21
. ~3.2!

A. The reduced density matrix

The reduced density matrix,r r(t), is defined as@32–36#

r r~ t !5
TrRr~ t !

TrrR~ t i !
,
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where the subscriptR in TrR refers to tracing over the bat
degrees of freedom. Taking the trace overQk , one obtains
the reduced density matrix in terms of the influence fu
tional @32–36#, F@q1,q2#

r r@q,q8;t#5E dq1dq2r0@q1 ,q2#E Dq1Dq2

3expH i E dt~L0@q1#2L0@q2# !J
3F @q1,q2#, ~3.3!

with the following boundary conditions on the field
q1(t i)5q1 , q1(`)5q; q2(`)5q8, q2(t i)5q2 .
r0@q1 ,q2# is the initial density matrix of the particle and

F @q1,q2#5expH i

2 (
k

Ck
2E dtE dt8

3(
a,b

qa~ t !Gk
ab~ t,t8!qb~ t8!J , a,b51,2,

L0@q6#5
1

2
@~ q̇6!22v0

2~q6!2#.

We will choose the initial density matrix of the particle
be that of an harmonic oscillator of reference frequencyV in
thermal equilibrium at temperatureT0 given by

r0@q1 ,q2#5A 1

2ps
exp$ ipi~q12q2!%

3expH 2
V

2 sinh@b0V#
$@~q12qi !

21~q22qi !
2#

3cosh@b0V#22~q12qi !~q22qi !%J ,

where qi and pi are respectively the average position a
momentum of the particle,b051/T0, and

s5
1

2V
cothFb0V

2 G5
112n~0!

2V
, n~0!5

1

eb0V21
.

The reference frequencyV will allow us to understand
the different features of the dynamics of the dressed par
in the medium, rather than the bare particle with frequen
v0. We will specify this reference frequency below when w
study the dynamics in detail.

Using the Wigner coordinates@32–36# which are defined
as

x~ t8!5
1

2
@q1~ t8!1q2~ t8!#, r ~ t8!5q1~ t8!2q2~ t8!,

~3.4!

the integrals in Eq.~3.3! can be evaluated easily and on
obtains the reduced density matrix
-

le
y

r r@xf ,r f ;t#5
1

2 Ap A~ t !
expH 2

1

2 F s

@g2~ t !#2

1R22~ t !2
B2~ t !

2 A~ t !G r f
22

1

4 A~ t !
xf

2

1 i F ġ~ t !

g~ t !
2

B~ t !

2 A~ t !
G xf r f

1 i F B~ t !

2 A~ t !
@pi g~ t !1qiġ~ t !#2

qi

g2~ t !
G r f

1
1

2 A~ t !
@pig~ t !1qiġ~ t !# xf

2
1

4 A~ t !
@pig~ t !1qi ġ~ t !#2J , ~3.5!

where

A~ t ![
V2 s

2
g2~ t !1

1

2
R11~ t !1

s

2
ġ2~ t !,

B~ t ![
s

g2~ t !
ġ~ t !2R12~ t !,

R11~ t ![E
0

t

dt8E
0

t

dt9 g~ t2t8! K~ t82t9! g~ t2t9!,

R22~ t ![E
0

t

dt8E
0

t

dt9
g2~ t8!

g2~ t !
K~ t82t9!

g2~ t9!

g2~ t !
,

R12~ t ![E
0

t

dt8E
0

t

dt9 g~ t2t8! K~ t82t9!
g2~ t9!

g2~ t !
,

K~ t82t9![(
k

Ck
2

2vk
cothFbvk

2 Gcos@vk~ t82t9!#,

g2~ t8![
ġ~ t ! g~ t2t8!2g~ t ! ġ~ t2t8!

g~ t ! g̈~ t !2ġ2~ t !
. ~3.6!

The dynamics of the reduced density matrix is complet
determined by the functiong(t) which satisfies the following
differential equation:

g̈~ t !1v0
2g~ t !2E

0

t

dt8S~ t2t8!g~ t8!50 ~3.7!

with initial conditions g(0)5g̈(0)50 and ġ(0)51. The
kernel S(t2t8) is the retarded self-energy of the syste
degree of freedom and it is given by

S~ t2t8!5u~ t2t8!(
k

Ck
2

vk
sin@vk~ t2t8!#. ~3.8!
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We will postpone the computation of the functiong(t) to the
next section and we will specify the spectral density for
bath in a later section wherein we will compare exact res
to different approximations.

Having obtained the reduced density matrix, we can n
obtain the expectation values ofq2(t) andp2(t) and to com-
pute the expectation value of the number operator~2.2!,
which after some straightforward algebra is shown to
given by

^n~ t !&52
1

2
1R~ t !1

V

2
~pi

21V2s! g2~ t !

1
~qi

21s!

2 V
g̈2~ t !1

pi
21V2~qi

212s!

2 V
ġ2~ t !

1
piqi

V
@ g̈~ t !1V2g~ t !# ġ~ t !, ~3.9!

where we have introduced the shorthand notation

R~ t ![
1

2 V FR22~ t !12
ġ~ t !

g~ t !
R12~ t !

1S ġ2~ t !

g2~ t !
1V2D R11~ t !G . ~3.10!

The expression forR(t) can be simplified by introducing th
functions

h~v,t ![E
0

t

dt e2 ivt g~t! ,

k~v,t ![E
0

t

dt e2 ivtġ~t! ~3.11!

5 ivh~v,t !1e2 ivtg~ t !. ~3.12!

In terms of these functions,R(t) can be written as

R~ t !5
1

4V (
k

Ck
2

vk
@112N~vk!#@ uk~vk ,t !u2

1V2uh~vk ,t !u2#. ~3.13!

The expectation value of the number operator~3.9! in the
nonequilibrium density matrix has two contributions: o
that is completely determined by the initial state of the s
tem ~proportional topi , qi , s! and the other, determined b
the bath and given byR(t). Detailed understanding of th
particle number relaxation requires the knowledge of the
namical functiong(t) which will be studied in the following
section.

B. Calculating g„t…

Before specifying a choice of the spectral density of
bathJ(v) we can obtain more insight by analyzing the re
time behavior ofg(t) and consequently of̂n(t)& in general.
Having determined the general features of the evolution,
will then specify a particular choice ofJ(v) and provide a
e
ts

w

e

-

-

e
l

e

detailed numerical study comparing with different appro
mations in a later section. In general the spectral den
fulfills

J~v!5H Þ0 for v th,uvu,vc ,

0 otherwise,
~3.14!

wherev th , vc are threshold and cutoff frequencies, respe
tively.

The real time evolution ofg(t) can be obtained by taking
the Laplace transform of Eq.~3.7!. Solving for the Laplace
transform ofg(t), namely,g̃(s), one can show that

g̃~s!5
1

s21v0
21S̃~s!

~3.15!

with the Laplace transform of the retarded self-energy giv
by

S̃~s!52(
k

Ck
2

vk

vk

s21vk
2
→2

2

pE dvJ~v!
v

s21v2
,

~3.16!

where we have taken the limit of a continuum distribution
bath oscillators as given by Eq.~2.1!. The functiong̃(s) in
Eq. ~3.15! is basically the Kadanoff-Baym retarded Green
function in the Laplace variables.

The functiong(t) is then given by the inverse Laplac
transform

g~ t !5
1

2p i EG
estg̃~s!ds, ~3.17!

whereG refers to the Bromwich contour running along th
imaginary axis to the right of all the singularities ofg̃(s) in
the complexs plane. Therefore, we need to understand
analytic structure ofg̃(s) to obtain the real time dynamics o
the particle occupation number.

From the expression~3.16! for the Laplace transform o

the retarded self-energy, we find thatS̃S(s) has cuts along
the imaginarys axis fors5 iv, v th,uvu,vc as can be seen
from

S̃S~s5 iv601!5SR~v!6 iS I~v!

with

SR~v!5
2

p
PE dv8

v8J~v8!

v22v82
, ~3.18!

S I~v!52 sgn~v!E dv8J~v8!v8d~v822v2!

5sgn~v!J~ uvu!. ~3.19!

It is convenient to introduce a renormalized frequency
performing a subtraction of the self-energy. Clearly the s
traction point is arbitrary, and we choose to subtract as
50. We thus introduce the renormalized frequency as
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vR
25v0

21S̃~s50!5v0
22

2

pE dv
J~v!

v
, ~3.20!

and the once subtracted self-energy is given by

S̃S~s!5S~s!2S~s50!5
2

pE0

`

dv
J~v!

v

s2

s21v2
.

Isolated poles ofg̃(s) are at the valuessp which satisfy

sp
21vR

21S̃S~sp!50.

These are purely imaginary when they are below the thre
old frequency of the bath (v th) @see Eq.~3.14!#, correspond-
ing to renormalized exact stablestates of the particle-bat
interacting system.

If the imaginary part of the pole~in the s variable! vp is
above threshold (vp.v th), then the pole is in the secon
~unphysical! Riemann sheet and for weak couplings t
spectral densityS(v), defined below, will feature a Breit
Wigner resonance shape where the width of the resonan

related to the imaginary part of the kernelS̃S and the peak of
the resonance is atvp . The position of these complex pole
can be parametrized in terms of real and imaginary parts

sp5 ivp2G.

These correspond to decaying states and are not eigens
of the interacting Hamiltonian. If the widthG!vp these
long-lived resonances arealmostenergy eigenstates and wi
be identified with the quasiparticles of the interacting syst
in the next section.

Depending on the strength of the coupling with the en
ronmentJ(v) and the value ofvR , the imaginary part of the
pole vp can be above or below the thresholdv th .

~1! The pole is above threshold, i.e.,vp.v th . Since there
are no isolated singularities below threshold, only the
will contribute to the integral~3.17!. The Bromwich contour
G in the complexs plane is chosen as the one shown in F
1~b! where all the singularities ofg̃(s) are to the left of the
contour. Evaluating the integral along this contour, we obt

FIG. 1. The complex contour used to evaluateg(t) for the cases
in which ~a! the pole is below the threshold and~b! the pole is
above threshold.
h-

is

s

tes

-

t

.

n

g~ t !5
2

pEv th

vc
dv S~v!sin~vt !, ~3.21!

where the spectral densityS(v) is given by

S~v!5S I~v!ug̃~s5 iv1e!u2

5
S I~v!

@v22vR
22SR~v!#21@S I~v!#2

. ~3.22!

From the initial conditionġ(0)51 we find the sum rule

2

pEv th

vc
dvS~v!51. ~3.23!

For weak coupling, the spectral density can be appro
mated by a Breit-Wigner resonance and asymptoticallyg(t)
is approximately given by@40#

ġ~ t !;Z cos~vpt1a!e2G t, G;
ZS I~vp!

2vp
,

Z5F12
]SR~v!

]v2 G
v5vp

21

, ~3.24!

with a a constant phase shift@40#. We identify this behavior
with a typical quasiparticle which acquires a width throu
medium effects and whose residue at the quasiparticle p
i.e., the wave function renormalization constant, is sma
than one as a consequence of the overlap between the i
bare particle state and the continuum of the bath. This in
pretation will be further clarified when we study the exa
normal modes in the next section.

~2! There is only a single isolated pole below the cut.In
this case, there are two contributions to the integral~3.17!;
the pole contribution and the cut contribution. In this case
find

ġ~ t !5Z cos~vpt !1
2

pEv th

vc
dv vS~v!cos~vt !, ~3.25!

where we define the wave function renormalizationZ as in
Eq. ~3.24! above,

Z5F12
]SR~v!

]v2 G
v5vp

21

. ~3.26!

Asymptotically at long time, the cut contribution vanish
with a power law determined by the behavior ofS(v) near
threshold@40#, and g(t) oscillates with the pole frequenc
vp . Just as in the previous case, the bare particle has b
dressed by the bath, and to distinguish from the bare or q
siparticle we call this state the dressed particle. The posi
of the dressed particle pole has been shifted and its resid
smaller than one as a result of the overlap with the c
tinuum of states of the bath.

From the initial conditionġ(0) 5 1, we derive the impor-
tant sum rule
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Z1
2

pEv th

vc
dv vS~v!51. ~3.27!

Both cases of the sum rule~3.23! and ~3.27! are a conse-
quence of the canonical commutation relations@20#. Since
the spectral densityS(v) is positive semidefinite, the abov
sum rule determines thatZ<1.

The expression~3.25! allows us to explore the concept o
the dressing time of the particle. At long times the contrib
tion to g(t) from the continuum vanishes typically as
power law determined by the behavior of the spectral den
near threshold@40# and the contribution from the pole dom
nates the dynamics. This contribution results in a asympt
oscillatory behavior ofġ(t) with an amplitude determined b
the residueZ at the particle pole. The formation time can b
defined to be the time it takes for the amplitude ofġ(t) to
reach its asymptotic valueZ @initially ġ(0)51#. In the case
in which the pole is embedded in the continuum~unphysical
Riemann sheet! and we deal with quasiparticles, a simil
concept can be introduced, now being the formation time
the quasiparticle. There are now two competing time sca
the formation time scale during which the quasiparticle p
dominates the dynamics and the contribution of the c
tinuum becomes subleading, and the relaxation time s
which is determined by the imaginary part of the self-ene
at the quasiparticle pole, i.e., the width of the resonance.
time scale of formation of the quasiparticle can be defined
be the time it takes until the exponential falloff of the corr
lation function ensues.

In this case, the two different time scales can only
resolved if they are widely separated which requires that
resonance be very narrow and the exponential relaxation
sociated with the decay of the quasiparticle allows many
cillations to occur. This condition can be quantified
G/vp!1 which requires a weak coupling to the bath. W
will explore these situations numerically in a later secti
where a particular density of states of the bath will be p
posed.

C. Fluctuation dissipation

The main advantage of studying the time evolution of
reduced density matrix is that it allows us to establish a
rect relationship between the relaxation of the occupa
number of the ‘‘system’’ and the fluctuation dissipation the
rem. The connection between the fluctuation dissipation
the Boltzmann equation has been investigated recently in
semiclassical regime@13#.

This relationship is established by rewriting the path in
gral (IP) in Eq. ~3.3! in terms of the Wigner coordinate
which can be cast in the following probabilistic form
@32,33,35#:

IP5E DxDrDjP@j#eiS̃eff(x,r ,j),

S̃eff ~x,r ,j!5E
t0

t

dt8r ~ t8!H 2@ ẍ~ t8!1v0
2x~ t8!#

1E dt9S~ t82t9!x~ t9!1j~ t8!J ,
-

ty

ic

f
s:
e
-
le
y
e
o

e
e
s-

s-

-

e
i-
n
-
d

he

-

P@j#5expH 2
1

2E dtE dt8j~ t !K21~ t2t8!j~ t8!J .

~3.28!

The path integral over the relative coordinater (t) leads to a
non-Markovian Langevin equation for the center of ma
coordinatex(t) in the presence of a stochastic Gaussian~but
colored! noise termj(t) @32,33,35#. The noise correlation
function is determined byK(t2t8) given by Eq.~3.6!.

The fluctuation-dissipation relation is established in t
following manner@36#. In the limit of a continuum distribu-
tion of the bath oscillators we find the time Fourier transfo
of the retarded self-energyS(t), Eq.~3.8!, to be given by the
analytic continuation of the Laplace transform~3.16! s→v
2 i e, i.e.,

S̃~v2 i e!52
2

pE dv8
v8 J~v8!

@~v8!22~v2 i e!2#
. ~3.29!

Then we find~for v.0)

Im@S̃~v!#5J~v! ~3.30!

and the Fourier transform in time of the kernelK(t) ~3.6! is
given by

K̃~v!5
1

2p
Im@S̃~v!#cothFbv

2 G . ~3.31!

This is the usual fluctuation-dissipation relation@36#. Finally
we obtain the bath contribution to the nonequilibrium occ
pation number Eq.~3.9!, which is determined byR(t) given
by Eq. ~3.13!, in a form that displays clearly its relationshi
to the fluctuation dissipation relation

R~ t !5
1

VE dvK̃~v!~ uk~v,t !u21V2uh~v,t !u2!,

~3.32!

whereK̃(v) is the power spectrum of the bath. This expre
sion makes explicit the stochastic nature of thermalizat
and establishes a direct relationship with the fluctuation d
sipation theorem.

IV. THE HEISENBERG OPERATORS

The above results can be understood in an alterna
manner by obtaining the real time evolution of the Heise
berg picture operators, from which the expectation value
the number operator can be obtained by providing an ini
density matrix. The equation of motion of the Heisenbe
operatorq(t) is given by

q̈~ t !1v0
2q~ t !2(

k

Ck
2

vk
E

0

t

dt8sin@vk~ t2t8!#q~ t8!

52(
k

CkQk
(0)~ t !, ~4.1!

whereQk
(0)(t) satisfies the homogeneous equation
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Qk̈
(0)~ t !1vk

2Qk
(0)~ t !50. ~4.2!

Equation~4.1! can be solved using Laplace transform, a
the operator solution with the initial conditionq(t50)
5q(0), q̇(t50)5p(0) is found to be given by

q~ t !5p~0!g~ t !1q~0!ġ~ t !2(
k

CkE
0

t

dtQk
(0)~ t2t!g~t!,

~4.3!

whereg(t) is the same function which was defined in t
preceding section.

Since the initial density matrix describes a thermal dis
bution for the quanta of a harmonic oscillator of referen
frequencyV, it is convenient to write the initial position an
momentum operators in terms of the creation and annih
tion operators of a quanta of frequencyV as

q~0!5
1

A2V
@b1b†#, p~0!52 iAV

2
@b2b†#.

Also, it is convenient to writeQk
(0)(t) in terms of the creation

and annihilation operators of a quanta of frequencyvk as

Qk
(0)~ t !5

1

A2vk

@ake
2 ivkt1ak

†eivkt#. ~4.4!

Gathering all terms,q(t) andp(t) become

q~ t !5
1

A2V
$b@ ġ~ t !2 iVg~ t !#1b†@ ġ~ t !1 iVg~ t !#%

2(
k

Ck

Avk

@ak
†eivkth~vk ,t !1H.c.#,

p~ t !5
1

A2V
$b@ g̈~ t !2 iVġ~ t !#1b†@ g̈~ t !1 iVġ~ t !#%

2(
k

Ck

Avk

@ak
†eivktk~vk ,t !1H.c.#, ~4.5!

whereh(vk ,t), k(vk ,t) are defined in Eq.~3.12!. The ex-
pression~4.5! reveals that the particle operators create sta
with overlap with bath continuum.

The expectation value of the occupation number oper
n(t) in Eq. ~2.2! can be evaluated using an initial dens
matrix which is diagonal in the basis of the number operat
for system and bath. Assuming a continuum spectrum of
bath oscillators, using Eq.~2.1! and considering for simplic-
ity the case of vanishing expectation values ofq(0), p(0) in
the initial density matrix, we find

^n~ t !&52
1

2
1

112n~0!

4V2
@ g̈2~ t !12V2ġ2~ t !1V4g2~ t !#

1
1

2pVE dvJ~v!@112N~v!#@ uk~v,t !u2

1V2uh~v,t !u2#. ~4.6!
-
e

-

s

or

s
e

Settingqi50, pi50 in the result~3.9! we find that Eq.~4.6!
reduces to the expression obtained by the time evolution
the density matrix~3.9! and the last term is identified with
R(t). The operator method allows us to compute any cor
lation function of operators in the initial density matrix
arbitrary times, whereas the time evolution of the dens
matrix would require the introduction of external sources a
taking functional derivatives with respect to those to obt
unequal time correlation functions.

V. ASYMPTOTIC BEHAVIOR OF THE OCCUPATION
NUMBER

The asymptotic behavior of̂n(t)& is completely deter-
mined by the long time dynamics ofg(t). We have shown
thatg(t) vanishes asymptotically for poles in the continuu
while the contribution from the isolated pole dominates
the case in which the pole is below threshold. We will co
sider each individual case in detail.

A. Poles in the continuum„vp>v th…

In this case the functiong(t) vanishes exponentially a
asymptotically long times~3.24! and the asymptotic behavio
of the particle occupation number is given by

^n~`!&52
1

2
1R~`! ~5.1!

with

R~`!5
1

2pVE
v th

vc
dv@112N~v!#S~v!~V21v2!,

~5.2!

where we used Eqs.~3.19! and ~3.22!, recognized the
Laplace transform ofg(t) in the long time limit for Eq.
~3.13! @using the vanishing ofg(t) at long times#

uh~v,`!u25ug̃~s5 iv1e!u2,

uk~v,`!u25v2uh~v,`!u2.

It is clear that the asymptotic value of^n(`)& is different
from the equilibrium occupation number of the bathN(vp).

Suppose that the spectral densityS(v) can be approxi-
mated by a narrow Breit-Wigner resonance with

S~v!5
Z

2vp

G

~v2vp!21G2
→

G→0 pZ

2vp
d~v2vp!, ~5.3!

where

G5
ZS I~vp!

2vp
~5.4!

as would be the case for weak coupling. Then the asympt
occupation number becomes

^n~`!&5ZS V21vp
2

2Vvp
D FN~vp!1

1

2G2
1

2
, ~5.5!
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which is different from the equilibrium value of the bath.
We now see that choosing the reference frequencyV

5vp , and introducing a quasiparticle number operator a

nquasi~ t !5
1

2vpZ
@p2~ t !1vp

2q2~ t !#2
1

2Z
~5.6!

we see that

nquasi~`!5N~vp!1
1

2 S 12
1

ZD , ~5.7!

thus the quasiparticle reaches an asymptotic distribu
function of almost thermal form with corrections arising
from the wave function renormalization. The factorZ in the
definition of the quasiparticle number operator reflects
fact that the quasiparticle pole has strengthZ rather than 1. In
the following section it will become clear that the result~5.7!
is a consequence of the completethermalizationof the qua-
siparticle with the bath and that the occupation number
quasiparticles becomes the one predicted by the cano
ensemble as follows from the discussion leading to E
~6.9!,~6.10! below. This expression thus reveals the imp
tance of counting the quasiparticles instead of the bare
ticles. Even in the weak coupling limit the distribution o
bare particles is not thermal whereas the true quasipar
distribution departs perturbatively from a Bose-Einstein d
tribution at the temperature of the bath.

The asymptotic value of the distribution is approach
exponentially. The thermalization time scale is given byt th
51/2G since it is determined byg2(t) which is the depen-
dence of the occupation number on the function that de
mines the real time evolution either of the density matrix
of the Heisenberg operators.

Even when the occupation number is defined in terms
the true ‘‘in medium’’ pole, there will be departures from th
Bose-Einstein distribution for non-negligible widthG and
when the strength of the poleZ is substantially smaller than
1. These corrections will arise in the case of broad re
nances and may lead to large departures from the B
Einstein distribution. This situation will be explored nume
cally later.

In the case of a wide resonance, the productN(v) S(v) is
sensitive to the width of the resonance. For bath tempera
T!v th the Bose-Einstein distribution will only probe the ta
of the broad spectral density closer to threshold and the p
uct is only sensitive to the threshold behavior ofS(v) @37#.

In particular if near thresholdS(v)'(v2v th)
a then for

temperaturesT!v th the temperature dependence of the eq
librium abundance of unstable particles in the bath is
proximately given by

n~T;t5`!2n~0;t5`!'e2v th /TTa11,

which reveals threshold corrections to the Boltzmann ex
nential suppression. This result has been anticipated in
@37# within a different context.

In the opposite limit whenT@vp the product is sensitive
to the width of the resonance and the details of the spec
density. Thus in the case of a broad resonance the depar
from a Bose-Einstein distribution function for the quasip
n
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ticles will be important. Clearly this is the regime in which
Boltzmann approximation could be unreliable.

These corrections originate in off-shell effects that w
depend on the particular spectral density of the bath and
coupling between the particle of the bath. We will quant
the corrections for a particular choice ofJ(v) in a later
section.

Moreover, the asymptotic value of the particle numb
does not depend on the initial condition of the particle; e
initial expectation values of position and momentum, te
perature, or occupation number.

B. Isolated poles„vp<v th…

In this case the asymptotic time dependence of the fu
tion g(t) is completely determined by the isolated pole b
low the bath continuum and the function ‘‘rings’’ with thi
frequency and with asymptotic amplitude determined by
wave function renormalizationZ given by Eq.~3.26!. The
asymptotic behavior of the particle occupation number
fined at a reference frequencyV is now given by

^n~`!&52
1

2
1R~`!1

Z2 sin2~vpt !

2 Vvp
2

3@pi
2V21~V41vp

4!s1vp
4qi

2#

1
piqiZ

2

2 S V

vp
2

vp

V D sin~2vpt !

1
Z2 cos2~vpt !

2 S pi
2

V
12Vs1Vqi

2D , ~5.8!

whereR(`) is the limit value ofR(t). For V5vp , i.e., the
position of the dressed particle pole, the asymptotic value
the occupation number obtains the simple form

^n~`!&52
1

2
1R~`!1Z2Fn~0!1

1

2G1
Z2

2V
@pi

21V2qi
2#.

~5.9!

The last term can be identified as the contribution from
expectation values ofp(0), q(0) (pi , qi , respectively! in
the initial density matrix.

Unlike the case in which the pole is in the continuum, t
asymptotic value of the particle occupation does depend
how the particle was prepared initially since expression~5.9!
depends onpi , qi , andn(0). In this case,R(`) has contri-
butions from both the continuum cut and the isolated p
below the continuum.

In order to compare the results to those obtained from
approximatequantum kinetic equation obtained via a pertu
bative expansion in the next section, it is useful to obtain
expression forR(`) up to first order inJ(v). The expres-
sion for R(`) ~5.2! is proportional to the spectral densit
S(v) given by Eq.~3.22!. When the pole is below the con
tinuum, the contribution from the cut is proportional toJ(v)
and perturbatively small whenJ(v) is small. Furthermore
the continuum contribution dephases rapidly at long tim
and asymptotically the relevant contribution tog(t) arises
from the isolated pole. After some straightforward algeb
we find for V5vp that at long times
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uk~v,t !u21Vuh~v,t !u25Z2H 12cos~v1t !

v1
2

1
12cos~v2t !

v2
2 J

~5.10!

with

v6[V6v ~5.11!

and to lowest order inJ(v), the asymptotic contribution
R(`) is given by

R~`!5
Z2

2pVE dvJ~v!@112N~v!#S 1

v1
2

1
1

v2
2 D 1O~J2!,

which for easier comparison with the results from kineti
can be written in the following form:

R~`!'
1

2
~12Z2!1

Z2

pVE dvJ~v!

3H 11N~v!

v1
2

1
N~v!

v2
2 J 1O~J2!,

where the term (12Z2)'2(12Z) and we have used th
sum rule~3.27! to lowest order.

Settingpi5qi50 in Eq. ~5.9!, the asymptotic occupation
number becomes

^n~`!&5Z2Fn~0!1
1

pVE dvJ~v!

3H 11N~v!

v1
2

1
N~v!

v2
2 J G1O~J2!. ~5.12!

We have purposely keptZ in the above expression to com
pare it to the results from the quantum kinetics approxim
tion to be obtained later. Clearly this result depends on
initial distribution of the particle and the details of the spe
tral density of the bath, leading to the conclusion that in
case in which the particle pole is real~below threshold!, the
particledoes not thermalizewith the bath.

VI. COLLECTIVE NORMAL MODES
AND QUASIPARTICLES

In a many body problem, the poles of the exact two p
ticle Green’s functions are identified with the collectiv
modes. In general the poles are complex resulting in
damping of the collective excitations. We can make cont
with this many body concept by studying thenormal modes
of the total Hamiltonian for the particle-bath system und
consideration.

Since the Hamiltonian is quadratic, it can be diagonaliz
by a canonical transformation in terms of the normal mod
In order to establish a correspondence with the continu
distribution of bath oscillators it is convenient to write th
Hamiltonian in the continuum form
,

-
e
-
e

-

e
ct

r

d
s.
m

H5
1

2
~p21v0

2q2!1
1

2Ev th

vc
dv@P2~v!1v2Q2~v!#

1qE
v th

vc
dvC~v!Q~v!,

J~v!5p
C2~v!

2v
.

The Hamiltonian of this rather simple model can be
agonalized by finding the normal modes. Let us write t
linear change coordinates and momenta~canonical transfor-
mation! to the normal modes as@31,37#

q5Sla~l!Q~l!, p5Sla~l!P~l!, ~6.1!

Q~v!5Slb~v,l!Q~l!, P~v!5Slb~v,l!P~l!,
~6.2!

where the symbolSl stands for the sum over the discrete a
integral over the continuum normal mode eigenvaluesl that
render the Hamiltonian in diagonal form

H5
1

2
Sl@P 2~l!1l2Q 2~l!#.

The vectorsV(l)5„a(l),b(v,l)… obey the normal mode
eigenvalue equation which in components reads

v0
2a~l!1E

v th

vc
dvC~v!b~v,l!5l2a~l!, ~6.3!

C~v!a~l!1v2b~v,l!5l2b~v,l!, ~6.4!

and thel ’s are theexacteigenenergies of the Hamiltonian
Solving for b(v,l) in terms of a(l) in Eq. ~6.4! and

inserting the solution back into Eq.~6.3! we find the solution
for the coefficients and the secular equation for the eigen
ues to be given by

b~v,l!5
C~v!a~l!

~l2 i e!22v2
1Bd~l2v!,

Fl22v0
22

2

pEv th

vc
dv

vJ~v!

~l2 i e!22v2Ga~l!5BC~l!,

where we used ‘‘retarded’’ boundary conditions~with the i e
prescription! to establish contact with the previous resul
andB is determined by normalizing the eigenstates.

There are two distinct possibilities:~1! an isolated pole
below the continuum threshold of the bath corresponding
a dressed stable particle and~2! a continuum of states and
quasiparticle pole in the unphysical Riemann sheet~reso-
nance!.

~1! Isolated poles.The condition for isolated poles below
the bath continuum requires settingB50 since the spectrum
of the bath has no support below threshold. The position
the pole is found from the secular equation
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vp
22v0

22
2

pEv th

vc
dv

vJ~v!

vp
22v2

50.

This expression is identified as the condition for isola
poles in the Laplace transformg̃(s) @see Eq.~3.15!# for s
5 ivp . The value ofa(vp) is determined from normaliza
tion and we find
b

ffi
n

s
ffi
e
o

d

th

o
g
in

we

-

he
th

m
t

d

a~vp!5AZ

with Z the wave function renormalization given by Eq
~3.18! and~3.26!. Normalization of the vectors is equivalen
to the sum rule~3.27!.

~2! Continuum states.For the continuum states we tak
B51 so thatQ(l)→Q(v) whenC(v)→0 and we find the
coefficients
a~l!5
C~l!

~l2 i e!22v0
22~2/p!E

v th

vc
dv$vJ~v!/@~l2 i e!22v2#%

, ~6.5!

b~v,l!5d~l2v!1
C~v!a~l!

~l2 i e!22v2
. ~6.6!
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In this case the normalization results in the sum rule given
Eq. ~3.23!.

Because of our choice of boundary conditions, the coe
cients are complex and the resulting new coordinates are
Hermitian. This can be remedied by absorbing the phase
a trivial canonical transformation and defining the coe
cientsa(l), b(l) in terms of their absolute values and th
Q(l), P(l) to be real. This phase carries the information
the boundary conditions~the i e prescription! and since it is
removed by a canonical transformation the results are in
pendent of these.

Let us consider the case of an isolated pole below
threshold of the bath continuum atl5vp . This state is the
one that evolves from the bare particle degree of freed
upon adiabatically switching on the system-bath couplin
Ck and is identified with the position of the isolated pole
the Laplace transform of the functiong(t) given by Eq.
~3.15!.

Separating the contribution from the isolated pole
write

q~ t !5AZQ0~ t !1Qcont~ t !,

p~ t !5AZP0~ t !1Pcont~ t !,

where the operatorsQcont, Pcont create excitations in the con
tinuum of the bath out of theexactground state. WritingQ0 ,
P0 in terms of creation and annihilation operators of t
exacteigenstates, we see that asymptotically long times
operatorsq(t), p(t) create anexact one dressed particle
state out of theexactvacuum. In the limit of asymptotically
long times and invoking the Riemann-Lebesgue lemma

q~ t !u0&→
AZ

A2vp

eivptu1p&,

whereu0& is theexactground state and the contribution fro
the continuum states averages to zero at long times by
dephasing between modes.

The operator
y

-
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f
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e

m
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Aq
†~ t !5

1

A2vpZ
@vpq~ t !1 ip~ t !# ~6.7!

asymptotically at long times creates a dressed particle s
with unit residue out of the exact vacuum. At any finite tim
the state created by this operator isnot an eigenstate of the
full Hamiltonian but has overlap with states in the continuu
@41#. We associate the operator~6.7! with dressed particles in
the case of isolated poles orquasiparticlesfor resonances, in
contrast to the normal~collective! modes of the system tha
are exact eigenstates.

Although a priori one would be tempted to define th
dressed particle as the normal mode of frequencyvp associ-
ated with the creation and annihilation operators obtain
from the normal mode described byQ0 , P0, these are of
little use: these operators represent linear combination
the particle and the degrees of freedom of the bath. Ob
ously the number operator associated with this normal m
is constant in time. The interpolating operator~6.7! is the
natural candidate for counting quasiparticles@41#.

In an experimental situation such as, for example, an e
tron in a metal, one would like to write down an evolutio
equation for the distribution function that describes the p
ticle dressed by the medium. The interpretation of the qu
particle creation operator is consistent with this physical s
ation since the added particle will move in the bath be
dressed by the interaction with the medium, the result
quasiparticle will have a new dispersion relation~given here
by vp) and in general a width, and the probability associa
with this quasiparticle pole will be reduced by the overl
with the states of the bath. This quasiparticle is not a stati
ary state because it overlaps with the collective modes
its time evolution involves dephasing.

In the case in which the pole atvp has a value larger than
the threshold for the bath oscillators, it has moved into
second ~unphysical! Riemann sheet upon adiabatical
switching on the interaction and is no longer part of t
eigenspectrum of the Hamiltonian. In this case it has beco
an unstable state andvp will have a small negative imagi
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nary part given byG @see Eq.~3.24!#. In this case the overlap
with the continuum results in an almost exponential decay
the quasiparticle distribution after the short formation time
the quasiparticle.

We then see that theinterpolatingnumber operator

n̂quasi~ t !5
1

2vpZ
@p2~ t !1vp

2q2~ t !#2
1

2Z
~6.8!

can be interpreted as either the dressed particle distribu
function in the case of an isolated pole below the continu
of the bath or the quasiparticle distribution function in t
case of a resonance. Besides setting the reference frequ
l[vp in Eq. ~2.2! the wave function renormalization facto
Z accounts for the strength of the particle or quasipart
pole. The importance of wave function renormalization h
been highlighted within the context of high field transport
semiconductors@42#.

Interpretation of results.This analysis in terms of norma
modes reveals several features of the exact solutions
tained in the previous sections.

~1! Thermalization of quasiparticles (resonances).In the
case in which the quasiparticle pole is above threshold,
asymptotic value of the quasiparticle distribution given
Eqs. ~5.1!,~5.2! is a consequence ofthermalization. Indeed
by using the expansion ofq, p in terms of the normal mode
coordinates and momenta given by Eqs.~6.1!,~6.2! with the
coefficientsua(l)u and realP(l), Q(l) it is straightforward
to prove that

^n̂quasi~`!&5Tr @ n̂quasi~0!e2bH#5
1

Z FR~`!2
1

2G ~6.9!

with n̂quasi(0) the quasiparticle number operator~6.8! at the
initial time t50. This is a remarkable result: the dens
matrix, which initially was of a factorized form for particl
and bath at different temperatures has evolved in time to
equilibrium density matrix for the total system at the tem
perature of the bath. However the distribution of quasipa
cles isnot given by the Bose-Einstein form. Furthermore, t
contribution ton̂quasi(`) that does not vanish asT→0 can be
interpreted as a zero point contribution from the resonan
In the case in which the quasiparticle becomes a narrow r
nance we see from Eqs.~5.5! and ~6.8! that

^nquasi~`!&5N~vp!1
1

2 S 12
1

ZD ~6.10!

and the number of quasiparticles departs from a Bo
Einstein distribution at the temperature of the bath with
departure determined by the off-shell effects that resul
ZÞ1 through the sum rules. The last term, identified abo
with the zero point contribution is interpreted as the norm
ization borrowed from the continuum by the quasipartic
Although in this simple caseZ does not depend on temper
ture and the last term in Eq.~6.10! can be subtracted out as
redefinition of the quasiparticle vacuum, in a general qu
tum many body theory, the wave function renormalizati
will be medium dependent and such subtraction would
unjustified.
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~2! Nonthermalization of stable particles.In the case in
which the particle pole is below threshold the asympto
oscillations in the expression~5.8! for VÞvp are a conse-
quence of the interference between the state of arbitrary
quencyV and the normal mode with frequencyvp . These
oscillations disappear when the reference frequency (V) is
chosen to be the normal mode pole frequency (vp) which is
also the particle frequency, this fact has already been not
within a different context@14#. The factorZ2 in Eq. ~5.9! has
the following origin: asymptotically at long timesq(t)
→AZQ0 , p(t)→AZP0 in the sense of matrix elements. Bu
theQ0 , P0 create particle states out of bare states with a
plitudeAZ, therefore one of the factorsZ in Eq. ~5.9! arises
from the asymptotic~weak! limit on the operators, and an
other factorZ arises because the calculation of Eq.~5.9! was
performed in terms of the bare states overlap with the p
ticle states given by the wave function renormalization. U
ing the expansion in terms of normal modes we find t

^n̂quasi(`)& given by Eq.~6.8! doesnot coincide with

Tr @ n̂quasi~0!e2bH#

unlike the previous case of a resonance.

VII. KINETICS

Having provided an analysis of the exact evolution of t
distribution function and distinguished between that of ren
malized, stable particles and quasiparticles~resonances!, we
now proceed to obtain kinetic equations in several stage
approximation to compare with the exact results. Kine
equations are obtained by truncating the hierarchy of eq
tions of motion for the higher order correlation function
under certain assumptions. The typical assumptions are t
of slow relaxation as compared to the microscopic time a
length scales and rely on a separation of scales. To war
this separation between scales clearly a perturbative pa
eter must be invoked and the resulting kinetic equations p
vide a resummation of the perturbative expansion. Differ
type of approximations result in different resummati
schemes.

A. Quantum kinetic equation

The quantum kinetic equation is obtained by taking t
expectation value of the number operator using the Heis
berg equations of motion and truncating the exact equat
of motion within a particular approximation. Since we wa
to obtain the kinetic equation for the relaxation of the dist
bution function of particles with frequencyV ~for quasipar-
ticles this is the pole frequency of the propagator, for b
particles it is simplyv0) it is convenient to write the tota
Hamiltonian in terms of this frequency adding a counterte
of the form

Hct5
dv2

2
q2~ t !, dv25v0

22V2.

As usual the counterterm is chosen appropriately in per
bation theory to cancel the contributions recognized as th
arising from a shift in the frequency.
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Taking the derivative of Eq.~2.2! and using the equation
of motion we obtain

ṅ~ t !52
1

V H(
k

CkQk~ t !q̇~ t !

1
dv2

2
@q~ t !q̇~ t !1q̇~ t !q~ t !#J . ~7.1!

The expectation value of the time derivative of the occu
tion number is calculated by multiplying Eq.~7.1! by r(0)
and taking the trace

^ṅ~ t !&52
1

V

d

dt8
H(

k
Ck^q

1~ t8! Qk
2~ t !&

1
dv2

2
^q~ t !q~ t8!1q~ t8!q~ t !&J u t85t , ~7.2!

where

^q1~ t8!Qk
2~ t !&5Tr @q~ t8!r~0!Qk~ t !#.

We need to evaluate the nonequilibrium matrix elem
^q1(t8)Qk

2(t)&. This can be achieved by treating the inte
action term in perturbation theory. The zeroth order term
the perturbative series does not contribute because the in
density matrix commutes with the number operator at
initial time.

A simple diagrammatic analysis of the perturbative ser
reveals that the kinetic equation can be writtenexactlyas

^ṅ~ t !&52
1

V (
k

Ck

d

dt8
H F E

0

t

dt9@Sk
,~ t,t9!

3G.~ t9,t8!2Sk
.~ t,t9!G,~ t9,t8!#G

1
dv2

2
@G.~ t,t8!1G,~ t,t8!#J U

t85t

,

whereG,,. are theexactGreen’s functions for the system
defined similarly to those of the bath Eq.~3.1! andSk

,,. are
the irreducible self-energy components, again defined s
larly to Eq. ~3.1!.

To first order in the interaction we use the free-fie
propagators and the lowest order contribution to the s
energy. It is straightforward to show that the counterte
contribution vanishes to this order and Eq.~7.2! becomes

^ṅ~ t !&5
i

V (
k

Ck
2 d

dt8
F E

0

`

dt9~^q1~ t8!q1~ t9!&

3^Qk
2~ t ! Qk

1~ t9!&2^q1~ t8! q2~ t9!&

3^Qk
2~ t ! Qk

2~ t9!&!G
t85t

.

Writing the free field propagators of the system and
bath in the above equation in terms ofg,,. and Gk

,,. ,
-

t

n
ial
e

s

i-

f-

e

where g,,. are the free Green’s functions for the syste
defined similarly to those of the bathGk

,,. , see Eq.~3.2!,
one obtains

^ṅ~ t !&5
i

V (
k

Ck
2E

0

t

dt9@Sk
,~ t,t9!ġ.~ t9,t !

2Sk
.~ t,t9!ġ,~ t9,t !#, ~7.3!

where the self-energy componentsSk
,,. are given by~to

lowest order!

Sk
,~ t,t9!5Gk

,~ t,t9!, Sk
.~ t,t9!5Gk

.~ t,t9!,

and

ġ.~ t9,t ![
dg.~ t9,t8!

dt8
u t85t .

Substituting the nonequilibrium Green’s functions fro
Eq. ~3.1! in the right-hand side of Eq.~7.3!, taking the de-
rivative with respect tot8 and arranging terms, we obtain

^ṅ~ t !&5
1

pVE
0

t

dt8E dvJ~v!$@11n~0!1N~v!#

3cos@~V1v!~ t2t8!#1@N~v!2n~0!#

3cos@~V2v!~ t2t8!#%, ~7.4!

wheren(0) is the distribution of quanta for the particleat the
initial time andN(v) are the Bose-Einstein distributions o
the bath which will be taken to be constant and given by E
~3.2!.

We now propose a scheme that provides a resumma
of the perturbative series by replacing the initial distributi
n(0) by self-consistently updating the distribution inside t
integral in Eq.~7.4! by replacingn(0)→n(t8). It will be
shown explicitly below that this prescription leads to
Dyson summation of particular Feynman diagrams and
case wheren is constant is understood as the lowest ord
term in this expansion. Within nonrelativistic many-bod
quantum kinetics, this approximation is known as the gen
alized Kadanoff-Baym ansatz@21–27#. The validity of this
approximation in the weak coupling limit is confirmed b
comparing the resulting evolution of the distribution functio
to the exact result obtained in the previous sections as it
be seen below in detail.

The quantum kinetic equation is then given by

^ṅqk~ t !&5
1

pVE
0

t

dt8E dvJ~v!$@11n~ t8!1N~v!#

3cos@~V1v!~ t2t8!#1@N~v!2n~ t8!#

3cos@~V2v!~ t2t8!#%. ~7.5!

The resulting linear kinetic equation~7.5! can now be
solved via Laplace transforms. The Laplace transform
^nqk(t)& is given by
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ñqk~s!5

n~0!1~1/pV!E
v th

vc
dvJ~v!„$@11N~v!#/s%@s/~s21v1

2 !#1@N~v!/s#@s/~s21v2
2 !#…

s2~1/pV!E
v th

vc
dvJ~v!$s/~s21v1

2 !2s/~s21v2
2 !%

, ~7.6!
le
-
in
h

i-
s

o

the

a
o
ches

-
tic

e at
of

ng
law
ven
wheren(0) is the initial occupation number of the partic
andv6 are given by Eq.~5.11!. The dynamics of the occu
pation number of the particle is obtained by taking the
verse Laplace transform along the Bromwich contour. T
analytic structure ofñqk(s) consists of cuts along the imag
nary axis in thes-plane and poles. For the pole contribution
we distinguish two cases :

Case I: Poles in the continuum.In this case there are tw
poles: ~1! a pole where the denominator of Eq.~7.6! van-
ishes, i.e.,

sp2
1

pVE dvJ~v!H sp

sp
21v1

2
2

sp

sp
21v2

2 J 50.

For weak coupling, one can solve for the pole,sp , in pertur-
bation theory and one can show that the pole is given by@up
to first order inJ(v)#

sp52
J~V!

V
522G,

where we used the identity

lim
s→0

s

s21v6
2

5pd~v6!, ~7.7!
fie

y

tri
er
-
e

,

andG is given by Eq.~5.4!. The contribution from this pole
vanishes exponentially for long times.~2! There is a second
pole ats50 and the residue of this pole, using Eq.~7.7!, is
N(V). The average occupation number is then given by
contribution of the two poles and the cut

^n~ t !&5N~V!1~residue atsp!3e22G t

1~contribution from the cut!.

Asymptotically the contribution of the cut falls off as
power law@40#. Therefore the contribution from the last tw
terms vanish and the particle occupation number approa
the equilibrium occupation of the bath with frequencyV.
Comparing the above result forV5vp with the one obtained
exactly in the small coupling regime, Eq.~5.5!, we see that
they differ by a factor of orderJ(v) which can be compen
sated for by considering higher orders in deriving the kine
equation.

Case II: Poles below the continuum.Since J(vp) van-
ishes for poles below the continuum, there is only one pol
s50. The average occupation number is given by the sum
the residue of the pole and the cut contribution. At lo
times the cut contribution vanishes at least as a power
@40# and the asymptotic average occupation number is gi
by
^nqk~`!&5

n~0!1~1/pV!E
v th

vc
dvJ~v!$@11N~v!#/v1

2 1N~v!/v2
2 %

12~1/pV!E
v th

vc
dvJ~v!$1/v1

2 21/v2
2 %

.
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The denominator of the above equation can be simpli
considerably becoming simplyZ22 to this order. The above
equation is now written as

^nqk~`!&5Z2Fn~0!1
1

pVE
v th

vc
dvJ~v!

3H 11N~v!

v1
2

1
N~v!

v2
2 J G .

Comparing the above result with the one obtained exactl
the small coupling regime, Eq.~5.12!, we see that the two
results coincide.

Obviously this quantum kinetic equation includes con
butions from intermediate states that do not conserve en
d

in

-
gy

and therefore provide off-shell corrections. For the case
which the quasiparticle pole is in the continuum, we see t
asymptotically at long times the distribution becomes sim
to that obtained in the Boltzmann approximation, see
~7.9!, with the same relaxation rate. However at early tim
the solution of the quantum kinetic equation differs apprec
bly from the Boltzmann solution in that the relaxation ra
vanishes at the initial time, whereas it is a constant for Bo
zmann. The vanishing of the relaxation rate at the initial tim
is a consequence of the fact that the initial density matrix
diagonal in the number representation, thus whereas
quantum kinetic equation describes correctly the initial e
lution, the Boltzmann equation has coarse grained over th
time scales and misses the early time behavior.

This is important experimentally if the resolution in tim
of the measurement allows us to study time scales that re
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features of the initial preparation. Such is the case in fem
second resolved studies of relaxation of hot carriers as
scribed in the Introduction.

B. Markovian and Boltzmann approximations

If the particle occupation number varies on time sca
larger than the memory of the kernel in the kinetic equati
a Markovian approximation may be reasonable. In this
proximation, the particle occupation numbern(t8) in Eq.
~7.5! is replaced byn(t) and taken outside the integral. Th
approximation would be justified in a weak coupling limit,
this case when the spectral density of the bathJ(v) includes
a small coupling~as it will be specified in the next section!
h. The rational behind this approximation is the realizati
of multitime scales: a microscopic or short time scale giv
by t'1/vp and another relaxation or long time scalet1
'ht.

Thus in the Markovian approximation, Eq.~7.5! becomes

^ṅ~ t !&5
1

pVE dvJ~v!H @11N~v!#sin~v1t !

v1

1
N~v!sin~v2t !

v2
J 1

n~ t !

pV E dvJ~v!

3H sin~v1t !

v1
2

sin~v2t !

v2
J . ~7.8!

A computational advantage of this equation is that it p
vides alocal update procedure. A connection with the Bo
zmann approximation is made with a second stage of
proximation, known in the Boltzmann literature as t
‘‘completed collision approximation’’ and consists in takin
the limit t→` in the arguments of the sine functions in E
~7.8!. This approximation enforces strict energy conservat
which can be understood by using the limiting distributio

lim
t→`

sin@v6t#

v6
5pd~v6!.

Noticing that onlyv2 could vanish leading to the Boltzman
expression

^ṅB~ t !&5
J~V!

V
@N~V!2n~ t !#.

The solution is clearly

^nB~ t !&5N~V!1@n~0!2N~V!#e22GBt,

GB5
J~V!

2V
5

S I~V!

2V
, ~7.9!

where we recognize the lowest order~Born approximation!
to the decay rate which is given by Eqs.~3.19! and ~3.24!.
Obviously the Boltzmann equation predicts no relaxation
the case in which the pole is below the continuum thresh
since in this caseJ(V)50. Even when the bare frequency
in the continuum of the bath, the Boltzmann approximat
predicts no relaxation ifn(0)5N(V) as the gain and los
processes exactly balance. As we will see explicitly num
-
e-

s
,
-

n

-

p-

n

n
ld
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cally below the exact solution shows anontrivial time de-
pendence in this case because the bare particle is dress
the medium and the asymptotic equilibrium distributio
function reveals off-shell effects as discussed in the previ
section.

VIII. NUMERICAL ANALYSIS

In order to compare the particle number relaxationn(t)
between the exact results Eq.~3.9! and the various approxi
mations to the kinetic description Eq.~7.5!, Boltzmann and
Markovian, we have solved numerically for a particul
choice of the spectral density of the bath. We will choose
following model forJ(v):

J~v!5hvS~v2v th!u~v2v th!u~vc2v!. ~8.1!

This is a generalization of the Ohmic bath in whichJ(v)
vanishes for frequencies below a threshold frequencyv th and
above a cutoff frequencyvc , andh is a dimensionless cou
pling parameter. SinceJ(v) has dimensions ofv2, we intro-
ducedvS , which can be scaled out, explicitly to serve as
energy scale. We scale our results to this energy scalevS and
refer all dimensionful quantities to this unit since the impo
tant physical quantities are dimensionless ratios~such as
v/T, etc.!. This is the simplest spectral density of the ba
that allows us to model important features of relevant mic
scopic models and illuminates the main aspects of re
ational dynamics.

This form of the spectral density for the bath has be
motivated by previous studies of decoherence and dissipa
in similar model theories@31–37#. It is the simplest realiza-
tion that allows us to vary parameters and investigate
different regimes for the phenomena discussed in the pr
ous section. By varying the couplingh and the value of the
bare ~or renormalized! frequency we can test the differen
scenarios.

For the case of the quasiparticle pole embedded in
continuum the dimensionless parameter that determines
separation of time scales is given for the spectral den
~8.1! by

G

vp
>

hvS

2vp
2 ~vp2v th!.

When this ratio is!1 the resonance is rather narrow a
there are many oscillations before the decay, the time sc
are widely separated. In the other limit when this ratio'1
the particle is strongly coupled to the bath, resulting in
wide resonance and a potential for large off-shell effects
cluding effects related to the proximity of the peak of t
resonance to the threshold.

The dynamical functiong(t) satisfies Eq.~3.7!. In terms
of the renormalized frequencyvR given by Eq.~3.20!, g(t)
can be shown to satisfy the following equation:

g̈~ t !1vR
2g~ t !1

2

pE0

t

dt8E dv
J~v!

v
cos@v~ t2t8!#ġ~ t8!50,

g~0!50, ġ~0!51.
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Now we study different scenarios in detail.
Figure 2 shows the case for which the dressed part

pole is below threshold. In this case the Boltzmann equa
predicts that no relaxation occurs because the imaginary
of the self-energy evaluated on shell~damping rate! van-
ishes. The exact solution, and the quantum kinetic appr
mation along with the Markovian limit all predict nontrivia
relaxation, and for this weak coupling case all agree
within few percent. Obviously in this case the relaxation
solely due to off-shell effects since the dissipative effe
associated with processes that conserve energy~on shell!
vanish. The insert of the figure shows the dynamics of dre
ing of the particle and the time scales predicted by the ex
result are well reproduced by both the quantum kinetic eq
tion and its Markovian approximation.

In contrast, Fig. 3 shows the case for which the quasip
ticle pole is in the continuum but with a narrow widt
G/vp'0.02. The bath temperature is fixedT5100 and the
initial temperature of the particle (T0) is varied. We notice
that in the case in which the temperature of the bath and
of the bare particle are the same, the Boltzmann equa
predicts no relaxation because the gain and loss proce
balance exactly, this is the straight line in the graph for b
particle temperatureT05100. The exact solution as well a
the kinetic and Markovian approximation predict relaxatio
the kinetic and the Markovian approximations are very clo
to the exact expression. Analytically we know that the exa
Markovian and kinetic will asymptotically approach th
Boltzmann result~with very small corrections! in this very
narrow width case. Obviously the time scales for relaxat
and the early time dynamics are features not reproduced
the Boltzmann equation and clearly a result of off shell
fects, since all of the energy conserving detailed balance
cesses are contemplated by the Boltzmann equation.

Figure 4 compares two situations: the left figures cor
spond to the case of a pole just slightly below~dressed par-
ticle! and the right figures just slightly above threshold~qua-
siparticle!. This case provides for strong renormalizati
effects because the wave function renormalization dep

FIG. 2. The expectation value of the particle occupation num
given by Eq.~2.2! vs t @in units ofvS , see Eq.~8.1!# for V5vp for
the case in which the pole isbelow threshold for particle tempera
ture T05200 and bath temperatureT5100. The pole is atvp

51.95719 andZ50.95621. The numerical parameters areh
50.85, vc545, v th55, andvR52.
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significantly from 1. The left figure forġ(t) depicts clearly
the dressing time of the particle, withġ(0)51 we see that
after a short time the asymptotic valueġ(t)'Z cos(vpt) is
achieved. This figure thus revealstwo time scales, one asso
ciated with the oscillation scale of the dressed particle 1vp
and the other associated with the decay to the asymp
form, this time scale determines the dressing time of
particle and for the case under consideration correspond
just a few oscillations. This dressing time scale clearly d
pends on the details of the spectral density since it de
mines the early time dynamics after the preparation of
initial state. The right figure forġ(t) presentsthree different
time scales: initially there is the time scale of formation
the quasiparticle, very similar to the left figure, the time sc
associated with the quasiparticle pole'1/vp , and finally the
time scale associated with the exponential decay. The for
tion time scale and that of exponential decay can only
resolved in the narrow width approximation, in this partic
lar exampleG/vp'0.005 and the time scales associated w
the quasiparticle formation from the initial state and exp
nential relaxation can be resolved. These are clearly
played in Fig. 5 where the logarithm of the maxima ofġ(t)
is plotted versus time. In Fig. 6 we show the expectat
value of the number operator Eq.~2.2! for V5vp for the

r

FIG. 3. The expectation value of the particle occupation num
given by Eq.~2.2! vs t @in units ofvS , see Eq.~8.1!# for V5vp for
the case in which the pole isabovethreshold for particle tempera
turesT05100 ~a! and 200~b! and bath temperatureT5100. The
pole is atvp59.83397 andZ50.99631. The numerical paramete
are h50.85, vc545, v th55, and vR510, resulting in G/vp

'0.02.



110 PRE 60S. M. ALAMOUDI, D. BOYANOVSKY, AND H. J. de VEGA
FIG. 4. The functionsS(v) and ġ(t) for the cases in which the pole isjust below~left column! and just above~right column! the
threshold frequency (v th55). In the left column,vR55.52, vp54.98083, andZ50.63845 while in the right columnvR55.65, vp

55.07373, andZ50.69959. The numerical parameters areh53.0 andvc555, with G/vp'0.005.
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-of
same values of the parameters as in Fig. 4~upper figure
corresponds to pole below threshold and lower figure to
pole above threshold! and equal particle and bath temper
ture T05T510. Whereas the Boltzmann equation predi
again no relaxation, in the upper figure because the dam
rate vanishes and in the lower figure because the on-s
gain and loss processes balance each other, the exac

FIG. 5. The logarithm of the maxima ofġ(t) vs t @in units of
vS , see Eq.~8.1!# for h5 3.0 andvc555, v th55, vR55.52,
vp54.98083, andZ50.63845, corresponding to the left column
Fig. 4.
e
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ng
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and

quantum kinetics description of relaxation both predict no
trivial evolution of the dressed particle and quasiparticle d
tribution functions, respectively. The upper figure shows t
whereas the quantum kinetic and Markovian evolution
not too different from the exact, asymptotically all of the
depart significantly from Boltzmann. The early time dynam
ics predicted by the Markovian and quantum kinetics
very close to the exact expression. In the lower figure, c
responding to a narrow resonance we see that asymptoti
the quantum kinetic and Markovian evolution asymptotica
approach the Boltzmann result but obviously the early a
intermediate time dynamics is remarkably different. Furth
more the exact result reaches an asymptotic value that is
different from Boltzmann, as a result of the strong quasip
ticle renormalization effects, withZ departing significantly
from one~see Fig. 4!. Despite the fact that the resonance
rather narrow, its proximity to threshold results in stro
off-shell effects.

Figure 7 is perhaps one of the most illuminating. T
parameters are the same as for the right part of Fig. 4,
with the quasiparticle pole in the continuum and close
threshold, the bath temperature isT510 and the particle is
initially at zero temperature. In the upper figure we plot t
Boltzmann, exact, quantum kinetic and Markovian evo
tions, respectively, for the expectation value of the num
operator~2.2! for V5vp , whereas the lower figure corre
sponds to dividing byZ the results of the exact, quantum
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kinetics and Markovian evolutions to make contact with t
quasiparticle number operator~6.8!. This figure clearly
shows that the Boltzmann approximation coarse grains o
the early time behavior and completely misses the forma
time scales and the early details of relaxation.

Finally, Fig. 8 presents the evolution of the quasiparti
distribution for a case of a strong coupling regime result
in a wide resonance:h55, v th55.0, vc540, vp59.58, Z
50.982 for a bath temperatureT5200 and zero initial par-
ticle temperature withG/vp'0.1. The inset in the figure
displays the early time behavior. We see in this figure t
whereas the early time behavior is similar for the exact a
approximate evolutions, which is a consequence of zero
tial temperature for the particle, at times of the order of
relaxation time there is a dramatic departure. Furtherm
the Boltzmann approximation predicts a very different ea
time evolution because it coarse grains over the forma
time of the quasiparticle.

Whereas the quantum kinetic evolution and its Markov
approximation track very closely the Boltzmann, the ex
evolution is approximately 15% smaller resulting in
smaller population of quasiparticles asymptotically. The
partures in the exact result are a consequence of off-s
effects associated with a large width of the quasiparticle

FIG. 6. The expectation value of the number operator given
Eq. ~2.2! vs t @in units of vS , see Eq.~8.1!# for the same values o
the parameters as in Fig. 4~the upper figure corresponds to po
below threshold and the lower figure to the pole above thresh!
for the case of equal particle and bath temperatureT05T510. The
inset shows the early time behavior.
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IX. CONCLUSIONS AND IMPLICATIONS

The goal of this article was to study the dynamics
thermalization including off-shell effects that are not inco

y

d

FIG. 7. The expectation value of the number operator given
Eq. ~2.2! vs t @in units of vS , see Eq.~8.1!# for the same values o
the parameters as for the right column in Fig. 4~quasiparticle pole
above threshold!, h53.0 and vc555, v th55, vR55.65, vp

55.07373, andZ50.69959. The temperature of the bath isT510
and zero initial particle temperature (T050), the exact, Markovian,
and kinetic curves have been divided by the wave function ren
malizationZ in the lower figure. The inset in the upper figure show
the early time behavior.

FIG. 8. The expectation value of the number operator given
Eq. ~2.2! vs t @in units of vS , see Eq.~8.1!# for h55.0 andvc

540, v th55, vp59.58, Z50.982, and bath temperatureT5200,
corresponding toG/vp'0.1.
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porated in a Boltzmann description of kinetics. In particu
the focus was to assess the validity of the Boltzmann
proximation as well as non-Markovian and Markovian qua
tum kinetic descriptions of relaxation and thermalization in
model that allows an exact treatment.

Although the model treated in this article allows an ex
solution and therefore provides an arena to test the regim
validity of several approximate descriptions of kinetics a
compare to an exact result, it is obviously not a full quant
many body theory. Specific many theory models used to
tain a microscopic description of thermalization and rela
ation will certainly contain details that are not captured
the model investigated here. However, from the exhaus
analysis in this article we believe that some of the res
obtained here are fairly robust and transcend any partic
model. These are the following.

~1! Boltzmann vs quantum kinetics.A necessary criterion
for the validity of a Boltzmann approach is that there is
clear and wide separation of time scales between the mi
scopic time scales and the time scales of relaxation. Th
typically the situation in which quasiparticles correspond
very narrow resonances in the spectral functions and t
lifetime is much longer than the typical microscopic scal
If perturbation theory is applicableand the quasiparticle
resonance is narrowand its position is far away from thresh
olds, then a Boltzmann description is likely to be reliable
time scales longer than the formation time of the quasipa
cle. When there is competition of time scales or the ea
stages are experimentally accessible a full quantum kin
equation must be obtained.

~2! Microscopic time scales.In order to determine the
microscopic time scales the first step is to determine the
sition of the resonances or quasiparticles, i.e., the quas
ticle pole including the medium effects. The bare parti
poles do not determine the microscopic time scales. Ob
ously for weakly interacting theories the position of the ba
and quasiparticle poles will be very close and the mic
scopic time scales are similar.

~3! Relaxational time scales.An estimate of the relax-
ational time scale is determined by the width of the re
nanceG, a wide separation of time scales that would prov
a necessary condition for the validity of a Boltzmann a
proximation would require thatG/vp!1.

~4! Thresholds.Although a wide separation of time scale
is a necessary condition for the validity of a Boltzmann a
proach, it is not sufficient. In particular when the position
the resonance is too close to threshold, there will be imp
m

tic
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tant corrections to the long and short time dynamics aris
from the behavior of the spectral density at thresho
Threshold effects can lead to strong renormalization of
amplitude of the quasiparticle pole~wave function renormal-
ization! that results in sizable distortions of the equilibriu
distributions as compared to the free particle ones. In p
ticular we have seen how thermalization is achieved but w
large corrections in the quasiparticle distribution functio
from the usual Bose-Einstein form. The relevance of thre
old effects can be quantified by the ratioG/(vp2v th). If this
ratio is !1 then threshold effects will be negligible. Whe
this ratio isO(1) these effects will be important.

~5! Formation times, Markovian vs non-Markovian kine
ics. The model that we have studied allowed us to expl
the concept of the formation time of a quasiparticle. Th
concept is simply unavailable within a Boltzmann approa
since the Boltzmann equation coarse grains over the for
tion time scales. This is clearly revealed in Figs. 5 and
Both the non-Markovian quantum kinetics and its Markovi
approximation include off-shell effects and capture the ea
time dynamics associated with the formation of the quasip
ticle. The formation time of a quasiparticle becomes relev
if the initial state is very far from equilibrium, since in
nonlinear evolution, large initial departures can result
large corrections in the asymptotic region. It is also imp
tant if the early time dynamics is resolved experimentally
seems to be the case in femtosecond resolved studies o
carriers in semiconductors. An important message learne
this work is that even in strongly coupled cases a n
Markovian quantum kinetic description provides a very go
approximation to the correct dynamics for most of the r
evant time scale. A Markovian approximation that is o
tained by extracting the distribution functions from inside t
nonlocal time integrals, but without taking the interval
time to infinity ~completed collision! offers a viable descrip-
tion, which is close to the exact evolution and that of t
non-Markovian quantum kinetics at weak and intermedi
couplings. Its main advantage is computational because
approximation provides a local update equation.
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@5# L. Bányai et al., Phys. Rev. Lett.75, 2188~1995!.
@6# For a recent discussion of experimental results and theore

efforts, see the following articles: E. Reittsamer, L. Banyai,
i-

al
.

B. Tran Thoai, P. I. Tamborenea and H. Haug in the proce
ings of the23rd International Conference on The Physics
Semiconductors, edited by M. Scheffler and R. Zimmerman
~World Scientific, Singapore, 1996!, Vol. 1, p. 685; D. S.
Chemla, ibid., p. 625; K. Henneberger, H. Gu¨ldner, and T.
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