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We study the dynamics of relaxation and thermalization in an exactly solvable model of a particle interacting
with a harmonic oscillator bath. Our goal is to understand the effects of non-Markovian processes on the
relaxational dynamics and to compare the exact evolution of the distribution function with approximate Mar-
kovian and non-Markovian quantum kinetics. There are two different cases that are studied in(ijedail:
quasiparticlegresonancewhen the renormalized frequency of the particle is above the frequency threshold of
the bath and(ii) a stable renormalized “particle” state below this threshold. The time evolution of the
occupation number for the particle is evaluated exactly using different approaches that yield to complementary
insights. The exact solution allows us to investigate the concept of the formation time of a quasiparticle and to
study the difference between the relaxation of the distribution of bare particles and that of quasiparticles. For
the case of quasiparticles, the exact occupation number asymptotically tends to a statistical equilibrium distri-
bution that differs from a simple Bose-Einstein form as a result of off-shell processes whereas in the stable
particle case, the distribution of particles does not thermalize with the bath. We derive a non-Markovian
guantum kinetic equation which resums the perturbative series and includes off-shell effects. A Markovian
approximation that includes off-shell contributions and the usual Boltzmann equeatiergy conservingare
obtained from the quantum kinetic equation in the limit of wide separation of time scales upon different
coarse-graining assumptions. The relaxational dynamics predicted by the non-Markovian, Markovian, and
Boltzmann approximations are compared to the exact result. The Boltzmann approach is seen to fail in the case
of wide resonances and when threshold and renormalization effects are imp@fd83-651X99)02107-§

PACS numbsgws): 05.30-d, 76.20+q, 72.10.Bg, 72.15.Lh

I. INTRODUCTION AND MOTIVATION netic approaches are beginning to emdi@e29. In particu-
lar recently the initial stages of pre-equilibration during
Recent advances in semiconductor femtosecond spectroghich quasiparticle correlations begin to build had been in-
copy[1,2] highlight the need for a deeper theoretical under-vestigated in a many body systdi®@]. The pre-equilibrium
standing of the relaxational dynamics of hot carriers thatstage cannot be studied within a Boltzmann approach be-
goes beyond Boltzmann kinetics. Boltzmann or semiconduceause the early time dynamics depends on the initial prepa-
tor Bloch equations, are based on strict energy conservatioration of the state and is determined by virtual processes that
and result in a Markovian description as a consequence afo not conserve energy on short tinesf shell).
averaging over microscopic time scales. On short time Besides semiconductor systems, the interest in quantum
scales, the time-energy uncertainty principle comes into plakinetics is truly interdisciplinary: in dense plasni&],
and off-shell(nonenergy conservingrocesses lead to quan- nuclear mattef8,10,11, and high-energy physics and cos-
tum kinetic equations with memory effects, i.e., non-mology[12-14 to cite but a few applications. For example,
Markovian effects. one of the main goals of the theoretical program associated
Ultrafast relaxation in semiconductors are typically stud-with ultrarelativistic heavy ion collisions is to study the dy-
ied by exciting a semiconductor sample with a femtoseconghamical evolution of the highly contracted nuclei after colli-
laser[3—6]. The subsequent dynamics of the photoexcitedsion. The important ingredient in this program is a Markov-
carriers is then studied by measuring the optical or transpoiitin relativistic transport equatiof$5—18 whose validity in
properties of the sample at different time delays. These exthe extreme situations envisaged to arise during the early
periments demonstrate the breakdown of Boltzmann kineticstages of heavy ion collisions at RHIC and LHC is question-
for periods less than the optical lattice oscillation periodable at best.

(around 115 fs in GaA$§5]) and emphasize the need for a A very powerful method to derive quantum kinetic equa-
quantum kinetic description of the relaxational dynamics. tions uses the nonequilibrium Green’s functions within the
Motivated by these new developments, there is a reKeldysh formalism[19] which leads to the Kadanoff-Baym

kindled interest on a deeper theoretical understanding ofquationg20]. In order to derive quantum kinetic equations

quantum kinetics and critical analysis of transport and ki-some assumptions must be invoked. Usually the generalized
Kadanoff-Baym ansat21-26 with renormalized one par-
ticle Green'’s function propagatof27] is used to relate the

*Electronic address: smast15@vms.cis.pitt.edu two-time correlation functions with the one-time distribution
"Electronic address: boyan@vms.cis.pitt.edu function. An alternative approach to derive quantum Kkinetic
*Electronic address: devega@Ipthe.jussieu.fr equations is by truncating the Bogolyubov-Born-Green-
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Kirkwood-Yvon (BBGKY) hierarchy[28,29. tion function. In Sec. Il we analyze the dynamics from the
Although there is ample experimental and numerical conpoint of view of the time evolution of an initially prepared
firmation of kinetics described by Boltzmann or kinetic density matrix which allows us to establish contact with the
Bloch equations in processes in which there is a wide sepdluctuation dissipation relation. Here we distinguish between
ration between relaxational and microscopic time scales, theare particle and dressed particle and quasiparticle distribu-
situation for non-Markovian quantum kinetics is less welltions. The exact solution of the Heisenberg equations of mo-
understood. An important limitation in the numerical studytion is presented in Sec. IV. In Sec. V we study in detail the

of non-Markovian kinetic equations is the very intensive long time dynamics of the distribution function. In Sec. VI

computational requirements to analyze integrodifferentialV® discuss the exact solution in terms of normal modes and
equations with memory30]. Thus it is important to try to analyze the definition of the quasiparticle number operator

test relaxation via non-Markovian quantum kinetic equation hat describes t_he relaxat|or_1al dynamlcs_. In _Sec. Vil we ana-
in systems which afford an exact solution. Recently non-Y%€ the approximaterelaxational dynamics in terms @)

Markovian quantum kinetics has been studied within thethe Boltzmann equatiorfii) the non-Markovian quantum ki-

context of hot electron relaxatiof26] in one dimension. netic equation, andiii) a Markovian approximation to the

This model affords an exact solution via bosonization andit@ntum Kinetic equation. We provide a numerical compari-

allows a direct comparison to an approximate kinetic treat>0" (I)f the exact and approglr_natse kmls).\(tlcs in Sec. VIl Our
ment. Furthermore, improved transport equations that jpconciusions are summarized in Sec. Ix.
clude the effects of correlations leading to a non-Markovian

description have been recently propo$g€é] and compared Il. THE MODEL

to available exact solutions in low-dimensional models. Thus  A¢ stated in the Introduction, we seek to study aspects of

the current experimental efforts in femtosecond relaxation Euamum kinetics in a model that allows us to compare ap-

f Kineti : Markovi . foximate treatments of the relaxational dynamics to exact
of quantum Kkinetics via non-Markovian transport equationsyy| iions. The model that we choose to describe this situa-

justifies the study Qf model 'systems that can be solved ®%ion is that of an oscillator of bare frequeney, (represent-
actly and thus provide a testing ground for the different type§rlg the physical mass of the in particle states before the

of z%i)]proxir?atfio;:_s. icle i dv the d - fh interaction coupled linearly with a bath with an infinite
e goal of this article Is to study the description of ther-, yher of degrees of freedom given by harmonic oscillators

mallhzgron andbre(ljax?glonal tdyngtmllcs |r(1j asimple :ﬂdﬁtlyd. with frequencieso, . Although this is a drastic simplification
solvablemany body theory o obtain a deeper understanding, microscopic interacting theories, this model continues to

?f the oflf-s};h_ell ;)Iro%es_segwlot enlgrgty consedrvtlng on _Zhort serve as a testing ground for studies of dissipation in quan-
ime scales Involved in thermallzation and 1o provide a ., system$31—-37]. Recently, this model was used to study

yardst|c|l<tto ttezt q'ﬁi:?nt ?pi)rommtahtlo?sli The aspects that!iissipation of a particle coupled to electromagnetic field in
we seek to study in this article are the following. the dipole approximatiof3g].

(i) How do off-shell effects modify the dynamics of ther- L
malization and relaxation? By off shell we here refer to pro- The Lagrangian is given by
cesses that do not conserve energy on short time scales and 1.
threshold effects that are not incorporated in the usual Bolt- L[9,Ql= E(qz— w29?)
zmann equation. These are responsible for quasiparticle
properties such as widths and wave function renormalization. 1 i

(i) A detailed understanding of the relaxation of quasi- ) > (QE-wiQh)—a> CiQx,
particles versus that of bare and dressed particles and to ex- . K
plore the definition of a quasiparticle distribution function ) . o ,
that is valid beyond the narrow width approximation. The'Where the different coefficients of; Qg (oscillator masses

model under consideration also allows us to study the formab@d been absorbed by a canonical transformation into a re-
tion time of the quasiparticle. definition of the coupling€, . We now refer to the oscillator

(i) A comparison of the validity of Markoviacoarse 9 2s the “system,” i.e., the degree of freedom whose dynam-
grained approximations including the Boltzmann equation, ICS We are interested in studying, and the oscillasas
to a non-Markovian description of relaxation which is a sim-the “bath,” these will be integrated out in the nonequilib-
plified form of the Kadanoff-Baym equations. rium effective action. This model also describes the interac-

Although we anticipate that the answer to many of thesdion of an electron with a phonon or photon bath in the
questions will in general depend on the details of the microdiPole approximationi36,37. .
scopic model, we propose to study a model of a particle We will eventually take the limit in which the bath oscil-
(harmonic oscillatorinteracting linearly with a bath of har- lators are distributed continuously by introducing the bath
monic oscillators. As it will be seen in what follows this SPectral density)(w) and where appropriate replacing the
model bears many of the properties of more realistic interdiscrete distribution with a continuum one in the following
acting systems. By studying different couplings between thénanner.

semiconductors and the necessity for a deeper understand

particle and the bath, we provide answers to tHase other 2
guestions and obtain further intuition into more complex I w)= m D Ci _
o (w)=75 2, —d(w—wy
situations. 2

In Sec. Il we introduce the model and discuss the different
approaches to study the dynamical evolution of the distribuin such a way that
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2 tem and bath degrees of freedom can be studied by following
; CEf(wk)_’;J dowl(o)f(v). (2.1)  the methods found in Ref33].

The complete information of nonequilibrium expectation
values and correlation functions is completely contained in

Our main goal is to study the evolution of the number of : . .
9 y the time-dependent density matrix

excitations or “particle distribution” associated with the

quanta of the system. Anticipating self-energy renormaliza- p(H)=U(t,t,)p(t)U " L(t,t))

tion effects by the bath, we define a reference frequecy

and introduce the operator that counts the number of quanigith U(t,t;) the time evolution operator. Real time nonequi-

of the system’s degrees of freedom associated with this frelibrium expectation values and correlation functions can be

quency obtained via functional derivatives with respect to sources of
the generating functiondll9,39

" 1 1
NO= 2 [PPO+QMI=5. 22 Z[j* [ 1=TrU, 4 )pt)U et )1 Trpt),

wherej =~ are sources coupled to the particle coordinate. This
generating functional is readily obtained using the

. : : : Schwinger-Keldysh method which involves a path integral in
or the frequency renormalized by the interaction with thea complex contour in timé19,39. Real time, nonequilib-

bath, we will leave this choice unspecified for the moment. ", , . i .
rum Green’s functions are now obtained as functional de-

Since the theory is quadratic we can resort to a number ofim :
different ways to study the dynamical evolution. rivatives with respect to the sources. There are four types of

(1) Given an initial density matrix we can evolve it in free propagator§l9,39

wherep(t) is the momentum of the particle. The reference
frequency could either be taken to be the bare frequengy

time exactly and obtain all of the nonequilibrium correlation + FN it g
functions. (Qu(QE("))y=—iG " (t,t")
(2) The Heisenberg equations of motion for the operators =—i[G(t,t)o(t—t")
can be solved exactly and again we can obtain any correla-
tion function. +G (L) ot —1)],
(3) The normal modes can be found exactly, from which
we can find theexactground state and also obtain the opera- (Q(DQ ("))=—iGy "(t,t")

tors that create the particle or quasiparticle states to study the TGPt ,
asymptotic evolution of nonequilibrium states. =—i[Gett)ot’ —1)
(4) We compute exactly the expectation value of the pro- FGI(H)O(t—t)]
posed number operator in the canonical ensemble of the sys- kA ’
tem plus bath and compare the result to the asymptotic form O (N =i G (tt ) = —i G=(t.t’
of the nonequilibrium distribution function. This allows an QM) o (L) (),

unequivocal description of thermalization in terms of the - eI\ i mt p
density matrix. (Q(DQ (")) =i1G, "(t,t")
We will pursue all of the above different approaches, ——iGI(tt)=—iGL(t',1), (3.

since each particular method provides different insights and

the main goal is to understand this simpler model in detail tavhere the signst in the above expressions correspond to

provide intuition into more realistic cases. the fields and sources on the forwaré Y and backward
(=) branches and

[ll. TIME EVOLUTION OF AN INITIAL DENSITY

i
MATRIX Gk>(t,t'):g[(l—i—Nk)exp{—iwk(t—t’)}
The first method is to calculate the time evolution of the “
reduced density matrip,(t) of the particle that has been + Ny expliw(t—t")}],
prepared at some initial timg. This can be achieved by
treating the infinite set of harmonic oscillatof3, as a <] . ,
“path” and obtaining an influence function&B2-3§ by Gy (Lt )_z_w[(1+Nk)eXp{'wk(t_t )}
tracing out the bath degrees of freedom. We assume that the ] ,
total density matrix for the particle-bath system decouples at +Ngexp{ —ioy(t—t")}],
the initial timet; , i.e., 1
Ny=—r——. 3.2
p(t) = ps(t) ® pr(ti), “exp B —1 (32

where pg(t;) is the density matrix of the bath which de-
scribes infinite set of harmonic oscillators in thermal equilib-
rium at a temperatur@ and p4(t;) is the density matrix of The reduced density matriy, (t), is defined a$32-36
the particle which is taken to be that of a harmonic oscillator

in thermal equilibrium at temperatufig. More complicated p, ()= TrR_p(t)

initial density matrices, including correlations between sys- ' Trpgr(t)’

A. The reduced density matrix
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where the subscrigR in Trg refers to tracing over the bath 1 1 o
degrees of freedom. Taking the trace o@r, one obtains i Xs,rsit]= —exp{ e =
the reduced density matrix in terms of the influence func- r 2 mA(t) 2[[g~ ()]
tional [32—36, .9
[32-36, Alq".q7] P B2(1) P
B 2A() | T 4AM) T
pr[q,q’:t]=f dqldquo[ql,qﬂJDqu _
.[g(t) B(1) }
Fi| = | X ¢
xexp[if dt(Lo[q*]—Lo[qD] 9t 2AL
_ | B(1) - o]
a".q 2A(t)[lo. g(t)+aig(t)] el
with the following boundary conditions on the fields: 1 _
q°(t)=a1, a'(®)=q; g (®)=ad’, g ()=0,. + 5 PO +aigt ] X
pold1.02] is the initial density matrix of the particle and (V)
. 1 .
I - Ip . 2
K

where

o qa(t)Gﬁb(t,t’)qb(t’)] . ab=+,—,
a.b 0?0

2

1 .. o.
A =—5—g*(1) + ZR" () +50%(1),

1 .
Lo[a*]1=5[(a")?~w5(a*)?].

o .

. _ . . . B()=——g()—R" (1),
We will choose the initial density matrix of the particle to g (1)

be that of an harmonic oscillator of reference frequeficin

thermal equilibrium at temperatuig, given by

[1
pold1,d2]= \ 5 —exp{ipi(d1—d2)}

t t
R**(t)zfodt’fodt”g(t—t’) K(t'—t") g(t—t"),

(e [t ) g
R (t)_fodt fodt Py K(t'—t") ~———

Q g (n’
= — )2 A2
><exp{ 2sinr[BOQ]{[(ql i)+ (92— 0i)°]
R+‘(t)=ftdt’ftdt” (t—t") K(t’—t")—gi(t”)
x cosh Bo2]— (A1~ ) (A — G} |, o S0 9 g0
2
where q; and p; are respectively the average position and b e & @ Fen
momentum of the particled,=1/T,, and K(t'—t )_zk 2wkCOt 2 |coten(t’ —t],

_ 9 g(t—t)—gt) g(t—t")
gn oM -git

The reference frequenc§) will allow us to understand The dynamics of the reduced density matrix is completely

the different features of the dynamics of the dressed particlgetermined by the functiog(t) which satisfies the following
in the medium, rather than the bare particle with frequencyitferential equation:

wg. We will specify this reference frequency below when we
study the dynamics in detail. . t

Using the Wigner coordinatd82—36 which are defined 9(t) + wgg(t) — fodt'ﬁ(t—t')G(t')ZO (3.7
as

o=

1 tl{ﬂoﬂ} _ 1+2n(0)

20 %M a0 0 NMO=gaTT g (t) (3.6

1 with initial conditions g(0)=g(0)=0 and g(0)=1. The
x(t’)=§[q+(t’)+q‘(t’)], r(t")=q*(t")—q (t"), kernel 2 (t—t') is the retarded self-energy of the system
3.4 degree of freedom and it is given by

2
the integrals in Eq(3.3 can be evaluated easily and one E(t—t’)ze(t—t’)Z &sir{wk(t—t’)]. 3.9
obtains the reduced density matrix k Wk
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We will postpone the computation of the functig(t) to the  detailed numerical study comparing with different approxi-
next section and we will specify the spectral density for themations in a later section. In general the spectral density
bath in a later section wherein we will compare exact resultfulfills
to different approximations.

Having obtained the reduced density matrix, we can now _[#0 for wp<|ow|<w,
obtain the expectation values gf(t) andp?(t) and to com- Jw)= 0 otherwise, (314
pute the expectation value of the number operd@p),
which after some straightforward algebra is shown to bewherewy,, w. are threshold and cutoff frequencies, respec-
given by tively.

The real time evolution ofi(t) can be obtained by taking
the Laplace transform of Eq3.7). Solving for the Laplace

1 Q
t)=—>+R(t)+ = (p?+ Q%) g?(t ~
{n(t) 2 ® 2 (P o) (1) transform ofg(t), namely,g(s), one can show that

(Gf+0)., — pi+Q%ai+20). , 1
T2 9O 20 g 9s)=——— = (3.19
S*+ wyt+2(S)
Pig; _.. -
+#[g(t)+929(t)] g(t), (3.9  with the Laplace transform of the retarded self-energy given
by
where we have introduced the shorthand notation )
3(s) o2 uiw)
. S)=— — ——— wlJ(w
I g(t) _,_ K 0k %+ ol Wf 2+ w?’
R(t)=ﬁ R (t)‘*‘sz (t) (3.1
g2(t) where we have taken the limit of a continuum distribution of
+( o +Q2 | RTH (D). (3.10  bath oscillators as given by E@.1). The functiong(s) in
g%(t) Eq. (3.19 is basically the Kadanoff-Baym retarded Green'’s
: PP : . function in the Laplace variable
;miﬁgﬁgessmn for(t) can be simplified by introducing the The functiong(t) is then given by the inverse Laplace
transform
t
(@)= | dre7e(n) g(t)= z—f eG(s)ds, (3.17
ml Jr
k(w,t)= fthe—ing(T) (3.12) wherel refers to the Bromwich contour running along the
0

imaginary axis to the right of all the singularities gfs) in
the complexs plane. Therefore, we need to understand the
analytic structure ofj(s) to obtain the real time dynamics of
the particle occupation number.

From the expressiofB.16) for the Laplace transform of

_ E k ’ the retarded self-energy, we find trﬁg(s) has cuts along
RMO=7q 4 w—k[1+ 2N(@) [ k(1) the imaginarys axis fors=iw, wy<|w|<w. as can be seen
from

=iwh(w,t)+e ig(t). (3.12

In terms of these functiong(t) can be written as

2

+02|h(wy,1)]?]. (3.13 _
So(s=iwx0")=3 i3
The expectation value of the number operd®®) in the s(s=lo )= 2r(w) (@)
nonequilibrium density matrix has two contributions: one with
that is completely determined by the initial state of the sys-

tem (proportional top;, ¢;, o) and the other, determined by 2 ')
the bath and given bfR(t). Detailed understanding of the Sr(w)= ;PJ do'——, (3.19
particle number relaxation requires the knowledge of the dy- w?—w'?
namical functiong(t) which will be studied in the following
section. '
S(w)=2 Sgr(w)J do'J(w)e' 8w * w?)
B. Calculating g(t) — sgr()d(|w]). (3.19

Before specifying a choice of the spectral density of the
bathJ(w) we can obtain more insight by analyzing the real It is convenient to introduce a renormalized frequency by
time behavior ofg(t) and consequently gin(t)) in general.  performing a subtraction of the self-energy. Clearly the sub-
Having determined the general features of the evolution, wéraction point is arbitrary, and we choose to subtrack at
will then specify a particular choice af(w) and provide a =0. We thus introduce the renormalized frequency as
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. . 2 ¢
i Fie ) plane g(t)= —f dw S(w)sin(wt), (3.21)
a) b) T J oy,
iy tiwg where the spectral densif( ) is given by
® S(0)=3(0)[3(s=iw+ )2
® 3)(w)
—iwﬂ, —iwﬂ, = 2 2 2 2" (322
[0~ wg=2r(w)]*+[2(0)]
From the initial conditiong(0)=1 we find the sum rule
— W, — W,
2 f “d ~1 3.2
FIG. 1. The complex contour used to evalug(e) for the cases T o wS(w)=1. (323
in which (a) the pole is below the threshold arid) the pole is
above threshold. For weak coupling, the spectral density can be approxi-
mated by a Breit-Wigner resonance and asymptotiag(ty
~ 2 J is approximately given by40]
w2R=w(2)+E(S= O)=w(2)— —J dwﬂ, (3.20
n w
. Tt ZE|((,UP)
o g(t)~Zcogwpt+a)e™" ', I'~—F5—,
and the once subtracted self-energy is given by 2wp
-1
- 2 (> Jw) & IZR(w)
= — = = — _ Z: 1_ y 3.24)
34(5)=3(s)—3(s=0) Wfo dw o it a? | (

p

Isolated poles ofj(s) are at the values, which satisfy ~ with a a constant phase sh[#0]. We identify this behavior
with a typical quasiparticle which acquires a width through
s§+w§+is(sp)=0. !”nedlum effects andl whose reS|dlue at the quaS|p§rt|cIe pole,
i.e., the wave function renormalization constant, is smaller

: . than one as a consequence of the overlap between the initial
These are purely imaginary when they are below the thres are particle state and the continuum of the bath. This inter-

i%ld ftroetggr?gf%;ifztg giggtg)t;;e;a?gs(%fl ?h]e CO;EE{Z?Egih pretation will be further clarified when we study the exact
9 P normal modes in the next section.

interacting system. 2) Th : - .
. ) . . . ere is only a single isolated pole below the dat.
If the imaginary part of the poléin the s variablg w, is this case, there are two contributions to the inte@8al?);

above thresho_ld«Qp> wr), then the pole is in the _second the pole contribution and the cut contribution. In this case we
(unphysical Riemann sheet and for weak couplings thefind

spectral densityS(w), defined below, will feature a Breit-

Wigner resonance shape where the width of the resonance is _ 2 (wg

related to the imaginary part of the keri} and the peak of g(t)=Zcoqwpt) + ;L do wS(w)coqwt), (3.29
the resonance is ai,. The position of these complex poles "

can be parametrized in terms of real and imaginary parts aghere we define the wave function renormalizatidms in
Eq. (3.24) above,

Sp=lw,—T. .
. . IZR(w)
These correspond to decaying states and are not eigenstates Z=|1- 5 (3.2
of the interacting Hamiltonian. If the width'<w, these Jw w=w,

long-lived resonances aemostenergy eigenstates and will
be identified with the quasiparticles of the interacting systemAsymptotically at long time, the cut contribution vanishes
in the next section. with a power law determined by the behavior${fw) near
Depending on the strength of the coupling with the envi-threshold[40], and g(t) oscillates with the pole frequency
ronment)(w) and the value oz, the imaginary part of the wp. Just as in the previous case, the bare particle has been
pole w, can be above or below the threshalg,. dressed by the bath, and to distinguish from the bare or qua-
(1) The pole is above threshold, i.e,> wy,. Since there  siparticle we call this state the dressed particle. The position
are no isolated singularities below threshold, only the cubf the dressed particle pole has been shifted and its residue is
will contribute to the integra(3.17). The Bromwich contour smaller than one as a result of the overlap with the con-
I' in the complexs plane is chosen as the one shown in Fig.tinuum of states of the bath.

1(b) where all the singularities aj(s) are to the left of the From the initial conditiorg(0) = 1, we derive the impor-
contour. Evaluating the integral along this contour, we obtairtant sum rule
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z+3Jw°dwwS(w)=1 (3.27) P[¢]=ex —EJ dtf dt' &K HE-t")&(t)
T Wih . . 2 .

(3.28

Both cases of the sum ruk8.23 and (3.27) are a conse-
quence of the canonical commutation relati¢@6]. Since  The path integral over the relative coordinaf¢) leads to a
the spectral densit$(w) is positive semidefinite, the above non-Markovian Langevin equation for the center of mass
sum rule determines thai<1. coordinatex(t) in the presence of a stochastic Gausslaut

The expressioii3.25 allows us to explore the concept of colored noise termé&(t) [32,33,35. The noise correlation
the dressing time of the particle. At long times the contribu-function is determined b (t—t") given by Eq.(3.6).
tion to g(t) from the continuum vanishes typically as a The fluctuation-dissipation relation is established in the
power law determined by the behavior of the spectral densitjollowing manner{36]. In the limit of a continuum distribu-
near threshold40] and the contribution from the pole domi- tion of the bath oscillators we find the time Fourier transform
nates the dynamics. This contribution results in a asymptotiof the retarded self-energy(t), Eq.(3.8), to be given by the

oscillatory behavior ofj(t) with an amplitude determined by @analytic continuation of the Laplace transfof116 s— w
the residueZ at the particle pole. The formation time can be — '€, I.€.,

defined to be the time it takes for the amplitudeggf) to 5 N

reach its asymptotic valug [initially g(0)=1]. In the case i(w—ie): — —f do’ o (o) . (3.29
in which the pole is embedded in the continumphysical ™ [(0")?~(w—ie€)?]
Riemann sheg¢tand we deal with quasiparticles, a similar ]

concept can be introduced, now being the formation time off hen we find(for »>0)

the quasiparticle. There are now two competing time scales: -

the formation time scale during which the quasiparticle pole IM2(w)]=J(w) (3.30
dominates the dynamics and the contribution of the con-

tinuum becomes subleading, and the relaxation time scal@nd the Fourier transform in time of the kerr&(t) (3.6) is
which is determined by the imaginary part of the self-energygiven by

at the quasiparticle pole, i.e., the width of the resonance. The

time scale of formation of the quasiparticle can be defined to R(w)= ilm[i(w)]cot}‘{'g—w
be the time it takes until the exponential falloff of the corre- 2 2
lation function ensues.

In this case, the two different time scales can only beThis is the usual fluctuation-dissipation relati@®]. Finally
resolved if they are widely separated which requires that thave obtain the bath contribution to the nonequilibrium occu-
resonance be very narrow and the exponential relaxation agation number Eq(3.9), which is determined bR (t) given
sociated with the decay of the quasiparticle allows many osby Eq.(3.13, in a form that displays clearly its relationship
cillations to occur. This condition can be quantified asto the fluctuation dissipation relation
I''w,<1 which requires a weak coupling to the bath. We L
will explore these situations numerically in a later section _ = 2, 2 2
where a particular density of states of the bath will be pro- R(H)= ﬁf doK(w)(|k(w,]*+h(w.0]%),
posed. (3.32

. (3.3

C. Fluctuation dissipation whereK (w) is the power spectrum of the bath. This expres-
The main advantage of studying the time evolution of the>'oN make_s epr|C|t_ the stochashc_ hature of therma_llza'uc_)n

: A ; ' “and establishes a direct relationship with the fluctuation dis-
reduced density matrix is that it allows us to establish a d|-Si ation theorem
rect relationship between the relaxation of the occupation P '
number of the “system” and the fluctuation dissipation theo-

rem. The connection between the fluctuation dissipation and IV. THE HEISENBERG OPERATORS
the Boltzmann equation has been investigated recently in the The above results can be understood in an alternative

semlqlasswgl reg!mEl3]. . . . manner by obtaining the real time evolution of the Heisen-

This relationship is established by rewriting the path inte-o . ictire operators, from which the expectation value of
grql (Zp) in Eq. 3.3 In terms of the Wigner cp_ordmates the number operator can be obtained by providing an initial
which ca.n be cast in the following probabilistic form density matrix. The equation of motion of the Heisenberg
[32,33,3%: operatorq(t) is given by

To= | DXDrDEP[ £]eiSenter o), . Ck [
P f XDrDEP[&]e q(t)+w§q(t)—; w—tfodt’sir{wk(t—t’)]qw)

seﬁ<x,r,§>:ft dt’r(t’)[—[X<t’>+w3X<t’>] - Q%) (CRY
0 - 7 k~k ' ’

+f dt"2 (1" —t)x(t") + £(t") |, whereQ({)(t) satisfies the homogeneous equation
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Q-k(o)(t)-*'wﬁQf(O)(t):O- (4.2 Settingg;=0, p;=0 in the resul{(3.9) we find that Eq(4.6)

reduces to the expression obtained by the time evolution of

Equation(4.1) can be solved using Laplace transform, andthe density matrix3.9) and the last term is identified with
the operator solution with the initial conditiog(t=0)  R(t). The operator method allows us to compute any corre-

=q(0), iq(t=0)=p(0) is found to be given by lation function of operators in the initial density matrix at
arbitrary times, whereas the time evolution of the density
) t ) matrix would require the introduction of external sources and
q(t):p(O)g(t)+q(O)g(t)—§ CkfodTQk (t—=7)9(7),  taking functional derivatives with respect to those to obtain

4.3 unequal time correlation functions.

whereg(t) is the same function which was defined in the V. ASYMPTOTIC BEHAVIOR OF THE OCCUPATION
preceding section. NUMBER

Since the initial density matrix describes a thermal distri- , ) i
bution for the quanta of a harmonic oscillator of reference 1he asymptotic behavior ofn(t)) is completely deter-

frequency(, it is convenient to write the initial position and Mined by the long time dynamics gf(t). We have shown
momentum operators in terms of the creation and annihilathatg(t) vanishes asymptotically for poles in the continuum
tion operators of a quanta of frequenByas while the_contr_lbutlon from _the isolated pole domlna_tes for

the case in which the pole is below threshold. We will con-
sider each individual case in detail.

0= 1b+b1, p(0)=—i~/2b-b1
U0=—75 P 5 :

A. Poles in the continuum(wp>wy,)

Also, it is convenient to writ®{%)(t) in terms of the creation In this case the functiom(t) vanishes exponentially at
and annihilation operators of a quanta of frequengyas asymptotically long time$§3.24) and the asymptotic behavior
of the particle occupation number is given by
QO (t)= L[ake*i“‘ktJr aje' ], (4.49) 1
V2wy (n(«))=— §+R(w) (5.1
Gathering all termsg(t) andp(t) become with
() = —=={Ba() ~ i Dg()]+ a0 +ig(D]} e
Pa R(W)=m dw[1+2N(®)]S(w)(Q%+ w?),
@th
(5.2
- &[aTe‘“’kth(w t)+H.c]
o 6 ko e where we used Egs(3.19 and (3.22, recognized the

Laplace transform ofy(t) in the long time limit for Eq.
1 ) ) . _ (3.13 [using the vanishing of(t) at long time$
p(t)=ﬁ{b[g(t)—ng(t)]+bT[g(t)+ng(t)]} B
Ih(w,)|?=[g(s=iw+e€)[?,

C _
—> X raleiekk(wy,t)+H.cl, (4.5 |k(w,2)]*= w?|h(w,2)|%
¢ Vo
_ _ It is clear that the asymptotic value on(«)) is different
whereh(wy,t), k(wy,t) are defined in Eq(3.12. The ex-  from the equilibrium occupation number of the bafiw,).
pression(4.5) reveals that the particle operators create states Suppose that the spectral dens8fw) can be approxi-

with overlap with bath continuum. _ mated by a narrow Breit-Wigner resonance with
The expectation value of the occupation number operator
n(t) in Eq. (2.2 can be evaluated using an initial density 7 T r—0 .7
matrix which is diagonal in the basis of the number operators S(w) 2—5(w— wp), (5.3
w
P

- -
for system and bath. Assuming a continuum spectrum of the 20p (0—wp)?+ T2
bath oscillators, using Eq2.1) and considering for simplic-

ity the case of vanishing expectation valuesjd), p(0) in ~ Where
the initial density matrix, we find
ZE|(wp)
N=———- (5.9
1 1+2n(0) . : 2wy
(n(th)=-5 +————[g%(1)+20%g*(1) + Q*g*(1)]
4Q as would be the case for weak coupling. Then the asymptotic
1 occupation number becomes
N 2
+ ZWQJ dod(w)[1+2N(w)][|k(w,t)] . 2 a1
_ P ) —
+Q2h(w,b)]2]. (4.6) <”(°°)>_Z( 20w, ) N(op+3)1=5. (53
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which is different from the equilibrium value of the bath. ticles will be important. Clearly this is the regime in which a
We now see that choosing the reference frequeficy Boltzmann approximation could be unreliable.
=wp, and introducing a quasiparticle number operator as  These corrections originate in off-shell effects that will
depend on the particular spectral density of the bath and the

_ ) 2 2 1 coupling between the particle of the bath. We will quantify
Nauas( ) = 20 Z[p (O +wpq (t)]_ﬁ (50 the corrections for a particular choice df{w) in a later
P .
section.
we see that Moreover, the asymptotic value of the particle number

does not depend on the initial condition of the particle; e.g.,

1 initial expectation values of position and momentum, tem-
Nquas(®) =N(wp) +5{ 1= =/, (5.7 perature, or occupation number.
thus the quasiparticle reaches an asymptotic distribution B. Isolated poles(wp<wy)
function of almost thermal form with corrections arising In this case the asymptotic time dependence of the func-

fror_n _t_he wave function rer_lormalization. The facibin the  ion g(t) is completely determined by the isolated pole be-
definition of the quasiparticle number operator reflects thgg, the bath continuum and the function “rings” with this
fact that the quasiparticle pole has strergtather than 1. In - frequency and with asymptotic amplitude determined by the
the following section it will become clear that the red@it7)  \yave function renormalizatio@ given by Eq.(3.26. The

is a consequence of the complétermalizationof the qua-  gsymptotic behavior of the particle occupation number de-
siparticle with the bath and that the occupation number ofineq at a reference frequen€y is now given by
guasiparticles becomes the one predicted by the canonical

ensemble as follows from the discussion leading to Egs. 1 Z2sin(w,t)
(6.9),(6.10 below. This expression thus reveals the impor- (n(o))=— §+R(oo)+ —2p
tance of counting the quasiparticles instead of the bare par- 20wy

ticles. Even in the weak coupling limit the distribution of

202 4, 4 4.2
; . o X[prQe+(Q4+ +wr Q!
bare particles is not thermal whereas the true quasiparticle [P ( 0p) o+ @pl7]

distribution departs perturbatively from a Bose-Einstein dis- piaiZ?( Q wp)
tribution at the temperature of the bath. — w——ﬁ)Slf‘(prt)
The asymptotic value of the distribution is approached P
exponentially. The thermalization time scale is given#y Z2cof(w,t) p?
= ince it i i 2 ich i +t————| 5 +200+0q?|, (59
=1/2I" since it is determined bg“(t) which is the depen- 2 Q o+ Qaq7|, (5.

dence of the occupation number on the function that deter-
mines the real time evolution either of the density matrix orwhereR () is the limit value ofR(t). ForQ=w,, i.e., the
of the Heisenberg operators. osition of the dressed particle pole, the asymptotic value of
Even when the occupation number is defined in terms othe occupation number obtains the simple form
the true “in medium” pole, there will be departures from the
Bose-Einstein distribution for non-negligible widih and 1 ) 1] 72 2, 2.2
when the strength of the poRis substantially smaller than ~ (N(*))=— 5 +R(*)+Z°n(0)+ 5|+ 55 [pi+ Q°q7].
1. These corrections will arise in the case of broad reso- (5.9
nances and may lead to large departures from the Bose-
Einstein distribution. This situation will be explored numeri- The last term can be identified as the contribution from the
cally later. expectation values gb(0), q(0) (p;, q;, respectively in
In the case of a wide resonance, the prodliab) S(w) is  the initial density matrix.
sensitive to the width of the resonance. For bath temperature Unlike the case in which the pole is in the continuum, the
T< wy, the Bose-Einstein distribution will only probe the tail asymptotic value of the particle occupation does depend on
of the broad spectral density closer to threshold and the prodiow the particle was prepared initially since expresgm8)
uct is only sensitive to the threshold behaviorSft») [37]. depends om;, g;, andn(0). In this caseR(«) has contri-
In particular if near threshol®(w)~(w— wy,)* then for  butions from both the continuum cut and the isolated pole
temperatures < wy, the temperature dependence of the equibelow the continuum.
librium abundance of unstable particles in the bath is ap- In order to compare the results to those obtained from an

proximately given by approximatequantum kinetic equation obtained via a pertur-
bative expansion in the next section, it is useful to obtain an
N(T;t=0)—n(0;t=0)~e @n/TTarl expression forR(«) up to first order inJ(w). The expres-

sion for R(x») (5.2) is proportional to the spectral density

which reveals threshold corrections to the Boltzmann expoS(w) given by Eq.(3.22). When the pole is below the con-
nential suppression. This result has been anticipated in Refinuum, the contribution from the cut is proportionalXfw)
[37] within a different context. and perturbatively small whed(w) is small. Furthermore

In the opposite limit whem> w, the product is sensitive the continuum contribution dephases rapidly at long times,
to the width of the resonance and the details of the spectrand asymptotically the relevant contribution g¢t) arises
density. Thus in the case of a broad resonance the departurgem the isolated pole. After some straightforward algebra
from a Bose-Einstein distribution function for the quasipar-we find for Q= w, that at long times



PRE 60 QUANTUM KINETICS AND THERMALIZATION IN A ... 103

— — 1 1 W¢
k(@024 (o, 2=z2 T30 | 1 Cosiww] H=§<p2+w3q2>+5f do[ P?(0) + 0?Q%(w)]
o o Oth
51 W¢
519 +C1f dwC(w)Q(w),
with oth
=0+ c?
w:=0%w (5.11 w)=m 2((:0)

and to lowest order inJ(w), the asymptotic contribution
R() is given by The Hamiltonian of this rather simple model can be di-
agonalized by finding the normal modes. Let us write the

72 1 1 linear change coordinates and momeftanonical transfor-
R()= mf dw)(w)[1+2N(w)]| — +— +0(J?), mation to the normal modes 481,37
T owZ
q=8a(N)Q(N), p=8Sa(N)P(\N), (6.9
which for easier comparison with the results from kinetics,
can be written in the following form: Q(w)=8B(w,N)Q(N), P(w)=858(w,\)P(\),
(6.2
1 z? _
R(w)=~ 5(1— Z%)+ Ef dod(w) where the symbaf, stands for the sum over the discrete and

integral over the continuum normal mode eigenvaludbat
render the Hamiltonian in diagonal form

> >—1 +0(3?),
w [

{1+N(w) N(w)
X +

1
H= ESA[PZ()\)+)\2Q2()\)].
where the term (+Z?)~2(1—Z2) and we have used the

sum rule(3.27) to lowest order. . ~ The vectorsV(\) = (a(\),8(w,\)) obey the normal mode
Settingp;=0; =0 in Eq.(5.9), the asymptotic occupation gjgenvalue equation which in components reads
number becomes

w%a()\)-ﬁ-fwcdwC(w)ﬂ(w,)\)=}\2a()\), 6.3
<n(00)>=22 Wth

1
n(0)+ﬂ_—QJ de(a))
Clw)a(\)+ o?B(w,N)=N\?B(w,\), (6.4

> >~ | +0(3%). (5.12
w

w? and the\’s are theexacteigenenergies of the Hamiltonian.

Solving for B(w,\) in terms of «(\) in Eqg. (6.4 and
inserting the solution back into E¢6.3) we find the solution

We have purposely kef# in the above expression to com- - : .
pare it to the results from the quantum kinetics approximafor the coefficients and the secular equation for the eigenval-

tion to be obtained later. Clearly this result depends on th&'€s to be given by

initial distribution of the particle and the details of the spec-

tral density of the bath, leading to the conclusion that in the Blw )\):—C(w)a()\) +Bé(N—w)
case in which the particle pole is re@elow thresholy the ' (N—i€)’— w? '
particle does not thermalizevith the bath.

><{1+N(w) N

2 (o wl(w
NS G

. wm a(N)=BC(\N),

VI. COLLECTIVE NORMAL MODES
AND QUASIPARTICLES

In a many body problem, the poles of the exact two parwhere we used “retarded” boundary conditiofvgith theie
ticle Green's functions are identified with the collective prescription to establish contact with the previous results,
modes. In general the poles are complex resulting in th@ndB is determined by normalizing the eigenstates.
damping of the collective excitations. We can make contact There are two distinct possibilitiegl) an isolated pole
with this many body concept by studying thermal modes below the continuum threshold of the bath corresponding to
of the total Hamiltonian for the particle-bath system undera dressed stable particle af® a continuum of states and a
consideration. quasiparticle pole in the unphysical Riemann shgeso-

Since the Hamiltonian is quadratic, it can be diagonalizechance.
by a canonical transformation in terms of the normal modes. (1) Isolated polesThe condition for isolated poles below
In order to establish a correspondence with the continuurthe bath continuum requires settiBg=0 since the spectrum
distribution of bath oscillators it is convenient to write the of the bath has no support below threshold. The position of
Hamiltonian in the continuum form the pole is found from the secular equation
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wl(w) 0 a(wp)=VZ

2 (o
o wi- = [ o2 <0 | . o

Ton  wp—o with Z the wave function renormalization given by Egs.
) o B N ) (3.18 and(3.26). Normalization of the vectors is equivalent
This expression is identified as the condition for isolated the sum rulg3.27).

poles in the Laplace transforgy(s) [see Eq.(3.15] for s (2) Continuum statesFor the continuum states we take
=iw,. The value ofa(w,) is determined from normaliza- B=1 so thatQ(\) —Q(w) whenC(w)—0 and we find the
tion and we find coefficients
|
C(N)
a(\)= , (6.5

(>\—i6)2—wg—(2/w)fw°dw{w3(w)/[(x—ie)z—wz]}
Dth

B(w,h)zﬁ(k—wHM- (6.6)
(A—i€)’— w?
|
In this case the normalization results in the sum rule given by ) 1 '
Eqé(:éii)ée of our choice of boundary conditions, the coeffi- AalV= \/sz[wpq(t)ﬂp(t)] ©7

cients are complex and the resulting new coordinates are not
Hermitian. This can be remedied by absorbing the phases b§symptotically at long times creates a dressed particle state
a trivial canonical transformation and defining the coeffi-With unit residue out of the exact vacuum. At any finite time
cientsa(\), B(\) in terms of their absolute values and the the state created by this operatomist an eigenstate of the
9O(\), P(\) to be real. This phase carries the information offull Ham|lton|an_ but has overlap Wlth states in the cc_mtmqum
the boundary conditionéheie prescription and since itis [41]. We associate the operat@:.7) with dressed particles in
removed by a canonical transformation the results are inddh€ case of isolated poles quasiparticlesfor resonances, in
pendent of these. contrast to the normakollective modes of the system that
Let us consider the case of an isolated pole below thé'® €xact eigenstates. .
threshold of the bath continuum &t=w,. This state is the ~ Although a priori one would be tempted to define the
one that evolves from the bare particle degree of freedorfiressed particle as the normal mode of frequengyassoci-
upon adiabatically switching on the system-bath coupling@ted with the creation and anmhﬂa'uon operators obtained
Cy and is identified with the position of the isolated pole in from the normal mode described Y,, Po, these are of

the Laplace transform of the functiog(t) given by Eq. little use: these operators represent linear combinations of
(3.15. the particle and the degrees of freedom of the bath. Obvi-

Separating the contribution from the isolated pole weOusly the number operator associated with this normal mode
is constant in time. The interpolating operat6:7) is the

write natural candidate for counting quasiparticld4].
q(t) = VZQp(t) + Qeonft), In an experimental situation such as, for example, an elec-
tron in a metal, one would like to write down an evolution
p(t)= \/Zpo(t)+7)cont(t)a equation for the distribution function that describes the par-

ticle dressed by the medium. The interpretation of the quasi-
where the operator@.,n;, PcontCreate excitations in the con- particle creation operator is consistent with this physical situ-
tinuum of the bath out of thexactground state. Writing2,, ation since the added particle will move in the bath being
Py in terms of creation and annihilation operators of thedressed by the interaction with the medium, the resulting
exacteigenstates, we see that asymptotically long times thguasiparticle will have a new dispersion relatigiven here
operatorsq(t), p(t) create anexactone dressed particle by wp) and in general a width, and the probability associated
state out of thexactvacuum. In the limit of asymptotically ~with this quasiparticle pole will be reduced by the overlap
long times and invoking the Riemann-Lebesgue lemma  with the states of the bath. This quasiparticle is not a station-

ary state because it overlaps with the collective modes and

Z . its time evolution involves dephasing.
q(t)|0)————=e*s|1,), on phasing
«/pr In the case in which the pole af, has a value larger than

the threshold for the bath oscillators, it has moved into the
where|0) is theexactground state and the contribution from second (unphysical Riemann sheet upon adiabatically
the continuum states averages to zero at long times by thewitching on the interaction and is no longer part of the
dephasing between modes. eigenspectrum of the Hamiltonian. In this case it has become
The operator an unstable state angd, will have a small negative imagi-
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nary part given by" [see Eq(3.24)]. In this case the overlap (2) Nonthermalization of stable particletn the case in
with the continuum results in an almost exponential decay ofvhich the particle pole is below threshold the asymptotic
the quasiparticle distribution after the short formation time ofoscillations in the expressiofs.8) for 1+ w, are a conse-
the quasiparticle. guence of the interference between the state of arbitrary fre-
We then see that thiaterpolatingnumber operator quency{) and the normal mode with frequenay,. These
oscillations disappear when the reference frequerty is
- 1 ) 2 2 1 chosen to be the normal mode pole frequeneoy)(which is
Nguas(t) = m[p (D +wpg(t)]— 27 (6.8 also the particle frequency, this fact has already been noticed
P within a different contexf14]. The factorZ? in Eq. (5.9 has

can be interpreted as either the dressed particle distributiof€ following origin: asymptotically at long times(t)
function in the case of an isolated pole below the continuum—vZQo, p(t)—ZP, in the sense of matrix elements. But
of the bath or the quasiparticle distribution function in thethe Qq, P, create particle states out of bare states with am-
case of a resonance. Besides setting the reference frequerjtude \Z, therefore one of the facto@in Eq. (5.9) arises
A=w, in Eq. (2.2) the wave function renormalization factor from the asymptotiqweak limit on the operators, and an-
Z accounts for the strength of the particle or quasiparticleother factorZ arises because the calculation of E89) was
pole. The importance of wave function renormalization hagperformed in terms of the bare states overlap with the par-
been highlighted within the context of high field transport in ticle states given by the wave function renormalization. Us-
semiconductor§4?2). ing the expansion in terms of normal modes we find that
Interpretation of resultsThis analysis in terms of normal <ﬁquas(oo)> given by Eq.(6.8) doesnot coincide with
modes reveals several features of the exact solutions ob-
tained in the p.revi.ous section_s. _ Tr[ﬁquas(o)e_BH]
(1) Thermalization of quasiparticles (resonancels).the
case in V\_/hich the quasiparticl_e po_le is gbqve _thres_hold, th@nlike the previous case of a resonance.
asymptotic value of the quasiparticle distribution given by
Egs. (5.1),(5.2 is a consequence dhermalization Indeed

by using the expansion @f, p in terms of the normal mode VII. KINETICS

coordinates and momenta given by E(%1),(6.2) with the Having provided an analysis of the exact evolution of the
coefficients a(\)| and realP(N), Q(N) itis straightforward  gistribution function and distinguished between that of renor-
to prove that malized, stable particles and quasipartidiessonances we

now proceed to obtain kinetic equations in several stages of
approximation to compare with the exact results. Kinetic
equations are obtained by truncating the hierarchy of equa-
tions of motion for the higher order correlation functions
with ﬁquas(o) the quasiparticle number operat6:8) at the under certain a_ssumptions. The typical as_sumptio_ns are those
initial time t=0. This is a remarkable result: the density Of Slow relaxation as compared to the microscopic time and
matrix, which initially was of a factorized form for particle €ngth scales and rely on a separation of scales. To warrant
and bath at different temperatures has evolved in time to thilliS Separation between scales clearly a perturbative param-
equilibrium density matrix for the total system at the tem- €t€r must be invoked and the resulting kinetic equations pro-
perature of the bath. However the distribution of quasiparti-Vide & resummation of the perturbative expansion. Different
cles isnotgiven by the Bose-Einstein form. Furthermore, thetYP& ©Of approximations result in different resummation

contribution toﬁquas(oc) that does not vanish &—0 can be schemes.

interpreted as a zero point contribution from the resonance.

In the case in which the quasiparticle becomes a narrow reso- A. Quantum kinetic equation

nance we see from Eq5.5) and(6.8) that The quantum kinetic equation is obtained by taking the
expectation value of the number operator using the Heisen-

6.10 berg equations of motion and truncating the exact equations

' of motion within a particular approximation. Since we want

to obtain the kinetic equation for the relaxation of the distri-

and the number of quasiparticles departs from a Bosebution function of particles with frequendy (for quasipar-

Einstein distribution at the temperature of the bath with theticles this is the pole frequency of the propagator, for bare

departure determined by the off-shell effects that result irparticles it is simplyw,) it is convenient to write the total

Z+1 through the sum rules. The last term, identified abovedamiltonian in terms of this frequency adding a counterterm

with the zero point contribution is interpreted as the normal-of the form

ization borrowed from the continuum by the quasiparticle. Su?

Although in this S|mplt_e casg does not depend on tempera- Hct=iq2(t), 5(02:(03_92_

ture and the last term in E¢6.10 can be subtracted out as a 2

redefinition of the quasiparticle vacuum, in a general quan-

tum many body theory, the wave function renormalizationAs usual the counterterm is chosen appropriately in pertur-

will be medium dependent and such subtraction would bédvation theory to cancel the contributions recognized as those

unjustified. arising from a shift in the frequency.

- - 1
<nquas(°°)>:Tr[nquas(o)ei'gH]: Zz 2

1
R( ——} (6.9

L2
z

1
<nquas(°°)>: N(wp) + 2
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Taking the derivative of Eq2.2) and using the equations whereg='~ are the free Green’s functions for the system
of motion we obtain defined similarly to those of the bath,'~, see Eq.(3.2),
one obtains
. 1 .
n(H)=— 512 Cba) i t
(n()=g > cﬁf dt"[3 ¢ (t,t") g™ (t",t)
2 K 0

o . .
+S-labam+amamly. (7.
—3 (g D], (7.3

The expectation value of the time derivative of the occupa-
tion number is calculated by multiplying E¢7.1) by p(0)
and taking the trace

_ 1 St =G (L), (L) =G (t.t"),
<n<t>>=—55 > C{a" (1) Q1)

where the self-energy componeris '~ are given by(to
lowest order

and
Sw?
+ (At +at)am) o (7.2 . dg”(t".t')

g (t")=———|p .

dt’
where
R ) Substituting the nonequilibrium Green’s functions from
(@7 (t")Q (1))=Tr[a(t")p(0)Qx(t)]. Eq. (3.) in the right-hand side of Eq7.3), taking the de-

rivative with respect td’ and arranging terms, we obtain
We need to evaluate the nonequilibrium matrix element

(9 (t")Qy (1)). This can be achieved by treating the inter-

action term in perturbation theory. The zeroth order term in (h(t)) dt’f dwJ(w){[1+n(0)+N(w)]

the perturbative series does not contribute because the initial 0
idn?tri\asdn%i/mmeatnx commutes with the number operator at the % cog (Q+ w)(t—t")]+[N(w)—n(0)]
A simple diagrammatic analysis of the perturbative series xXco§ (Q—w)(t—t")]}, (7.9

reveals that the kinetic equation can be writeactlyas
wheren(0) is the distribution of quanta for the particdéethe

__ L 2 c dt” S St initial time andN(w) are the Bose-Einstein distributions of
N k [2 (1) the bath which will be taken to be constant and given by Eq.
(3.2.
e - " We now propose a scheme that provides a resummation
XGT(" ) = E (L) G (1", 1)] of the perturbative series by replacing the initial distribution

n(0) by self-consistently updating the distribution inside the
integral in Eq.(7.4) by replacingn(0)—n(t"). It will be
' shown explicitly below that this prescription leads to a
v=t Dyson summation of particular Feynman diagrams and the
case wheren is constant is understood as the lowest order
term in this expansion. Within nonrelativistic many-body
.quantum kinetics, this approximation is known as the gener-
alized Kadanoff-Baym ansaf21-27. The validity of this
approximation in the weak coupling limit is confirmed by
comparing the resulting evolution of the distribution function
to the exact result obtained in the previous sections as it will
e seen below in detail.
The quantum kinetic equation is then given by

Sw?
+ T[Q>(t,'f’)+g<(t1t')]]

whereG <~ are theexactGreen’s functions for the system,
defined similarly to those of the bath E@.1) andX.,*~ are
the irreducible self-energy components, again defined simi-
larly to Eq.(3.1).

To first order in the interaction we use the free-field
propagators and the lowest order contribution to the self;
energy. It is straightforward to show that the counterter
contribution vanishes to this order and E@.2) becomes

: [ d
(nV)=g 2 Cis

fo dt!’(<q+(t’)q+(t")> <nqk j dt/f de (O){[l+n t )+N((D)]

X(Q (1 Q") —(a™ (t") g™ (t") X co$ (Q+ w)(t—t")]+[N(w)—n(t")]

X{(Qy (1) Q (1)) Xco§ (Q—w)(t—t")]}. (7.5

=t
The resulting linear kinetic equatiof¥.5 can now be

Writing the free field propagators of the system and thesolved via Laplace transforms. The Laplace transform of
bath in the above equation in terms 9f'~ and G.*~,  (ng(t)) is given by
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n(0)+ (1/wQ) fwcde(w)({[l+ N(w)]/s}[s/(s?*+ w2)]+[N(w)/s][s/(s*+ w?)])

@th

Ngi(s)= , (7.6

s— (U7 Q) fw°de(w){s/(sz+ w?)—sl(s*+ w?)}
@th

wheren(0) is the initial occupation number of the particle andI" is given by Eq.(5.4). The contribution from this pole
andw- are given by Eq(5.11). The dynamics of the occu- vanishes exponentially for long time&) There is a second
pation number of the particle is obtained by taking the in-pole ats=0 and the residue of this pole, using Eg.7), is
verse Laplace transform along the Bromwich contour. TheN(Q)). The average occupation number is then given by the
analytic structure ohg,(s) consists of cuts along the imagi- contribution of the two poles and the cut
nary axis in thes-plane and poles. For the pole contributions, )
we distinguish two cases : (n(t))=N(Q)+ (residue asy)x e 2"t

Case I: Poles in the continuurm this case there are two
poles: (1) a pole where the denominator of E.6) van-
ishes, i.e.,

+ (contribution from the cyt

Asymptotically the contribution of the cut falls off as a
1 s s power law[40]. Therefore the contribution from the last two
Sp— _J dod(w) P _ P =0. terms vanish and the particle occupation number approaches
() Sto’ sito’ the equilibrium occupation of the bath with frequenfy
) ) Comparing the above result féf= w, with the one obtained
For weak coupling, one can solve for the palg, in pertur-  exactly in the small coupling regime, E¢5.5), we see that
bation theory and one can show that the pole is givefuby  they differ by a factor of orded(w) which can be compen-

to first order inJ(w)] sated for by considering higher orders in deriving the kinetic
Q) equation. ' .
sp=— ——=—2I, Case II: Poles below the continuurBince J(w,) van-
Q ishes for poles below the continuum, there is only one pole at

s=0. The average occupation number is given by the sum of
the residue of the pole and the cut contribution. At long
times the cut contribution vanishes at least as a power law
lim s=md(w.), (7.7 [40] and the asymptotic average occupation number is given
s—0 St w3 by

where we used the identity

n(0)+(1/wﬂ)fw°dwa(w){[1+ N(©) /@2 + N(w)/ 02}
Wth

<nqk(°°)>: we
1—(1/7TQ)J' dod(w){lw? —1lw?}
Oth

The denominator of the above equation can be simplifiecdand therefore provide off-shell corrections. For the case in
considerably becoming simpl 2 to this order. The above which the quasiparticle pole is in the continuum, we see that
equation is now written as asymptotically at long times the distribution becomes similar
to that obtained in the Boltzmann approximation, see Eq.

1 (o (7.9, with the same relaxation rate. However at early times

n(0)+ _Qf dod(w) the solution of the quantum kinetic equation differs apprecia-
TS o, bly from the Boltzmann solution in that the relaxation rate
vanishes at the initial time, whereas it is a constant for Bolt-

<nqk(°°)> =7°

% 1+ N(w) + N(w) _ zmann. The vanishing of the relaxation rate at the initial time
w? w? is a consequence of the fact that the initial density matrix is

diagonal in the number representation, thus whereas the
Comparing the above result with the one obtained exactly imuantum kinetic equation describes correctly the initial evo-
the small coupling regime, Ed5.12), we see that the two lution, the Boltzmann equation has coarse grained over these
results coincide. time scales and misses the early time behavior.
Obviously this quantum kinetic equation includes contri-  This is important experimentally if the resolution in time
butions from intermediate states that do not conserve energyf the measurement allows us to study time scales that reveal
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features of the initial preparation. Such is the case in femtoeally below the exact solution showsrentrivial time de-
second resolved studies of relaxation of hot carriers as dggendence in this case because the bare particle is dressed by

scribed in the Introduction. the medium and the asymptotic equilibrium distribution
function reveals off-shell effects as discussed in the previous
B. Markovian and Boltzmann approximations section.

If the particle occupation number varies on time scales
larger than the memory of the kernel in the kinetic equation, VIIl. NUMERICAL ANALYSIS
a Markovian approximation may be reasonable. In this ap- | grder to compare the particle number relaxatit)
proximation, the particle occupation numbe(t’) in Eq.  penyveen the exact results E§.9) and the various approxi-
(7.9 is replaced byn(t) and taken outside the integral. This 4tions to the kinetic description E67.5), Boltzmann and
approximation would be justified in a weak coupling limit, in Markovian, we have solved numerically for a particular

this case when the spectral density of the ki) includes  choice of the spectral density of the bath. We will choose the
a small coupling(as it will be specified in the next sectipn following model forJ(w):

7. The rational behind this approximation is the realization

of multitime scales: a microscopic or short time scale given )= pwg0—wp) 00— o) 00.—o). (8.1
by t~1/w, and another relaxation or long time scale
~qt. . o This is a generalization of the Ohmic bath in whidfw)
Thus in the Markovian approximation, E(Y.5 becomes  yanishes for frequencies below a threshold frequengyand
: above a cutoff frequency., and » is a dimensionless cou-

(h(t)>=if dod(w) [1+N(w)]sin(w,t) pling parameter. Sinc& w) has dimensions ab?, we intro-

7 W+ ducedws, which can be scaled out, explicitly to serve as an
N(w)sin(w_t)] n(t) energy sc_ale. We scale our_r_esults to_thls energy s@gh_nd

+t— perey dod(w) refer all dimensionful quantities to this unit since the impor-

w_ a

tant physical quantities are dimensionless ratissch as
[sin(w+t) Sin(wt)J /T, etc). This is the simplest spectral density of the bath
X - .

(7.8 that allows us to model important features of relevant micro-
scopic models and illuminates the main aspects of relax-

A computational advantage of this equation is that it pro-2tional dynamics. _

vides alocal update procedure. A connection with the Bolt-  ThiS form of the spectral density for the bath has been
zmann approximation is made with a second stage of apmotlvated by previous studies of decoherence and dissipation
proximation, known in the Boltzmann literature as the!N Similar model theorie$31-37. It is the simplest realiza-
“completed collision approximation” and consists in taking ion that allows us to vary parameters and investigate the
the limit t—oc in the arguments of the sine functions in Eq. different regimes for.the phenomgna discussed in the previ-
(7.8). This approximation enforces strict energy conservatiorPUs S€ction. By varying the coupling and the value of the
which can be understood by using the limiting distribution Pare (or renormalizegl frequency we can test the different

[ w_

scenarios.
. sifw.t] For the case of the quasiparticle pole embedded in the
M =mi(ws). continuum the dimensionless parameter that determines the
o - separation of time scales is given for the spectral density
Noticing that onlyw _ could vanish leading to the Boltzmann (8.1) by
expression
r nws( |
: JQ) —=—(wp— o).
(ng(t)= —5—[N(Q)—n(D)]. P 2w

When this ratio is<1 the resonance is rather narrow and
there are many oscillations before the decay, the time scales
are widely separated. In the other limit when this ratid
the particle is strongly coupled to the bath, resulting in a
wide resonance and a potential for large off-shell effects in-
= (7.9 cluding effects related to the proximity of the peak of the
2Q) resonance to the threshold.

. N The dynamical functiomg(t) satisfies Eq(3.7). In terms
where we recognize the lowest ord@orn approximation ¢ the renormalized frequenayg given by Eq.(3.20, g(t)

to the decay rate which is given by Eq8.19 and (3.24. .4, pe shown to satisfy the following equation:
Obviously the Boltzmann equation predicts no relaxation in

the case in which the pole is below the continuum threshold 2 rt J(w) _

since in this casd(Q)=0. Even when the bare frequency is g(t)+ wag(t)+ —j dt’f do——-—codw(t—t")]g(t")=0,
in the continuum of the bath, the Boltzmann approximation mJo @

predicts no relaxation i(0)=N({}) as the gain and loss _

processes exactly balance. As we will see explicitly numeri- g(0)=0, g(0)=1.

The solution is clearly
(ng(t))=N(Q)+[n(0)—N(Q)]e e,

I %(Q)
BT 20
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FIG. 2. The expectation value of the particle occupation number 19 [}, —EI—E?::ttic
given by Eq.(2.2) vst[in units of wg, see Eq(8.1)] for Q= w, for R o "B"ZI"';?;’:":‘
the case in which the pole ®lowthreshold for particle tempera- 17 [
ture T;=200 and bath temperaturé=100. The pole is aiw, ’

=1.95719 andZ=0.95621. The numerical parameters afe 15 [
=0.85, w.=45, wy="5, andwg=2. nt) |

13|
Now we study different scenarios in detail.

Figure 2 shows the case for which the dressed particle 1L
pole is below threshold. In this case the Boltzmann equation :
predicts that no relaxation occurs because the imaginary par P P R P R R
of the self-energy evaluated on shéflamping ratg van- 0 2 4 6 8 10 12

ishes. The exact solution, and the quantum kinetic approxi- ()
mation along with the Markovian limit all predict nontrivial i i .
relaxation, and for this weak coupling case all agree to_. FIGb' 3|‘ET?26 SXpic[t.at'on.tvahfje of the %artglg]ofcugit'on fnumber
within few percent. Obviously in this case the relaxation jgdIven By £q2.2) VS LN UNIS Ofws, See =qis. 4] 1ot @p 0T

) . N the case in which the pole &bovethreshold for particle tempera-
solely due to off-shell effects since the dissipative effectsturesTO:100 (@) and 200(b) and bath temperaturé=100. The
aSSQC'ated W'th Processes that conserve e”é‘“QyShe'} pole is atw,=9.83397 and=0.99631. The numerical parameters
vanish. The insert of the figure shows the dynamics of dress;, 7=0.85, w,=45, wy=5, and wg=10, resulting in I/
ing of the particle and the time scales predicted by the exact g go. P

result are well reproduced by both the quantum kinetic equa-

tion and its Markovian approximation. significantly from 1. The left figure fog(t) depicts clearly

_ In contrast, Fig. 3 ShOV_VS the case fo_r which the qua_siparfhe dressing time of the particle, with(0)=1 we see that
ticle pole is in the continuum but with a narrow width . . : .
I'/w,~0.02. The bath temperature is fix@d=100 and the aftﬁ.r a Zhorrt].tlme the r;clsymptotlvc; vallgaét)wIZcos@pt) IS

initial temperature of the particleTg) is varied. We notice achieved. This figure thus revealgo time scales, one asso-

that in the case in which the temperature of the bath and th&i2t€d with the oscillation scale of the dressed particie,1/
of the bare particle are the same, the Boltzmann equatiofind the other associated with the decay to the asymptotic
predicts no relaxation because the gain and loss process m, Ith's é'Te shcale deterr(rjunes th% dre_ssmg time ofdthe
balance exactly, this is the straight line in the graph for bard@'ticle and for the case under consideration corresponds to
particle temperaturd,=100. The exact solution as well as Just a few oscnlathns. This dressing time ;calg clequy de-
the kinetic and Markovian approximation predict relaxation,pe_ndS c;\n the Idet_alls gf the _specfttral dhensny since it ﬂetﬁr'
the kinetic and the Markovian approximations are very close" €S the early t.|me dynamics atter the prepara.tlon of the
to the exact expression. Analytically we know that the exactinitial state. The right figure fog(t) presentshree different
Markovian and kinetic will asymptotically approach the time scales: initially there is the time scale of formation of
Boltzmann resultwith very small correctionsin this very  the quasiparticle, very similar to the left figure, the time scale
narrow width case. Obviously the time scales for relaxatiorassociated with the quasiparticle petd/w,, and finally the
and the early time dynamics are features not reproduced Hyme scale associated with the exponential decay. The forma-
the Boltzmann equation and clearly a result of off shell ef-tion time scale and that of exponential decay can only be
fects, since all of the energy conserving detailed balance prdesolved in the narrow width approximation, in this particu-
cesses are contemplated by the Boltzmann equation. lar examplel’/ w,~0.005 and the time scales associated with
Figure 4 compares two situations: the left figures correthe quasiparticle formation from the initial state and expo-
spond to the case of a pole just slightly bel@vessed par- nential relaxation can be resolved. These are clearly dis-
ticle) and the right figures just slightly above thresh@dia-  played in Fig. 5 where the logarithm of the maximaggt)
siparticl§. This case provides for strong renormalizationis plotted versus time. In Fig. 6 we show the expectation
effects because the wave function renormalization departgalue of the number operator E.2) for Q= w, for the
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FIG. 4. The functionsS(w) and g(t) for the cases in which the pole jast below(left column and just aboveright column the
threshold frequency ¢¢="5). In the left column,wg=5.52, w,=4.98083, andZ=0.63845 while in the right colummwg=5.65, w,
=5.07373, an=0.69959. The numerical parameters gre 3.0 andw.= 55, with I'/ w,~0.005.

same values of the parameters as in Figupper figure

quantum kinetics description of relaxation both predict non-

corresponds to pole below threshold and lower figure to thérivial evolution of the dressed particle and quasiparticle dis-
pole above threshojdand equal particle and bath tempera- tribution functions, respectively. The upper figure shows that
ture To=T=10. Whereas the Boltzmann equation predictswhereas the quantum kinetic and Markovian evolution are
again no relaxation, in the upper figure because the dampingot too different from the exact, asymptotically all of them
rate vanishes and in the lower figure because the on-sheallepart significantly from Boltzmann. The early time dynam-
gain and loss processes balance each other, the exact aod predicted by the Markovian and quantum kinetics are

Infg(t)]

FIG. 5. The logarithm of the maxima af(t) vst [in units of
wg, see Eq.(8.1)] for »= 3.0 andw.=55, w,=5, wg=5.52,
0, =4.98083, an =0.63845, corresponding to the left column of

Fig. 4.

o 5 10 15 20 25 30

very close to the exact expression. In the lower figure, cor-
responding to a narrow resonance we see that asymptotically
the quantum kinetic and Markovian evolution asymptotically
approach the Boltzmann result but obviously the early and
intermediate time dynamics is remarkably different. Further-
more the exact result reaches an asymptotic value that is very
different from Boltzmann, as a result of the strong quasipar-
ticle renormalization effects, wit departing significantly
from one(see Fig. 4. Despite the fact that the resonance is
rather narrow, its proximity to threshold results in strong
off-shell effects.

Figure 7 is perhaps one of the most illuminating. The
parameters are the same as for the right part of Fig. 4, i.e.,
with the quasiparticle pole in the continuum and close to
threshold, the bath temperatureTis=- 10 and the particle is
initially at zero temperature. In the upper figure we plot the
Boltzmann, exact, quantum kinetic and Markovian evolu-
tions, respectively, for the expectation value of the number
operator(2.2) for =w,, whereas the lower figure corre-
sponds to dividing byZ the results of the exact, quantum
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FIG. 6. The expectation value of the number operator given by
Eq. (2.2 vst [in units of wg, see Eq(8.1)] for the same values of
the parameters as in Fig. (@he upper figure corresponds to pole
below threshold and the lower figure to the pole above threghold
for the case of equal particle and bath temperaligre T=10. The
inset shows the early time behavior.

FIG. 7. The expectation value of the number operator given by
Eq. (2.2) vst [in units of wg, see Eq(8.1)] for the same values of
the parameters as for the right column in Figigdiasiparticle pole
above threshold »=3.0 and w.=55, wy=5, wg=5.65, w,
=5.07373, andZ=0.69959. The temperature of the bathTis 10
and zero initial particle temperaturé{=0), the exact, Markovian,
and kinetic curves have been divided by the wave function renor-
kinetics and Markovian evolutions to make contact with themalizationZ in the lower figure. The inset in the upper figure shows
quasiparticle number operatgi6.8). This figure clearly the early time behavior.
shows thqt the Boltz.mann approximation.coarse grains over IX. CONCLUSIONS AND IMPLICATIONS
the early time behavior and completely misses the formation ] _ _
time scales and the early details of relaxation. The goal of this article was to study the dynamics of
Finally, Fig. 8 presents the evolution of the quasiparticlethermal'Zat'on including off-shell effects that are not incor-
distribution for a case of a strong coupling regime resulting % . . . . .
in a wide resonancey=5, w=5.0, w;=40, w,=9.58,Z i ; 5 5 ; |
=0.982 for a bath temperatufie=200 and zero initial par- Pr S Lo, R
ticle temperature withl'/w,~0.1. The inset in the figure | il . : ‘
displays the early time behavior. We see in this figure that s _/7/ _______ U SRt SR
whereas the early time behavior is similar for the exact and I oy : : :
approximate evolutions, which is a consequence of zero ini- n(Y) i //
tial temperature for the particle, at times of the order of the 0
relaxation time there is a dramatic departure. Furthermore, F : : : : —
the Boltzmann approximation predicts a very different early S oritrmoioottmoobeo st Kinetic
time evolution because it coarse grains over the formation [ 5 5 5 DD markovian
time of the quasiparticle. L S PR R
Whereas the quantum kinetic evolution and its Markovian 0 08 ! 18 2 28 ¢
approximation track very closely the Boltzmann, the exact
evolution is approximately 15% smaller resulting in a FiG. 8. The expectation value of the number operator given by
smaller population of quasiparticles asymptotically. The de€q. (2.2) vs t [in units of wg, see Eq.(8.1)] for =5.0 andw,
partures in the exact result are a consequence of off-she# 40, wy,=5, »,=9.58,2=0.982, and bath temperatufie= 200,
effects associated with a large width of the quasiparticle. corresponding td"/w,~0.1.
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porated in a Boltzmann description of kinetics. In particulartant corrections to the long and short time dynamics arising
the focus was to assess the validity of the Boltzmann apfrom the behavior of the spectral density at threshold.
proximation as well as non-Markovian and Markovian quan-Threshold effects can lead to strong renormalization of the
tum kinetic descriptions of relaxation and thermalization in aamplitude of the quasiparticle polezave function renormal-
model that allows an exact treatment. ization) that results in sizable distortions of the equilibrium
Although the model treated in this article allows an exactdistributions as compared to the free particle ones. In par-
solution and therefore provides an arena to test the regime dicular we have seen how thermalization is achieved but with
validity of several approximate descriptions of kinetics andlarge corrections in the quasiparticle distribution functions

compare to an exact result, it is obviously not a full quantumfrom the usual Bose-Einstein form. The relevance of thresh-

P old effects can be quantified by the ratié(w,— wy,). If this
many body theory. Specific many theory models used to Obratio is <1 then threshold effects will be negligible. When

tain a microscopic description of thermalization and relax- °. o ) .
ation will certainly contain details that are not captured bythls ratio |sO(1) t_hese effects W'" be important. . .

the model investigated here. However, from the exhaustive (5) Formation times, Markowan.vs non-Markovian kinet-
analysis in this article we believe that some of the resultdCS: The model that we have studied allowed us to explore

obtained here are fairly robust and transcend any particulépe concept of the formation “T“‘? of a quasiparticle. This
model. These are the following. concept is simply unavailable within a Boltzmann approach,

(1) Boltzmann vs quantum Kinetio&.necessary criterion since the Boltzmann equation coarse grains over the forma-

for the validity of a Boltzmann approach is that there is ation time scales. This is clearly revealed in Figs. 5 and 7.

clear and wide separation of time scales between the micrd3Oth th_e no.n-l\/l_arkowan guantum Kinetics and its Markovian
scopic time scales and the time scales of relaxation. This jgPproximation include off-shell effects and capture the early

typically the situation in which quasiparticles correspond t t!me dynamics a;soqlated with the'forrr'latlon of the quasipar-
cle. The formation time of a quasiparticle becomes relevant

very narrow resonances in the spectral functions and the o : S . .
If the initial state is very far from equilibrium, since in a

lifetime is much longer than the typical microscopic scales. ; X . X
If perturbation theory is applicabland the quasiparticle nonlinear ev_olut|qn, large initial .depa_rtures can re_sult N
large corrections in the asymptotic region. It is also impor-

resonance is narroandits position is far away from thresh- . , o ;
tant if the early time dynamics is resolved experimentally as

olds, then a Boltzmann description is likely to be reliable for be th in f d ved studi h
time scales longer than the formation time of the quasiparti-seernS tp e the case In femtosecond resolved studies of hot

cle. When there is competition of time scales or the earI)P
stages are experimentally accessible a full quantum kinetig;
equation must be obtained.

is work is that even in strongly coupled cases a non-
arkovian quantum kinetic description provides a very good

(2) Microscopic time scalesin order to determine the approximation to the correct dynamics for most of the rel-

microscopic time scales the first step is to determine the poQV_ant time Sca'?- A '\"af"o‘."a”. approximation th_at 1S ob-
sition of the resonances or quasiparticles, i.e., the quasipa@'ned by extracting the distribution functions from inside the

ticle pole including the medium effects. The bare particler.'onlow.I t."‘?e integrals, but Wi.thOUt taking.the interve}l of
polesdo notdetermine the microscopic time scales. Obvi-ime to |nf|n|_ty (completed coIhsmhoffers_a viable descrip-
tion, which is close to the exact evolution and that of the

ously for weakly interacting theories the position of the bare . L . ;
and quasiparticle poles will be very close and the micro_non-l\(larkowan qgantum kmetu;s at weak 'and mtermedlate
scopic time scales are similar. couplm_gs. Its maln_advantage is computatlorjal because this
(3) Relaxational time scalesAn estimate of the relax- &PProximation provides a local update equation.
ational time scale is determined by the width of the reso-
nancel’, a wide separation of time scales that would provide
a necessary condition for the validity of a Boltzmann ap- D.B. thanks the NSF for partial support through Grant No.
proximation would require thaf/w,<1. PHY-9605186, the Pittsburgh Supercomputer Center for
(4) ThresholdsAlthough a wide separation of time scales Grant No. PHY950011P, and LPTHE for warm hospitality.
is a necessary condition for the validity of a Boltzmann ap-S.M.A. thanks the King Fahad University of Petroleum and
proach, it is not sufficient. In particular when the position of Minerals (Saudi Arabia for financial support. The authors
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