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The use of two-dimensional Bragg resonators of planar geometry, realizing two-dimen&@Dnalistrib-
uted feedback, is considered as a method of producing spatially coherent radiation from a large sheet electron
beam. The spectrum of eigenmodes is found for a 2D Bragg resonator when the sides of the resonator are open
and also when they are closed. The higher selectivity of the open resonator in comparison with the closed one
is shown. A time-domain analysis of the excitation of an open 2D Bragg resonator by a sheet electron beam
demonstrates that a single-mode steady-state oscillation regime may be obtained for a sheet electron beam of
width 100-1000 wavelengths. Nevertheless, for a free-electron r(feSsf) with a closed 2D Bragg resona-
tor, a steady-state regime can also be realized if the beam width does not exceed 50-100 wavelengths. The
parameters for a FEM with a 2D planar Bragg resonator driven by a sheet electron beam based on the U-2
acceleratofINP RAS, Novosibirsk are estimated and the project is descrif&1.063-651X%99)04207-5

PACS numbdps): 41.60.Cr, 52.75.Ms, 84.40.Fe, 84.40. |k

[. INTRODUCTION of electromagnetic energy fluxes propagating in forward,
backward, and transverse directions relative to the direction
In recent years many successful experiments have beer electron beam propagation takes place. The additional
carried out on free electron masdiEEM’s), which utilize  transverse electromagnetic energy fluxes should synchronize
conventional Bragg resonatof4—5]. Such resonators are radiation from different parts of the large sheet electron
constructed by machining single periodic corrugations on thdeam.
inner wall of the waveguide. However, in all previous ex- This paper is devoted to theoretical consideration of the
periments the diameter of the microwave systems (Bgd novel scheme of the FEM with 2D Bragg resonators of pla-
does not exceed the wavelength of the radiationlfy more  nar geometry. In Sec. 1l the basic model and main equations
than a factoD/\~2—4 and the output power produced wasfor electromagnetide.m) waves scattering on the double-
not more than 50 MW. Further increase in the transverseorrugated Bragg structure are presented. In Sec. Ill proper-
dimensions of the 1D Bragg cavity would result in the loss ofties of the open planar 2D Bragg resonator are considered. In
its selectivity. Sec. IV we investigate the excitation of such a resonator by a
However, for some applications it is attractive to achievesheet relativistic electron beam and study of the build-up
gigawatt power levels of millimeter wave radiation by utiliz- oscillations. In Sec. V the influence of external reflections of
ing a large high-current sheet beam as the FEM driver. Théhe transverse e.m. fluxes on the FEM operation is studied. In
use of such a beam makes it possible to increase the tot&ec. VI a project of 4-mm superpower FEM with a 2D planar
beam power and, correspondingly, the microwave poweBragg resonator driven by a 140 cm sheet relativistic elec-
while still keeping the current and radiation density per unittron beam is discussed.
transverse size constant. Indeed, at the U-2 accelgiBiiol-

ker Institute of Nuclear Physics, RAS, Novosibirgkmicro- IIl. MODEL AND BASIC EQUATIONS
second relativistic sheet electron beam with electron energy _
of 1 MV, current per unit transverse sigénear current den- The planar 2D Bragg resonator consists of two metal

sity) of 1 kA/cm, and transverse size up to 140 cm wasplates corrugated surface defined by

generated6,7]. The power of this beam is tens of gigawatts

and its energy is up to 0.5 MJ. a=ay[cogh,x—h,z) +cogh,x+h,z)] 1)
The main problem for the FEM driven by large size sheet

beams is producing coherent radiation from different parts ofnside the rectangular area of widtp, lengthl,, and sepa-

the electron beam. To solve this problem, two-dimension : : N Yy
(2D) distributed feedback has been recently propos:d”_at—eol by d_lsitancao (F|g. b. In Eg. Fl)' x _hsmgé, h,
[8—10]. 2D distributed feedback may be realized in a Bragg— N €0S¢: h=2w/d, d is the corrugation periodg, is the
resonator which consists of two metal plates with a doublycorrugation depth, and¢is the angle between the grating

periodical corrugation. On this corrugation mutual scattering/ectorsﬁ[Fig. 1(c)]. Assumingﬁal<1, we will describe the
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Ef=2z0g; sin(g;y) —iyoh; codg;y) (3b)

for TM modes, including the TEM modgvhich corresponds
to j=0).

The wave vectors of the partial waves satisfy the Bragg
resonance condition when scattering on the grating:

N =

hs—hp=h. @)

If the g@ting vectors are perpendicular to each othep (2

=m/2, hy=h,) all the partial waves will possess the same
longitudinal wave numbers and the same numbers of trans-
verse variations §=p), otherwise the wavesi. and B.
have the different transverse variation indices.

Substituting Eq.(2) into the Helmholtz equation with a
periodic boundary condition imposed at the corrugated plate
surface(1) and averaging, we obtain the following set of
equations for the slow amplitude$.. ,B- :

+

_h 0 . .
e* i - FiagB,e Mo+ B etM) =0,

*

Vi ap(Ae M)+ A et =0. (5

eIiApx

The wave coupling parameters , [11,12, when only one
metal plate is corrugated, can be presented as

wal N > N N
as'pzs’]TNs,p(HSthr—’_ESnEpn)’ (6)

© whereH , ,E, are the tangential component of the magnetic
field and the normal component of the electric field at an
FIG. 1. Schematic diagram of FEL oscillator with an ogan ~ Unperturbed surface of the planar waveguide, respectively,
and closedb) planar 2D Bragg resonator driven by a sheet electron
beam. Diagram illustrating the scattering of the partial waves on the N, = LJ E -dy‘ :thjwao
2D Bragg grating(c) (ﬁ are the wave vectors of the partial waves ]2 i a7

A- andB., h are the grating vectoys is the wave norm §;=2 for a TEM mode anct;=1 for

other modes and A;=hs—h,,A,=h,—h, are the spatial
mismatches from Bragg resonance.

The conditionsA ,=0 determine the Bragg frequency
wq (i.e., the frequency of the precise Bragg resonanéer
given geometric parameters of the resonator including the
corrugation periodl and the distance between the platgs
this frequency satisfies the relation

field within the resonator in the form of four coupled waves:
A is propagating int+z directions and having field varia-
tions over the transversecoordinate ands.. is propagating

in =x directions and having field variations oves,

E=Rd (A, Ede "+ A_EJe"*+ B, Epe™Mo¥

+B._ EgeihPX)ei wt]_ 2

%=\/ﬁzco§¢>+g§=\/ﬁzsinch+g§. (7)
Here A.(X,z) andB..(x,z) are slow functions of th& andz

coordinateshJ:\/wzlcz—gjz, gj=jmlay is the transverse The frequencies of eigenmodes in the resonator may be
(over they axi9 wave numberj=0,1,2..., E2 (y) are shifted from the Bragg frequency. Assuming=aw(1
functions describing the spatial wave profile along yheo- ~ +), where |Q[<1, and taking into account Eq7) we
ordinate, which coincide with one of the eigenmodes of thehave for the spatial mismatches

planar waveguide: Agp=vspQ,

EO= iiogsin(gjy) (33  Wherevg= w3/hc? cose and v,=w3/hc? sing. Introducing
c new variables

for TE modes, and A.=Nggd e " B,= the:iApx,
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Z=2vslvy=2\tge, X=x\vplvs=x\clge, Ill. EIGENMODES OF THE OPEN

2D BRAGG RESONATOR

0=0\veryp Let us find the frequencie®) factors, and spatial struc-
tures for eigenmodes of the open 2D Bragg resondi.
1(a)]. Assuming that fluxes of electromagnetic energy from
outside are absent and that the partial waves do not reflect

it is possible to simplify Eq(5) and reduce it to the form

IA..

TidA.+ia(B,+B_)=0, from the end of the corrugated surface, the boundary condi-
Jz h tions for Eq.(8) can be written as
tS)
oB A (x -Zl=0, A (x E)zo (109
~FisB.*ia(A,+A_)=0. oz T2
X
L L
The wave coupling parameter in Eq®), a=asyNg/N, B+<——X,Z)=0, B_(—X,Z)=O, (10b)
= apYNp/Ng, may be rewritten using Eq$6) and (3) as 2 2
whereL,=I,tge andL,=1,+/ctge.
a;vhshy _ X .
a= ———_ (99 It is useful to introduce new variable$A  (X,Z)
2apVesep +A_(X,2)} and{B,(X,Z)+B_(X,Z)} to reduce Eqs(8)
_ _ to the following form:
for mutual scattering of the $” wave of TM type into the
“p” wave of TM type and 52
g E{A++A_}+ A +A_}=—2ab{B,+B_},
1Ys
a=——— (9b) 119
2agc\hshpe, (
2
for mutual scattering of the $” wave of TE type into the §—{B++B_}+ (B, +B_Y=—2a8[A, +A_}
“p” wave of TM type. As it follows from Eq.(6), the cou- X2
pling of two waves of TE type on the Bragg structure is (11b

negligibly small(in the approximation proportional ﬁal) . .
because the normal component of the electric fieldends ~ With the boundary conditions
to zero on the corrugated surface and the magnetic field vec-
torsH, are perpendicular to each other. . ﬁ{A+ +A_}*is(A, +A—}|z=¢LZ/2: 0,
Note that the TM and TEM waves for whidH|y, can be
used in FEM'’s with guide magnetic fields and cyclotron au- P
tor_esonance r_na_se(ﬁ:ARM’s). For planar FEM’'s without (B, +B_}*i8{B,+B_}y_sL p=0. (12)
guide magnetic fields only TE waves can be used as operat- X X
ing ones, because for these wa@ix,, which makes inter- ) )
action possible with the electrons oscillating along theo- ~ Solutions of Egs(11) and(12) may be found by using sepa-
ordinate. In such a case the 2D feedback may be provided dition of variables:
scattering of the TE4.) and TM (5..) waves.

To obtain a high Doppler up-shift for all the types of the A(X,Z)+A_(X,2)=Cif(X)f(2),
devices mentioned above, the phase velocity of the wave (13
interacting with the electron@et us further assume that this
is a partial waveA,) should be close to the speed of light. B, (X,2)+B_(X,Z2)=Cyf(X)f(2),

Hence, this wave should propagate at a small angle with

respect to the electron-beam motion direction and should behereC, , are arbitrary constants arg , are the eigenfunc-
one of the lowest modes of the waveguide. Meanwhile, theions of the operator$, , defined as

partial waves3.., which are responsible for the transverse

energy fluxes over the coordinate, can be chosen by propa- 2

gating at a large angle to the axis and having smaller group T A()=—5f(&)+5(&). (14
velocities. Accordingly to Eq(9b), decreasing the group ve- d¢

locity of 5., one can increase the distance between plates ) ) o

a, keeping the wave coupling coefficient a constant. This! N €igenfunctionf,(¢) of the operatorT, satisfying the
way it is possible for TM waves to retain the selective prop-8auationT.f.(£)=y.f.(£) and the boundary conditions
erties of the resonator while increasing the transverse size of q

the resonator in the direction(compare witH 13]). It should et : _

be noted that the limitation along this direction direction dgff(g)i O ()] =212~ 0 (19
is the same as for other microwave oscillators, which use

traditional 1D Bragg resonators. can be written in the following form:
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VO+A

¢ : .
f(&)= [(8+No)explin £)explin:L,) $ Qu/Q10
3 é 3 ek
V=g iy
—(8—Npexp —ing£)], (16) o 1101 A
where\ ;= V&% - v¢ andy, is the eigennumber of the opera-
tor T, and is determined by the characteristic equation 11 |1 12
1,2 1.2 g
1,2
, (5-N\g)? 22 I ] ‘ ] 22 l 22
exp(2|)\§L§)—m. (17) I . i ] ] L1 | . Re(d)
—2a 0 +2a
It should be noted that it is possible to prove that the set of
the eigenfunctions, is complete. FIG. 2. The eigenmode spectrur® factors of the eigenmodes

Having substituted Eq13) into Eq. (11), we obtain that Vs their eigenfrequencig®f the open planar 2D Bragg resonator:
eigennumbers, , y, of the operatord, andT, are satisfying Lx=L:-

the relation
40282 (18) go_ Fmn (n2+m2> 210
Y2¥x=4a" %, =- —i —+t—
= 2al,ly 2a2LZLX L, Ly
and the characteristic equations have a form similar to Eq.
(17): when 6~0, and
p2iN,L,) (02" mn  an mm  wm
exp(2i =) . .
(6412 N= oIS, NeEpo i, (229
z aly X aly
(19
. (6—X\yo)? w2 [n? m? m [n? m?
exXp(2iNgLy) =——, 6=|2a+—| =+—||s—i—| =+—=]| (22b
F2 )= n 7 “Taal 272 202\ L3 L2 (225

where\, ;= V6"~ yy,. The joint solution of Eqs(18) and  \\pon 5104 1n Egs.(21) and(22), n=0,+1,+2, ... are
(19) determines the spectrum of the eigenfrequencies and tr}ﬁe longitudinal(over thez axis andm=0,+1.+2. ... are
Q factors of the eigenmodes of the open 2D Bragg resonatog, transverséover thex coordinatg indices of the modes
The spatial structures of the partial waves ,B.. can be s=+1=sgnmn) '
found by integrating Eq(8) consi(_j_ering Eq(1_3) and taking According to Egs.(21) and (22), high selectivity over
Into account th_e boundary conqmo(ﬂsO). This Iead_s to the both the longitudina(n) and the transvers@n) indices takes
following solution for the amplitudes of the partial waves place because of output radiatiddue to diffraction not

As,Bx: only in the longitudinal= z directions(similar to 1D Bragg
L resonatorg but additionally in the transverse+(x) direc-
A, Zi_z) f(X), tions. TheQ factor will be maximal for the lowest modes
2 with indices n=0m=1 and n=1m=0 (Fig. 2. These
(208 modes have the same eigenfrequefigg(s) =0], and when
L,=L, they have the sam@ factor also. Figure 3 gives the
(th f(2). spatial structure of the partial waves, and B_ for the
X 2/ eigenmoden=1m=0 (the structure of thé_ wave is iden-
(20D tical to the structure of th&, wave and thé3_ is bilaterally
symmetrical taB ). For this mode the field amplitude of the
A, wave does not depend on the transvexseoordinate,
which will provide equal energy extraction from all parts of
the large electron beam. It should also be noted that the
_ 1+ReQ) ~ Vs maximal amplitude of thé . waves is much larger than the
21m(Q)  21Im(6) maximal amplitude oB. : AT*BT®=aL,. For the mode
- . n=0m=1, the spatial structures of the partial wavks
under conditions of strong wave couplingLy,>1. The  andB. are identical to the structure of tiBe. andA. waves
eigenfrequencies of the modes are situated near the Braggy the moden=1m=0, respectively, if we mutually ex-
resonanced~0 as well as neaf~*2« (Fig. 2 and solu-  change thez and x coordinates. For this modam®yBmax

tions for them are given by the relations =1/alL, and therefore this mode has a fairly low amplitude
of the waveA, . As A, is assumed to be the only partial

LALGALL _mm . (219  Wave resonant with the electrons, the modelm=0 wil
L, all, ™ Ly el not be readily excited by the electron beam.

. L
A, =2ia(5+\,)exp ii)\Z?Z sin

B.=2ia(dE\,)exp ii)\xix sin N\

Analysis of Egs.(18) and (19) shows that the spectrum
contains highQ-factor modes
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the sheet electron beam is thin and moving near a wiggler

1y :é'::,,w,:,,: axis and let us neglect the inhomogeneities in the undulator
i 'y . . oy e ala
it and RF fields as well as nonuniformities of the beam, initial
0.84 Ul RN i
; i Z"ZZZ;Zf%%Z%%Z;%%%%" i veIOC|t_y spread, etc. As we assumed above, only .the
5 6 III7'”';;f;"";ZZ"’Zf%”%%7%%%’ \@&\ wave is resonant with the electron beam and the resonance
7 Wt I\ condition can be written in the form
. e
“— Wttty R\
§§r 0.4 i “\ w— hV” =(), (23
— i
iy . . . .
02 where vj= g|c is the axial electron velocity anf is the
frequency of electron oscillationgfor FEM, Q=Q,
2’ =2y ld,, is the frequency of bounce oscillation in a wig-
gler of periodd,, ; for the CARM,Q=Qy=eHy/ymcis the

gyrofrequency of rotation in a uniform axial field, and y

is the relativistic mass factprAs a result, the resonant for-
L2 ) 4 L2 ward wave A, may be amplified by the electron beam. On
the grating it scatters into wavés. , which propagate in the
transverse directions and synchronize radiation from the dif-

0.7 ferent parts of the electron bedatter further transformation
0.6 into the wave4,). Simultaneously, the waveS. scatter
05 into the backward wavel_, thus completing the feedback
g R cycle. o
% 0.4+ X Let us suggest for simplicity here that the angle between
—= 03 ' :‘:‘.:.:.::;‘ the grating vector$Fig. 1(c)] is equal tow/2, which corre-
hy I S .
& o2 :,,':,50,;4';'4'.215333553253333:&::3:8:\ sponds to 'Fhe case when all partial waves have the same
- IIZ;'Z;;Z;Z:%;%E:E:::'22:3:3'3838‘:‘ transverse index and the same group velociggs In this
DAITATARRARSSNN -
0.1 TGN case the excitation of a 2D Bragg resonator by the electron
RN beam and the build-up of oscillations can be described by the

following system of equationfsl0,14:

a9 1 d\a . .
( ——)A++|a(B++B)=J,

—+
0L By I
(b)
1 (2
. J= —f e '’deg,, (243
15 i mJo
i
ity it
0.8 lll[,””l[”I’II””ll’l”’ll;”””l;”' 9
i RN ~ LA A 2
; R AL LI SR
_# il i A T
£ 05 i i
:'S_ i J 1 9
= 044 i +—+— —|B.+ia(A,+A)=0, (240
3 TOX | By ot * AT
0.2+
| il 1&26RA19) (240)
—+—=—=—| 0= el?).
0 oz 'BH T oA,
4 4
The boundary conditions for the partial waves in E@sl)
; keep the form(10) and the boundary conditions for the mo-
-Ly'2, 4.Lz/z' noenergetic, unmodulated electron beam take the form
(©) z
. . g 14
FIG. 3. Spatial structure of fundamental mate 1,m=0 (with 0|Z:LZ,2= 0pe[0,2m), 7 + E 7 0 =A.
the highestQ factor for the open planar 2D Bragg resonator Ier Z=—L,2
(aL,=al,=5): (a) normalized partial waved. , (b) normalized (25

partial wave3, , (c) normalized partial waved,,. . . . .
Here we have used the following dimensionless variables
IV. BUILD-UP OF OSCILLATIONS IN A FEL and parameters:
WITH A 2D BRAGG RESONATOR Z=(w/c)2C, X=(wy/c)XC,

Let us investigate excitation of an open 2D Bragg resona- .
tor by a sheet relativistic electron beam. Suppose that elec- T=wotC, a=ac/wyC,
trons oscillate either in a periodic wiggler fie(fHEM) or in o
a uniform axial magnetic fieldCARM). Let us assume that (A, ,Bo)=exu(A- ,B)/mcwgy,C2,
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A=(wo—hy)—Q)/w,C

is the initial mismatch from resonancef=wyt—hz
—[Q dt is the electron phase with respect to the resonant
wave, 6, is the initial electron phase,

1/3

e’io )\ZKZ/.L
mc® 8T Yoo

is the gain parametek~ g, /23 is the parameter describing

coupling between the wave and electropsjs the inertial T
i ~ 2 ~1— -2 0.0 LARAS LAREE RS LA LIS IUAE LR LI
bunching parzi\m.eterp(~ Yo~ for a FEM andu~1—-8,, @ 00 500 1000 1500 000
for a CARM), 1, is the unperturbed electron current per unit
transverse size3y, is the phase velocity of the synchronous 101 S5
wave, and_?(,zzlx,ZCwolc. The electron efficiency is given 0.0 -
by the relations
0.8
C . 0.7 1
n=—— 1.
pw(1=v"h 0.6 1
0.5 -
R 1 +L,/2 27 90
7= dX ——A dé,. (26) 0.4
2wl ffL 2 jo 4 _
x x Z=+L,J2 03
Time dependencies of the efficiency in the range of the 0.2 1
parameters where the establishment of a stationary regime of ;|
oscillation takes place are presented in Fig) 4ANote that in ) 5
. . . .
the numerical simulations we assumgg= S,. In the sta- 0.0 ' i ' ' ' ‘ ' '
®» -8 6 -4 -2 0 2 4 6 8

tionary regime the spatial structures of the partial waxes

and 5. are clo_se to the structures of the corresponding FIG. 4. Establishment of the stationary regime of oscillations in
waves for the highesp (fundamentglmoden=1m=0 of  , Fg| with the open planar 2D Bragg resonatay:Dependence of
the cold resonatofcompare Fig. 5 and Fig.)3As |tA|s seen o normalized efficiency on time whdn,=4, A= —1.82, a?L,
from the spectrum of output radiatioB,= [§ “A . (7,Z =1.25, and@ —L,=0.8, a=1.25: (b) —L,=3.2, a=0.625:(c)
=L,/2)e'*"dr, the oscillation frequency coincides with the _| _ 1, g ~_ ng'(d) _L.—288 &:8 208.(b) Spectrum of
frequency of this mpdg, €., W',th the Bragg frequevﬁ_E;g. outgut radiation in the stati(;nary regime of oscillation whep
4(b)]. The self-excitation conditiorfsee the Appendix for —128 6=0315
detail9 for this mode may be presented in the form o R
P=a?L, L%=250, AL,~m. 27) di_{_i&zLx(AJr_*_A)zifzwe—iedgo,
dz mJo

It is important to note that the transverse distribution of the
amplitude of the resonant wavé, does not depend on the - e A "
transverse coordinate thus providing equal energy extrac- E_'“ LA +A)=0, (29)
tion for all parts of the electron beam.

The principal problem for the scheme of FEM considered 29
here is the question regarding the maximum transverse width —— =ReA.e".
of the system|() under which the regime of spatial synchro- dz?
nization of radiation from different parts of the electron
beam can be realized. From the set of E@9) it may be  Therefore, if the system length is constahi=const, the
found that in the steady-state generation regi@{=0), distribution of the waves along the longitudinal coordinate as
when the fundamental mode=1,m=0 is excited, the de- well as the efficiency do not change when the condition
pendencies of wavel. on the transverse coordinate may be 42| =const is satisfied. Such a scaling gives us the possi-

presented as bility of increasing the width of the interaction spate
S ) . o while simultaneously decreasing the coupling paraméer
B.=aX(A.+A_), B_=a(Lq—X)(A,+A_). example, decreasing the corrugation deptf). Computer

(280  simulation of the nonstationary equatio{} confirms this
conclusion. IfL,<5, the synchronization regime is stable at
This allows us to reduce Eq&4) to the form least up toL,=<30 (that for a gain parameteE~5x10 3
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erately exceeded. Increasing this parameter, an excitation of
other modes was observed. In particular, an excitation of the
eigenmoden=m=1 was obtained when the conditions

a?L2LY(Ly+L,)=500, (A+2a)L,~7 (30

were satisfied. WheR greatly exceeds the threshold, multi-
frequency self-modulation regimes of generation were real-
ized. In this case the spatial structures of output radiation
exhibited periodical or chaotical variations with time.

V. INFLUENCE OF SIDE REFLECTIONS
ON THE SELECTIVE PROPERTIES
OF A 2D BRAGG RESONATOR

As was shown in the preceding section, a 2D Bragg reso-
nator open in the transverse direction displays practically un-
limited possibilities for increasing the system’s transverse
size. However, in practice it is rather difficult to realize ex-
traction of energy from all directions especially in the
scheme of FEM’s where a guide magnetic field produced by
a solenoid is employed. It is possible to suggest several so-
lutions how to provide a singly directed output of radiation.
One of them is to use additional reflectors situated outside
the interaction space in order to turn the transverse energy
fluxes into the longitudinal direction. However, it is much
more simple to restrict the 2D Bragg resonator by two metal
mirrors on the transverse edggsig. 1(b)]. Such a closed
system in the transverse directions will possess less selectiv-
ity than the original open one, while under certain conditions
a single mode operation regime can be achieved. Thus, in
this section we consider the influence of side reflections on
the operability of a FEM with two-dimensional feedback.

In the case of arbitrary reflections from the transverse
edge of the resonator, the boundary conditions for 4.
remain the saméi.e., Eq.(10a] for the longitudinal e.m.
fluxes, but for the transverse e.m. fluxes they take the form

Lx Lx
—?,Z)—RB_(—?,Z),

N
N
NV

N

Nk’
N

N

N

R

N
N

X

X

RN
AN
N

i
.
7

R

WY
i

R
R

N
N
W

X
R
N

R

N
N
NN
NN

N
R

RN

N

B,

B_

52)-re 2]
- Z|=RB|5.Z], (31

whereR is the reflection coefficient. The solution of E®)
with the boundary condition§l0g and (31) may be found
by separation of variables and using new variables in the
form of Eq.(13). In this case the functionk, are the eigen-
functions of the operatdF, given by the same equatid4)
but with the modified boundary conditions

FIG. 5. Spatial structures of the partial waves’ amplitudes in the
stationary regime of oscillations wheh,=4, A=-1.82, L,

=12.8, @=0.315.(3) Normalized partial waved, , (b) normal-
ized partial waves, , (c) normalized partial waved _ .

J
1B+ +B_}=is{B,+B_} =0.

(1+R
X=%L,/2

1-R

(32

corresponds td., /A ~10%). However, the transient time in- A new set of the eigennumbe v, .7« [where y, is the
creases with the increase in the system widtiy. 4(a)]. eigennumber of the operatdy, given by Eqs(14) and (19
It should be noted that a stable single-frequency oscillaand y, is the eigennumber of the operafby given by Egs.

tion regime corresponds to excitation of the fundamental14) and(32)] should be yielded by the joint solution of the
wave realized when the threshold conditiBe=250 is mod-  characteristic equations
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FIG. 6. The spectrum of eigenfrequencies &dactors of the
modes for closedside reflectiorR=—1) planar 2D Bragg resona-
tor: Ly=L,.

2i\,L —M (3339
exq I z Z)_(5+)\Z)21
_ _ 2
exp(zixXLx):[(l RIS= (1R (33b)

[(1-R)6+(1+R)A,J?

where \,=8%—v,, \y=V5?—7,, and the relation be-

tween the eigennumberns,y,=4a?5% keeps the form simi-

lar to Eq.(18). Note that these equations reduce to the form

of Egs.(18) and (19) for the case of an open resonatdt (
=0).
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In the case of a resonator restricted by ideal metal mirrors £, 7 Evolution of the mode spectrum of the planar 2D Bragg
on the transverse sideR{ —1) the characteristic equation esonator gL, =al,=9) vs side reflection coefficierR.

(33b) takes the form

exp(2in,L,)=1. (39

The joint solution of Eqs(18), (3338, and(34) presents three
groups of eigenmodes which are situated néar0, 6~
+2a, and s~mm/L, (Fig. 6). Under the assumption of
strong wave coupling they are given by the relations

5 m?nm  w’m? (359
= —i
2al4l;  202L,L2
at 6~0,
5 ) @2 (n? m? ~7n? (@5
=+ 2a+—| =+—||-i——=
4a| L2 |2 2023
at 6=~ *+2a,
LT 20212\ 202372 (350
= — — , C
Ly m°n? 77'2n4L>2<

The relation(36) shows that the eigenmode at the fre-
quency of exact Bragg resonange=0 is not present in the
spectrum of the closed resonator. At the same time a new set
of eigenmodes having frequenciés=mm/L, arises com-
pared with those of the open resonator. Under the zero wave
coupling conditiona=0 on the Bragg grating&ero corru-
gation depth these eigenmodes are reduced to the eigen-
modes of a two-mirror resonator formed by the metal side
walls. For this set of modes an increase of the wave coupling
(@) results in an increase of the scattering of the transverse
propagating waves into the longitudinal propagating ones
and increases diffraction losses. Thus, @éactors of these
modes decrease with the increasecof(in contrast to the
behavior of modes located nedr=0 and 6~ = 2«, which
originate from scattering of the waves on the Bragg struc-
ture). At a# 0, theQ factors of the eigenmodes from all sets
of modes are comparable to each other and, as a result, the
selective properties of the cold resonator are impaired.

For an arbitraryR the evolution of the resonator’'s spec-
trum versus the reflection coefficient is shown in Fig. 7. This
spectrum is obtained from simulation using a time-domain

at 6~mm/L,, wherem and n are the transverse and the code which solves Eq$24) with boundary condition§10g
longitudinal indices of the modes, respectively. The eigenand (31) under the assumption of absence of the electrons

functions of the operatdr, for R=—1 have the form

L
X+ —=

Ny 5

?X(X)=exy{ —i )\X%) sin } (36)

(i.e., zero beam current=0). Some arbitrary initial field
distribution was assumed at=0 for this code and the mode
spectrum was plotted for significantly exceeding the time
for the waves to complete the feedback cycle of the resonator
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(i.e., 7=10° for parameters presented in Fig), When the n
mode spectrum practically has no dependence on the initial ]
field distribution. This method allows one to separate the 25
highestQ-factor modes presented in the spectrum. Figure 7 |
shows that fofR|=<0.2 the spectrum of eigenfrequencies is 5 ]
close to the spectrum of the open resonator. The resonato |
retains high selectivity over the longitudinal and the trans- 1 4
verse coordinates with the maximu@ factor belonging to

the eigenmode at the Bragg resonance frequency Qitae- 0.5 ]
tor of this mode decreases with an increase of the reflection
coefficient and at 08|R|<0.8 the eigenmodes with one o
field variation over both the transverse and longitudinal co- (& © 500 1000 1500
ordinates [m|=|n|=1) located a~ = 2« have the highest

Q factor. AtR~—1, there are a few sets of eigenmodes in 1.2
the spectrum of the cold resonator with tQefactors at the ]
same level.

To study the excitation of the resonator by the electron
beam forR+#0, the system of Eq(24) with the boundary ]
conditions(10a), (25), and(31) was solved. The numerical 0.6
simulations of oscillation build-up in the resonator with ]
small side reflections|R|<0.3) demonstrate the existence 947
of a broad range of the system’s parameters where the single 2}
mode operation regime is established practically for any =
width of the resonator. In this case, similar to the open reso- ¢ 4
nator, the fundamental mode at the Bragg frequency with(b) -8 -6 -4 -2 0 2 4 6 8
approximately constant transverse distribution is excited by
the beam.

For high reflectivity from the transverse side wallR~ -
—1), the single-mode operation regime is changed to thér L.=3, R=-0.99, A=-23, and ¥ L,=10,a=04; 2-L,
self-modulation regime for large widths of the resondtgr ~ =7,2=0.5. (b) Spectrum of output radiation in the stationary re-
=10. These regimes are accompanied by excitation of se\ime of oscillation(solid ling) for L,=3, L,=7, R=-0.99, A
eral modes of the resonator, of which beating takes place —2.3, a=0.5, and spectrum of eigenmodes with the higl@st
[Fig. 8@]. However, forL,<7 the single-mode operating factor of the “cold” resonator with the same geometrical param-
regime may be realized even in the closed resonator wheffers(dashed ling
R=—1 [Fig. 8b)]. The establishment of the single-mode
operating regime is caused by electronic selection of the difenergy per pulse for millimeter wavelength generators of 200
ferent mode$15,16 (as opposed to electrodynamical mode J has been achieved.
selection in the open 2D Bragg resonatdihe field structure Further increases in the radiation power can be achieved
of the partial wave resonant with the electron beam in theby using the full-scale beams with cross section 0.5
steady-state operating regime is now dependent ox e cmx 140 cm(energy content about 80 kdnd 3 cmx 140 cm
ordinate but it still has the convenient amplitude field distri- (energy content up to 0.4 Mdwvhich are generated by the
bution for interaction with the electron beaftfig. 9. It  U-2 accelerator. The theoretical analysis described in this
should be noted that even small RF losses for the transvergper has demonstrated the potential of 2D Bragg resonators
e.m. fluxes(i.e., decrease in reflection from the transversein obtaining high-power spatially coherent radiation from
side wallg stabilize the single-mode operation of the FEL such a wide beam.

(Fig. 10. Let us consider here an FEM project using the 2D Bragg
resonators to generate radiation of wavelength4 mm on
the basis of the U-2 acceleratdr MV/200 A/cm/5 us/cross
section 0.5 cnx 140 cm). Let the wiggler be of 4 cm period
and the amplitude of the wiggler field be up to 0.1 T. It

Experimental study of a powerful millimeter wavelength allows one to produce an oscillatory electron velogity
FEM driven by a sheet electron beam has been carried out0.2—0.3 and parametgr~y~?~0.1 at an axial guide field
using the high-current microsecond accelerator 2P  strength of about 1 T17]. In this case, when the distance
RAS, Novosibirsk. In recent experiments a scaled down between cavity plateag=1 cm, the gain parameter 8
sheet electron beam with particle energy of 1 MeV, bean~0.006. For these parameters the dimensionless transverse
current of 4 kA, and cross section of 0.3 g2 cm was size Ly~12 [curve 3 in Fig. 4a)] corresponds to a beam
used. A conventional planar two-mirror Bragg resonator prowidth of about 140 cm. Thus, following computer simula-
vided selective 1D distributed feedback at the 4 mm operattion, the use of an open 2D Bragg resonator with a corruga-
ing wavelength. As a result of the experiments, an outpution of period 3 mm and depth 0.3 mm would make it pos-
power of 200 MW in a microwave pulse of 4s duration sible to realize a single-mode-operation regime in the FEM.
was obtained17]. Thus, even at the present stage, a recordt will provide spatially coherent radiation when the over-

_Re(3)

Ss

0.8

FIG. 8. Oscillation build-up in a FEL with the closed planar 2D
Bragg resonator(a) Time dependence of the normalized efficiency

VI. DESIGN OF A HIGH-POWER FEM DRIVEN
BY A SHEET ELECTRON BEAM
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(a) VA FIG. 10. Time dependence of the normalized efficiency of

FEL’s with planar 2D Bragg resonator for different values of the

2. Vil side reflectiorR (L,=3, L,=7, A=—2.3, @=0.5).
151 /////%////////5////;’,'/,2':,,;.,' the inhomogeneity in the e-beam and fig¢ldhat output
g il ///5//////,;’/11,5'//,%2 ;;;//;;3;/////,, I power can be as great as 20 GW.
& /’///////////’///,WWW///W At the same time, for a sheet beam of width ablguix
s il -
= WWWWWW///////// ~100 the S|mp_ler tra_nsversely closed res_onator scheme may
< W%,m%%%%%%//// be used. The dimensionless transverse Isjze7 [curve 2 in
. i //////////////////// Fig. 8(@] corresponds to a beam width of 80 cm for FEM
§\\/////////////////// parameters discussed above. Following computer simula-
% / tions, the FEM with a side closed resonator driven by an

2 electron beam of width about 50—80 cm will be able to op-
erate at a single frequency around 75 GHz. Considering the
same operating parameters as for the open system, the effi-

Wl
M

> 7 ciency of the FEM can be 10%. The transit time is expected
(b) X L2 47 z to be shorter than 100 ns and the radiation power is calcu-
12 lated to be up to 1-2 GW for a beam of current 200 A/cm
I and approximately 5—7 GW for a beam of current 1 kA/cm.
é /W X RN
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APPENDIX

Presented below is the self-excitation condition for a pla-
nar open 2D Bragg resonator. It may be obtained from the
power balance equation

(©)

FIG. 9. Spatial structures of the partial waves amplitudes in the ﬂv: 7lpUsg, (A1)
stationary regime of oscillations wherL,=3, L,=7, A= Q
—2.3, @=0.5. (3 Normalized partial waved, , (b) normalized
partial waveB, , (c) normalized partial waved _ . which is valid in a stationary regime of oscillation. The right

side of formula(Al) represents power radiated by the elec-
sized parametek, /\~350. The transit time will be about tron beam of current, and voltageU,, and the left side
200 ns. With the efficiency of 15% the radiation power iscorresponds to the diffraction losses from the resonator for
calculated to be 4 GW. For a full-scale beam with crossthe mode with the frequenay, Q factorQ, and e.m. energy
section 3 cnx 140 cm and beam current 1 kA/cm the gain storageW= 1/4w [ |E?|dV.
parameter is the same when the distance between the 2D Electron efficiency near a threshold of generatibe., in
Bragg cavity platessy=5 cm. Thus, all dimensionless pa- a small signal regimjemay be found from equations of par-
rameters stay the same and from curve 3 in Fi@ # may ticle motion (24 after linearization and implementing the
be estimated for this experime(o not take into account all sequential approximations meth¢gke[18] for details:



PRE 60 THEORY AND DESIGN OF A FREE-ELECTRON MASE . .. 945

. 1 (12 d L2 Az 2 where V' =AL, is the transit angle andé ., is the partial
nst:Ij |,2dxd_A J L/2A+(X,Z)e' dz| , wave amplitude. The maximum efficiency
XJ =1y Lz
(A2) P4~ 0.08A% oL (Ad)

where A, (X,Z) is the spatial structure of the partial wave is reached at¥~ .

which is in synchronism with the electrons. Substituting in  For the e.m. energy stored in the resonator, which is as-

Eq. (A2) the structure of the partial wav@03 for the high-  sociated with excitation of the fundamental mode, from the

estQ moden=1m=0, we come to the following formula expressiong2) and(20) we haveW= (1/m) A% yagl«l,. As a

for electron efficiency in the small signal regime: result, from Eq(A1) using relation(21) for the fundamental
modeQ factor and Eqs(26) and(A4) for electron efficiency
and going to the dimensionless variables, we obtain the con-

' (A3) dition (27). The self-excitation condition30) for other
modes can be obtained using similar procedures.

d

3___
dv

1+cos¥

~_ 272
Nst= T A+OL (\1’2_’772)
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