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Random deposition of two annihilating species in thg1+1) dimension
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We present simulation results for the one-dimensional random deposition of two annihilating $panis
B, falling with probabilitiesp andq (p+qg=1), which then react to produce an inert product, iet,B—0.
Two different annihilation rules are defined: top annihilation and nearest-neighbor annihilhidy, leading
to distinct scaling behaviors. In particular, the values of the scaling exponents for NNA are found to be
dependent on probability, suggesting different universality classgS81063-651X%99)01807-3

PACS numbegs): 05.40—a

The formation, growth, and geometry of rough interfaces (i) Top annihilation(TA), a particle reacts only with an-
is a subject of great interest that has been extensively rdiparticles located at the top of a column.
viewed[1-5]. These studies play an important role in many (i) Nearest-neighbor annihilatioéNNA), a deposited
phenomena of scientific interest and are relevant in a gredarticle on the top of a column reacts at random with any of
variety of experimental situations, including the propagationts nearest-neighbor antiparticles, with the same probability.
of flame fronts, fluid flow in porous media, corrosion, mate-  In both situations the height of the reacting column de-
rial fractures, atomic deposition processes, and growth offéases by 1, generating a single-valued interface, i.e., no
bacterial colonies. Despite the diversity of these systems the§Vérhangs are allowed. The former model is simpler and is
have much in common, and it is possible to categorize therfltroduced for comparison with the latter, which is more re-
into universality classes. There are two main approaches foar"s.tIC from.a PhYS'C?" point of view and leads to segregation
the theoretical analysis of such systems, one is based 0 like particles. As is 'cpmmonly'defmed, the_ unit tlme. cor-
computer simulations of discrete models, and the other der_esponds to the.deposmon bipariicles on the mFerface,.Le.,
. : : L t=N/L whereN is the number of deposited particles dnis
scribes the evolution of the interfaces by stochastic differen; ;
tial equations. The simplest discrete model for interfacethe number of columns or system size.
rowth is randbm depositiofRD). lts simplicity is such that The profile of th(_a evolvm_g_surface W|Il_g_rad_ually roughen
% allows s to deterrg'ne the sc.al'n o pongnts oxactl an%nder t_he sto_chastlc depqsmon an_d annihilation of particles.
It allows u ! Ing exp xactly, arly simulations by Family and Visedi 3] suggested that

to formulate a stochastic differential equation leading to thgy, deposition processes of like particles, the surface rough-

same scaling exponerf3]. _ _ ness shows a dynamical scaling behavior.
The aim of the present paper is to simulate the random T describe the discrete growth of an interface, it is useful
deposition of two annihilating speciésandB (“particles”  to introduce two quantitief3]. The mean height of the sur-

and “antiparticles’). The recombination of particles that col- face(h(t)), is defined as

lide during diffusion and react to form an inert product, i.e.,

the well-known reactior’A+B—0, where 0 represents the 1t

inert product, is a simple example of nonequilibrium systems (h(t))= r 2 h(i,t), (1)
that have attracted a lot of intered—12]. This reaction =t

leads to the segregation of like particles, and provides a us
ful model to also represent different physical systems such
the decay of lattice excitations, the monopole annihilation"n
and surface reactions on supported catalyst.

It is quite simple to define the random deposition of two
annihilating particles. First, a partick or B, with probabil- a) I:I
ity p or g, respectively p+qg=1), is chosen to fall from a
randomly located position over the surface. The selected par- [
ticle follows a straight vertical trajectory until it reaches the
surface, whereupon it sticks or reacts. If the falling particle is
deposited on top of a column of its own kind or on a vacant . ....... .

column, the height of such a column is increased by 1. For . - -
the annihilating process, we can define two different rules,as —— _— — —

in Fig. 1. FIG. 1. In top annihilation(@), the B particle (empty square
reacts only with theA antiparticle (filled squarep below it. In
nearest-neighbor annihilatigib), the B particle (empty squargre-
* Author to whom correspondence should be addressed. FAX: 54acts randomly with any of its nearest-neighbor A antiparticles
2652-430224. Electronic address: charly@unsl.edu.ar (filled squarep with the same probability.

%hereh(i ,t) is the height of column at timet. For deposi-
n processes with constant rate, the mean height increases
early with time:
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_ _ _ FIG. 3. Log-log plot for the temporal dependence of the inter-
FIG. 2. Log-log plot for the time evolution of the average inter- face widthw(t) with the TA rule, for various probabilitiep and

face height(h(t)) with the TA rule, for different values of the fixed system sizé =75. The observed value for the growth expo-
probability p and fixed system size=75. The asymptotic slopes nent isg=0.4994-0.0002.

are 1 forp#1/2 and 1/2 forp=1/2. The unit time corresponds to
the deposition ot particles on the interface, i.e¢.=N/L whereN
is the number of deposited particles dni the number of columns  Periodic boundary conditions are used in the horizontal di-
or system size. rection, and the statistical average is obtained over 200 inde-
pendent simulations for each parameter.
Since there is no correlation between columns, every
(h(t))~t. (2)  (or B) column grows independently with probability (q)

] ) . ] and decreases with probability(p). The probability that a
_The mterface widthw(L ,t), defined by the r.m.s. fluctuation given column has height=|N,—Ng| after deposition of
in the height N=N,+Ng particles is given by the binomial distribution,

/ which for N— o« becomes the Gaussian distribution. It is
L 1/2

1 straightforward to prove that the asymptotic behavior is
WL T=| 2, [h(,0=(h())]? (3  given exactly by
that characterizes the roughness of the interface. p—qlt, p#q,
Two different regimes, separated by a crossover tifne (h(t))~1 (2 12 @)
can be distinguished. (— ) , p=q=1/2,
(i) Growth regime, in which the width increases as a

power of time,
w(t)~t¥2 0<p, q=<1/2, 9

~tB <t* . . . .
w(L,t)~t% for t=t*. ) in agreement with the numerical results and reproducing the

zsame scaling exponents as common BB, 1/2 anda = (not
-ggﬁned, i.e., the interface width increases @€, but never

L, saturates. It is clear that the most probable arriving particle
will finally cover the whole structure. Whep= q, the prob-
lem is essentially a random walk in the semidxisO with a
reflecting wall ath= 0 [14], which gives a nonvanishing av-
erage heighth)~t%2.

Most interesting is the RD of two annihilating species
with NNA rule, since it allows the segregation of like par-
. g ticles. Figure 4 shows the average height as a function of
~L% ®)  time for different values of the probability and fixed sys-
tem sizeL. In this case/h(t)) is smaller than that observed
in Fig. 2. This fact is expected since with the NNA rule
adjacent columns of unlike particles cannot exist, sgas

o« increases a larger number of vacant columns will appear,
z= E (@) which reduces the interface height. However, in the limit
—oo we obtain essentially the same asymptotic behavior as
Let us consider first the RD of two annhilating species within the TA model.
the TA rule. Figures 2 and 3 show our simulation results for Figure 5 shows the time evolution of the surface width
the average height and the width of the interface, for differ-for different values of the probability and fixed system size
ent values of the probabilityp and fixed system sizé. L. Note that the interface width first increases very fast and

We(L)~L* for t>t*, (5)

where the crossovepr saturation time t* depends also on
the system size

The exponents, B, andz are linked by the scaling law
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FIG. 4. As in Fig. 2 but here with the NNA rule. The asymptotic

slopes are the same as those in Fig. 2. FIG. 6. The saturated widthss,(p), as a function of probabil-

ity p and fixed system size. The observed value for the exponent
in Eqg. (11) is @’ = —1.04+0.08.
finally saturates to a constant value which depends on the
probability p. In the growth regime the time dependence of
the width follows a power law

and surprisinglya’ is found to be universal, i.e., regardless

of the system sizé&, we obtaina’=—1. It should be noted
that wg,(p)—> for p—0, in agreement with the common
w(p,t)~tF', t<t’. (100  RD model.

It is also interesting to analyze the time dependence of the
width w for different values of the sizk and fixed probabil-
ity p, which is shown in Fig. 7. Initially the width increases

For 0<p<1/2 we obtainB'=1/2, and forp=1/2, B’ =1/4. as a power of time

Then the surface width becomes smaller as the probability
increases up tp=1/2. Of course, the behavior is symmetric
in p aroundp=1/2. It is clear that the competition between 100
deposition and reaction leads to saturation. From Fig. 5 we
observe that the saturation widti,(p)=w(p,t—=) de-

creases monotically with the probability The saturated sur-  —=_10

face width versus the probability, for fixed values of the s o L=200
system size is shown in Fig. 6. According to this figure, the § @ t=:gg
. e A4 =
dependence of the saturated widik,{p) on the probability 1 s Lo75 | 3
p also follows a power law v L=50
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FIG. 5. As in Fig. 3 but here with the NNA rule. The growth FIG. 7. Log-Log plot for the time dependence of the interface
exponents arg8’ =0.5003+0.0019 for 0<p<1/2 andB’'=0.262  width w(t) with the NNA rule, for different values of the system
+0.004 forp=1/2. sizeL and fixed probabilitiesa) p=0.1 and(b) p=0.5.
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FIG. 8. Log-log plot for the saturated widthg,(L), as a func-
tion of system sizé. and fixed probabilityp. The roughness expo-

nent isa=0.497+0.041.

sat

w(L,t)~t8, t<t*, (12 1
0.1

wiw

where the growth exponent is observed togye 1/2 for 0 ]
<p<1/2 andB=1/4 for p=1/2. 0.01

From Fig. 7 it is evident that the saturation width 3 —p=05 3
WeoL)=w(L,t—x) increases monotonically with the sys- ] ——L =30, 50,75, 100, 150, 200
tem size, as in common deposition processes without reac- E_3_' _
tion such as random deposition with relaxation or ballistic F T Ty Ty
deposition(BD). The saturated surface width as a function of 10°10710°10°10*10°10210™ 10° 10" 10* 10° 10* 10° 10°
the system sizé., for fixed values of the probability, is z' LZ
presented in Fig. 8. Here we again observe a simple power t/(p )

law for the saturated widtivs,(L) with the system size FIG. 9. The random deposition with NN annihilation data res-

caled according to Eq14). In (a) 0<p<1/2, B=B'=1/2, z=1,
We{L)~L*  t>t*, (13) andz’'=-2.In(b) p=1/2, B=B'=1/4,2=2, andz' = —4.

where the roughness exponeniais-1/2 independent of the There are two scaling regimes depending on the argument
probability p. UEt/pz’Lz_

Fortunately, there is a simple way to collapse all the data () For smallu, the scaling function increases as a power
recorded onto a single curve. If we p(L,p,t)/Wso{L,P)  |aw, and we have

as a function ot/(pZ'LZ), the result will be a unique curve

independent of the system sikeand the probabilityp. Then f(u)~uf, u<1. 17)
w(L,p,t)/we(L,p) is a function oft/(p?L? only, and we
write (b) Fort— oo the width saturates, and in this limit we have
f(u)=const, u>1. (18
w(L,p,t) i ¢ 14
WeafL,p) N p?'L?)’ (14 The validity of the scaling assumptidti4) is shown in Fig.

9. It should be clear that curves with different values of
scaling exponents cannot be collapsed onto a unique and

where f(u) is a scaling functionz=a/B, andz’'=a’'/B"  yniversal curve.
=a'lp. To conclude this paper we address some questions of uni-
From Eqgs.(11) and(13) we have versality. It is well known that a wide variety of growth

models for deposition processes belong to one of the follow-
ing three different universality classes.

Wal L P) ~ Wsa L) Wsa P) ~ L %P . (15 (i) Random deposition witlB=1/2 anda= (not defined
[15].
Then we obtain the scaling relation (i) Edwards-Wilkinson(EW), with 8=1/4 anda=1/2
[16].
(iii) Kardar-Parisi-Zhang(KPZz), with 8=1/3 and «
w(L,p,)~Lpf| — (19 =12l17 e
L As was already observed, the case where0 is trivial
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and reproduces the same scaling exponents as RDp For obvious that such a dependence is a simple power law with
=1/2 the values or the scaling exponents are found t@ be as well a well defined exponent as that of Efjl). Future
=1/4 anda=1/2, essentially the same exponents as the EV\éfforts will be directed to studying the same problem in a
universality class. However, whenc(p<<1/2 the scaling ex- two-dimensional substrate and obtaining a partial differential
ponents arg8=1/2 anda=1/2, which do not belong to any equation describing the evolution of the interface.

of the above universality classes. This situation could be in-

terpreted as a crossover or hybridization between RD and This work was partially supported by CONICEArgen-

EW universality classes. Another remarkable result is thdina). The European Economic Communitroject No.
universality of the exponent’ in Eq. (11). Clearly one ex- ITDC-240) is greatly acknowledged for the provision of
pects thatwg,; should depend omp, but it is not intuitively ~ valuable equipment.
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