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Synchronization in the human cardiorespiratory system
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We investigate synchronization between cardiovascular and respiratory systems in healthy humans under
free-running conditions. For this aim we analyze nonstationary irregular bivariate data, namely, electrocardio-
grams and measurements of respiratory flow. We briefly discuss a statistical approach to synchronization in
noisy and chaotic systems and illustrate it with numerical examples; effects of phase and frequency locking are
considered. Next, we present and discuss methods suitable for the detection of hidden synchronous epochs
from such data. The analysis of the experimental records reveals synchronous regimes of different @wrders
and transitions between them; the physiological significance of this finding is discussed.
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PACS numbd(s): 87.19.Hh, 87.17.Aa, 05.45a

I. INTRODUCTION considered to be not synchronized. So, an extensive review
of previous studies of biological rhythms led to the conclu-
A well-known common feature of oscillatory systems andsion that “there is comparatively weak coupling between
biological oscillators, in particular, is their ability to synchro- respiration and the cardiac rhythm, and the resulting rhythms
nize. Entrainment of periodiéalso noisy self-sustained os- &r€ generally not phase lockedSee[5], p. 136. Recently,
cillators by external periodic force, or mutual synchroniza-the mteractlorj of these vital systems attr_acted the aﬁtenﬂon of
tion of several such oscillators is well understjae-5], and  Several physics groups, and synchronization during paced

this theoretical knowledge is widely used in experimentalresfpiration[24_2? was irr:vestigated. Heref, as dwell as in
studies and in the modeling of interaction between differenﬁe S [21_23 only synchronous states of or ersll(n_
physiological (subsystems. The examples range from the eartbeats within 1 respiratory cytleere found dqe to limi-
modeling of the heart in the pioneering paper of van der pofation of thea(_i hocmethods used for the analysis of _data.
and van der Mark6] to investigation of the circadian rhythm In our previous wo_rl{27] we have repofted on Ca_rdlor.es-
[7,5], phase locking of respiration with mechanical ventilatorPIratory synchronization under free-running conditions; the
[8] or with locomotory rhythms9], coordinated movement proposed analy3|_s technique aIIows_us_ to_flnd_out synchro-
[5] and animal gait§10], phase locking of chicken embry- nous e_pochs ofdn‘ferent ordemsm. This finding gives some
onic heart cells with external stimuli and interaction of sinusindication for the existence of an unknown form of cardio-
node with ectopic pacemakeis], synchronization of oscil- "€SPiratory interaction. , , .
lations of human insulin secretion and glucose infugibh, Here we systemat!cally study Cardlo_respwgtory synghrom-
locking of spiking from electroreceptors of a paddiefish toZation from the nonlinear dynamics viewpoint. We discuss
weak external electromagnetic field2], and synchroniza- e difference between this effect and frequency modulation
tion of heart rate by external audio or visual stimB]. In of the heart rhythm known as respiratory sinus arrhythmia
the experimental studies, the respective rhythms were usﬂ-RS_A) [28]. Conceptuql mpdels. are used to demonstrate the
ally treated as noise-perturbed periodic oscillations, and©tion of synchronization in noisy systems, effects of phase

phase locking was approximately detected via visual inspec@d frequency locking are discussed, and different tech-

tion of the experimental data, or by means of phase densit iques for_quantitative analysis of phase synchronization
histogramg 14]. rom experimental data are presented.

In this paper we use our recent achievements in under- The paper is organized as follows. In Sec. Il we briefly

standing hidden synchronization effects in chaotic and noisgre_sent the physiological background and descnpe the ex-
oscillators15—19 to address the interaction between cardio-Periments performed and the data measured. Section |1l con-
vascular and respiratory systems in humans. Although it i§3inS basic notions of synchronization in noisy and chaotic
well-known that these systems do not act independéagy  SyStems illustrated by numerical examples. In Sec. IV we
and in spite of early communications in the medical Iiteratured'sc_:uss the sync.hronlzatlon approach to the analysis of bi-
(that often used different terminolog§21—23, in the bio- variate data and introduce several techniques for such analy-

logical physics community these two systems were ofterSis- Section V presents the rgsults of applicgtion of these
methods to our data. Finally, in Sec. VI we discuss our re-

sults.

*Present address: Centre for Nonlinear Dynamics, Department cﬁ

. . . . EXPERIMENT AND PHYSIOLOGICAL BACKGROUND
Physiology, McGill University, 3655 Drummond Street, Montreal,

Quebec, Canada H3G IY6. We performed noninvasive examinations with eight
TAuthor to whom correspondence should be addressed. URLhealthy volunteer$l4 to 17 years, high performance swim-
www.agnld.uni-potsdam.de/mros mers, 4 male, 4 female, cf. Table The subjects were laying
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TABLE I. List of subjects: the variability of the interbeat intervals and respiratory cycle length is quan-
tified by the median and the interquartile ra¢@R) (difference between first and third quarlilef respec-

tive distributions.
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R-R (9 Respiratory cyclds)
Code Sex Age Median IQR Median IQR
A m 16.1 1.104 0.028 3.110 0.390
B m 14.6 1.018 0.095 3.210 0.610
C m 13.9 0.975 0.110 3.230 0.850
D f 15.2 1.157 0.157 2.930 0.780
E m 16.9 1.026 0.089 3.650 0.620
F f 15.0 1.024 0.143 2.960 0.700
G f 15.9 0.733 0.070 5.615 1.550
H f 16.3 1.256 0.197 4.260 2.100
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at rest and no constraints like paced respiration or mentdR0,30 and references therginAs a result of this interac-
exercising were used. tion, in healthy subjects the heart rate normally increases
The electrocardiogrartECG) was registered by standard during inspiration and decreases during expiration, i.e., the
leads and respiration was measured by a thermistor at theeart rate is modulated by a respiratory-related rhythm. This
nose synchronously, while respiratory abdominal movementfequency modulation of the heart rhythfeee Fig. 4 has
were registered for control. The duration of each record is 3®een known for at least a century and is commonly referred
minutes. All signals were digitized with 1000-Hz sampling to as RSA. It is well-studie¢see, e.g/,31]) and is thought to
rate and 12-bit resolution. be due to the following mechanisms: reflection of respiratory
For the analysis of the heart rate the timeSRopeaks in  blood pressure waves via baroreceptor feedback loop in the
the ECG[Fig. 1(a)] were extracted by a semiautomatic algo- heart rate[32], respiratory phase-dependent modulation of
rithm with manual correction. Only data sets without extra-baroreflex information processii§3], and central coupling
systoles are used for the subsequent analysis. between respiratory neurons on the one hand, and sympa-
The respiratory signals are narrow bandedy. 1(b)]; all  thetic and/or parasympathetic neurons on the other hand
these records were visually inspected and, if required, prg-34].
processed. After low-frequency trend elimination, a second- The interaction between the cardiovascular system and
order Savitzky-Golay filtef29] was applied to remove high- respiration involves a large number of feedback and feed-
frequency noise. forward mechanisms. As a first approximation one can re-
Both respiration and heart rate display strong variability;gard this coupling as unidirectional, i.e., consider only the
this can be seen from the distributions of the length of resinfluence of the respiratory-related rhythms on the heart rate
piratory and cardiac cycle@ig. 2). Both rhythms are typi- [20,30. It is very important to mention that although this
cally irregular and strongly nonstationary, as is illustrated inarrhythmia(RSA) is termed ‘“respiratory,” the variation of
Fig. 3, where the data for one of the subjects are shown. the heart rate is not directly caused by respiration itself.
The human cardiovascular and respiratory systems do ndfloreover, “periodic changes in the baroreflex efficiency in
act independently; their interrelation is rather complex andhis frequency range continue without respiration. This
still remains a subject of physiological researcee, e.g., means that this fluctuation of reflex efficiency is not a simple

(@ (b)

ECG signal
respiration

0 1 2 3 4 0 20 40 60 80 100
Time (s) Time (s)

FIG. 1. Short segments of an electrocardiogram withRheeaks markeda) and of a respiratory sign#b); both signals are in arbitrary
units.
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0.2 : ‘ : 03 e - FIG. 3. Nonstationarity of the dat@ubject D is demonstrated
by strong variability of the R-Rinterbeat intervals(a) and of the
ﬁ E instantaneous frequendéyt) of respiration(b). f(t) is calculated by
0.0 mﬂd hm_ 0.0 . s means of two methods. The solid line shows the frequency that
0.1 0.3 T : corresponds to the maximum of the power spectrum computed in a
F running window via autoregressive techniqi®irg method[29));
mhﬂh.‘ ﬂ”ﬂﬂm window length is 30 s. The dashed line represents the instantaneous
0.0 i 0.0 L ! - frequency obtained with the help of the analytical signal approach
0.2 T 0.2 T T (see Appendix A
mmmhﬂﬂ]{mm interaction of chaotic oscillators one distinguishes between
g-? ‘ ‘ g-g — complete, generalized, phase and lag synchronizdtes,
' ' ‘ ' T ' ' e.g.,[17]), with all these states being defined in different
H  ways.
M Throughout this paper we understand synchronization as
0.0 0.0 4 . . i .
05 1.0 15 0 2 4 & 8 10 an adjustment of rhythms afonidenticalself-sustained os-

R-R(s) resp. cycle (s) cillators (or, of the rhythm of one oscillator and that of an
external forcg due to interaction36,4]. In the simplest case
of two periodic oscillators, synchronization is classically un-
glerstood aphase locking

FIG. 2. Distributions of the length of interbeat, or R-R intervals
(left panel$ and respiratory cyclegright panel$ for 1800-s-long
measurements demonstrate high variability of both rhythms an
strong interindividual differences. The letters to the right of the
plots correspond to the subjects codef Table ). | @n,ml = [N¢p1—mep,| <const, D

‘irradiation’ of a ‘respiratory’ rhythm generator but rather the \yneren andm are some integers that describe the locking
expression of an independent rhythm. In most cases the lattgkyi, &1, are the phases of the oscillators, and, is the
is synchr'onized with the central rhythm, which projects O”togeneraliéed phase differencer relative phase{37]. Note
the respiratory muscles([20], see also[35,33)). In other 5t the phases, , are not cyclic on the intervdD, 2], but

words, there probably exists an additional central generatQire gefined on the whole real line. For periodic oscillators the
producing rhythm in the respiratory frequency rari@d].

This conjecture is very important in the context of investiga- 4,
tion of cardiorespiratory interaction. Analyzing our data and
searching for synchronization, we should have in mind thatg °
the cardiovascular system may be influencedviay rhythms E
with close or coinciding frequencies. The exact form of this ©
influence is unknown, but it is important that this action is
modulating the heart rate, i.e., at least one of these rhythm:
acts on the cardiovascular system parametrically. '

Ill. SYNCHRONIZATION OF IRREGULAR OSCILLATORS (b)

respiration

Synchronization is a universal phenomenon that occurs
due to the coupling of two or more nonlinear oscillators. A
number of quite different effects are referred to as synchro-
nization. Understood in a wide sense as the mutual time con-
formity of two or more processgs,36], this phenomenon FIG. 4. An example of pronounced respiratory sinus arrhythmia
lacks a unigue definition and requires more precise descriffsubject G: heart rate(a) is modulated by a respiratory related
tion in particular cases. For example, in the context of thehythm. Respiratory signadarbitrary unit3 is shown in(b).

275 295 315 335 355 375
Time (s)
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point. As this probability islexponentially small for weak
noise, the synchronization region practically appears as an
interval of Aw, where n(Q;)~m((),). Strong noise can
quite often cause phase slips, so that the dependence of the
frequency differencd() on the mismatch\w is now com-
pletely smearedFig. 5, curve 4, and, hence, synchroniza-
tion appears only as a tendency.

Due to phase slips, the question “synchronous or nonsyn-
chronous” cannot be answered unambiguously, but only
treated in a statistical sense. Following the basic work of
Stratonovich 2], we understand phase locking in noisy sys-
tems as the appearance of a peak indmgribution of the
cyclic relative phase

W m=¢nmmod 27. 2
FIG. 5. Qualitative dependence of the frequency differetfe

of two coupled periodic oscillators on the parameter mismatoh  One can interpret this in the following way: There exists a
Curve 1 sketches the noise-free case where the synchronization "Breferred stable valug, of the phase difference between the
gion can be clearly determined. With an _incr_easing_level of nois&yg oscillators. Under the influence of noisy perturbations
(curves 2 and Bthe porder of synchronization region becomes this difference either fluctuates aroungy or jumps to a
smeared and then shrinks to a pdiearve 4. physically equivalent stable state,=2-i, wherei is an

integer, and fluctuates around this new stable value, until the
condition of phase-lockingl) is equivalent to thg condition pext jump occurs. Although due to these noise-induced
of frequency locking ;=mQ, where Q,,=(¢;, and jumps the phase difference performsgbdased or unbiased
brackets mean time averaging. The locking region appeamandom-walk-like motion; the analysis of the distribution of
then as a plateau in the plot Af) =n{;—m(), versus the this cyclic relative phase reveals the existence of a certain
differenceAw of the parameters that govern the detuning ofpreferred value. We can then use the test for deviation of this
uncoupled system@ig. 5). In other words, if the frequency distribution from the uniform one to quantify synchroniza-
of one oscillator varies, the second one follows this variationtion (see[40]).
This adjustment of oscillator frequencies takes place in a Before proceeding with numerical illustrations, we men-
certain range ofAw. From the family of curvesAQ tion that our recent studigsl5-19 of synchronization of
=f.(Aw) for different strengthe of coupling between oscil- chaotic oscillators have shown that the notion of phase can
lators, one can determine the synchronization regions, or Arbe introduced for this case as wplll], and effects of phase
nold tongues, in the plan@ w,s). and frequency locking can be observed, while the amplitudes

If we encounter more complicated cases than the interagemain chaotic and, in general, uncorrelated. In particular, it

tion of two periodic oscillators, e.g., consider synchroniza-was shown that phase dynamics of chaotic oscillators is
tion in the presence of noise, synchronization of chaotic sysqualitatively similar to that of noisy periodic oscillators with
tems, or synchronization of an oscillator with modulatedchaotic amplitudes playing the role of a noisy perturbation to
natural frequency, the notion of synchronization becomes ephase$16]. Depending on the phase-coherence properties of
sentially less trivial. Moreover, the notions of phase and fre-a strange attractor, i.e., on the certain characteristics of the
guency locking may not be equivalent any more. In the fol-intrinsic “noise” in the system, the synchronization proper-
lowing we illustrate this with several numerical examples. ties of a chaotic oscillator are similar to that of a periodic

oscillator with a different level of noise. For example, for the

A. Synchronization as phase locking Rbssler system, the dependenceidd =(¢;)— () looks
like the bold curve in Fig. 5, while for the Lorenz system it

First we discuss synchronizationmoisyperiodic oscilla- s jike the dotted ong16]. As a consequence of this similar-
tors, see, e.9{2,38,39. If noise is weak, then in the syn- jiy in the phase dynamics, we can consider synchronization
chronization region, the generalized phase differepge, oint.
fluctuates in a random way around some constant value. If 1g jllustrate the statistical understanding of phase locking,

the noise is weak andounded then there exists a range of \ye consider a periodically driven van der Pol oscillator in
mismatchAw, where the condition of frequency locking is the presence of noise,

fulfilled on average, i.e.n{Q,)=m(Q,). Near the bound-

aries of the Arnold tongue, noise can capbase slipsi.e.,

an “additional” or “missing” cycle of an oscillator result- K= pu(1=X2)X+ wix=e sin(vt) + £, (©))

ing in a rapid upward or downward jump @f, ., by 27. As

a result, the frequency-locking condition is violated, and thewhereu =1, the natural frequency,=1, and¢ is Gaussian
transition out of the synchronous regime is now smearedielta-correlated noise{&(t)é(t'))=2Dés(t—t"), D=0.1.
(Fig. 5. If the noise is unbounded, e.g., Gaussian, the probBy varying the frequency and amplitudes of the external
ability of a slip to occur is nonzero foAw#0, so that force, we look for synchronization of the oscillator by exter-
strictly speaking the synchronization region shrinks to anal force. Having in mind the physiological system we are
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FIG. 7. Statistical phase locking without frequency locking in
noisy oscillator.(a) Curves 1 and 2 show the relative phase for the
The distribution of the cyclic relative phags) has a pronounced syn(_:hronized oscillqtor and for the case of two un_coupled sysFems
maximum that means existence of a preferred value of the phaé%av'ng the same dlffere_nce_of average frequencu?s, _res_pectlvely.
difference. Curve 2 in@ shows an example of coincidence of The_se cases can be eas_lly (_jlstln_gwshe(_j from the distribution of the
average frequencies of two uncoupled systems; the absence of sﬂd'? relative pha;e, Wh,'Ch IS unlmOQaI in the presence of synchro-
chronization can be seen from the distribution of the cyclic relativen'zat'on(b) and fairly uniform otherwiséc).
phase that is practically unifortc).

FIG. 6. Phase locking in a noisy oscillatda) The phase is
locked to that of external force but fluctuates due to néiseve 1).

B. Synchronization as frequency locking

going to investigate, we have chosen an example of 3:1 lock- In this section we analyze synchronization of a noisy van

ing [42]. To detect synchronization, we compute the phaséler Pol oscillator with modulated natural frequency

differencees ;=3 vt— ¢, q4p, Wheree,q4p is the phase of the

oscillator. X— m(1—x2) X+ (wg+ F)>x=¢, (4
First we demonstrate the case of unbiased random-

walklike motion of the relative phagd€ig. 6(a), curve 1; the  where F is the modulating termyu=1,wy=1,D=0.05.

parameters of the external forcing awe=0.287 ande  Synchronization by parametric action has, to our knowledge,

=0.8. The phase difference is bounded, so that phase lockwot been studied in the literature. We do not perform a de-

ing in the sense of Eq1), as well as frequency locking takes tailed study of this case here, but only report several impor-

place; the distribution of the cyclic relative phase shows aant properties.

clear maximum[Fig. 6(b)]. For comparison we show the First we consideperiodic modulationof the natural fre-

phase difference of the autonomous oscillator and the perguency,F=e sinut, and compute the dependence of &dwe

odic force having the same average frequefleig. 6@,  eragedfrequency of the van der Pol oscillatfr=( ,qp) on

curve 2|; the parameters ane=0.3118 and: =0. Inthisway  the modulating frequency; this frequency locking is dem-

we imitate the occasional coincidence of frequencies. Indeenstrated in Fig. 8, curve 1, far=0.6. In contrast to the

the frequency locking seems to be present, although it igase of synchronization by additive forcing, this locking oc-

destroyed even by the slightest detuning, e.gv,dhanges in

the fourth digit. Nevertheless, this case can be easily distin- 0.04

guished from synchronizatiofcurve 1 by means of the dis-

tribution of the cyclic relative phase, which is almost uni-

form [Fig. 6(c)]. 0.02
Now we examine synchronization of the van der Pol os-

cillator near the border of the synchronization region; the

parameters of forcing are=0.292 ands=0.8. In this case =4 000

we observe biased random-walk-like motion of the relative

phase[Fig. 7(a), curve 1. The phase difference is un-

bounded, i.e., there is no frequency locking. Nevertheless, 002 ¢

statistically understood phase locking is clearly seen from

the distribution of the cyclic relative phaddig. 7(b)]. 004 L< , ,

Again, we show for comparison the phase difference in the 0.29 0.30 0.31 0.32
case of “occasional” coincidence of frequencies of autono- v

mous oscillator and external forfe=0.3145 and: =0, Fig. FIG. 8. Synchronization of a van der Pol oscillator via harmonic

7(a), curve 2; the distribution of the cyclic relative phase modulation of its natural frequendygurve 1. The borders of the
clearly shows the absence of synchronizat[fig. 7(c)].  synchronization region are smeared in the presence of fimisee
Similar results for mutually coupled noisy chaotRossle)  2), or noise and second, low-amplitude, harmonic modulating force
oscillators are presented j10,43. (curve 3.
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4 . . . . pending on the type of interaction, e.g., external forcing or
2L modulation, one can observe either phase locking in the
8§ , sense of Eq(1) and locking of averaged frequencies, or
g o[ phase locking in a statistical sense, i.e., existence of a pre-
- ferred value of the cyclic relative phade[Eq. (2)] without
4 10000 20000 30000 40000 50000 frequency locking, or, finally, frequency locking and phase
Time locking in the sense of Eq1), but without statistical prefer-
0.10 , , ence of a certain value oF.
(b) (¢ |
0.05 g + g IV. SYNCHRONIZATION APPROACH TO THE
Wﬂhﬂmﬂﬂm ANALYSIS OF BIVARIATE DATA
0.00 WWWWW Now we discuss how the idea of synchronization can be
—n 0 T % 0 i used to study the underlying dynamics of possibly interact-
Vs Vs ing complex systems from experimental data. A typical prob-

lem in time series analysis is to reveal the presence of an

FIG. 9. Example of frequency locking without phase locking. In .
the case of modulation, the average frequency of the van der Péﬁlterdependence between twior more systems from the

oscillator is practically locked to that of the modulating for@e, signals measured at their outputs. The analysis of these bi-

but due to the presence of a second, subthreshold modulating terf@iate data is traditionally done by means of cross-
the distribution of the cyclic relative phase is no longer unimodalcorrelation(cross-spectruintechnique{46] or nonlinear sta-

correlation, or bispectral analydi47].

Recently, Schiffet al. [48] applied the mutual prediction
technigue to verify the assumption that measured bivariate
data originate from two synchronized systems, where syn-
chronization was understood as the existence of a functional
relationship between the states of two systems, called gener-
alized synchronization.

) . : In our approach we assume that the measured bivariate
that 7=0.6 sinst+0.2 sin 0.307; the 2 =(,qp) VS v POt gata originate from two interacting self-oscillatory systems,
still shows frequency lockingFig. 8, curve 3. This quasi-  \yhich may either be phase synchronized or oscillate inde-
periodic modulationwvas chosen here in order to simulate in pendently[18,40,43. This means that we cannot consider
a rough approximation the influence of two _respiratory-the system under study as a “black box,” but need some
related rhythms on the heart rae Sec. )l By this modu-  4qditional knowledge to support this assumption in every
lation the phase difference remains practically bourl#@g.  particular case. For the study of cardiorespiratory interaction
9(@)]. Nevertheless, from Fig.(B) we see that within the ihjs assumption is quite reasonable; indeed, the cardiovascu-
synchronization regions(=0.6 andv=0.309) the distribu- |ar and respiratory systems are individual oscillators having
tion of the cyclic relative phase is no longer unimodal; influ- their own rhythms, but they are known to be couplede
ence of noise makes this distribution practically uniformgect. |). An advantage of our approach is that it allows us to
[Fig. 9(c)]. So, the quasiperiodic modulation shows an ex-aqdress even weaker interaction between two oscillatory sys-
ample offrequency locking without phase lockin@nother  tems than that of Schifet al. [48]. Indeed, the notion of
example is given if44]) _ phase synchronization implies only the existence of some

It is important to underline the difference between syn-re|ationship between phases, whereas the irregular ampli-
chronization and modulatlop. Due to modulation, the fre-y,des may remain uncorrelated. The irregularity of ampli-
quency () of an oscillator is not constant anymore, buti,des can mask the phase locking so that traditional tech-
changes from one cycle to another. If the modulation is, e.gpjques treating not the phases but the signals themselves are
periodic with the frequency, then () also varies periodi- |ess sensitive in the detection of systems' interrelation
cally, Q(t)=Qq+Q(vt), where(} is a periodic function [18,49. Moreover, the state of phase synchronization occurs
with the period 2r/v. Exactly such a variation of the heart for lower values of coupling than the state of generalized
rate due to modulation by a respiratory-related rhythm issynchronizatiorj17]; therefore, we expect it to be typical in
called RSA in the context of cardiorespiratory interaction.natural systems, for instance, in cardiorespiratory interaction.
This variation may or may not be accompanied by the fre-Certainly, the relation between phases should be understood
quency lockingn(Q)=mu, one of the effects that are stud- in a statistical sensg27,40,43.
ied in the present paper. Hence, RSA and cardiorespiratory Below we present several data-analysis techniques that
synchronization are different, although definitely related phereveal phase synchronization. Obviously, the first step in our
nomena. To speak of synchronization of the variation of theanalysis is the computation of the phases themselves. The
heart rhythm(variation of R-R intervals, or RSpand respi- instantaneous phasex an arbitrary signal can be obtained
ration, as is done sometimésf. [45]), is not correct: the by means of the analytical-signal approach based on the Hil-
term modulation is more appropriate here. bert transformsee Appendix A A very important property

To summarize the results of this section, the notion ofof this technique is that it does not require stationarity of the
synchronization in noisy systems is not unambiguous. Dedata. Sometimes, the signal can be reduced to a series of

curs only if the amplitude of the modulatienexceeds some
threshold valudor at least the width of the synchronization
region below this threshold is vanishingly smailThe pres-
ence of noise smears the plateau in th@ vs v plot, as
expectedFig. 8, curve 2.

Now we add a secondubthresholgdmodulating force so
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events, i.e., to a point process. This is exactly the case in th¢a)
analysis of cardiac activity, where the electrocardiogram is
often reduced to the sequenceRpeaks appearing at times
t;. Computation of the phase and frequency of such a pro-
cess is described in Appendix B.

Time

(b) § "
S
A. Analysis of phase difference _tS
A straightforward approach to the analysis of synchroni- g
zation is to plot the generalized phase differenggg, [see go
Eqg. (1)] versus time and look for horizontal plateaus in this

presentation; there exist no regular methods to pick up the
integersn andm, so that they are usually found by trial and ©
error. This simple method proved to be efficient in the inves-
tigation of model systemd 5] as well as in some experimen- _HJ

tal data[18,49. By means ofg, (t) plots one can trace o UUUUUUUUUUUUL
transitions between synchronous and nonsynchronous staté? N 2x /
that are due to nonstationarity in interacting systems and/oi g OL/_/_//////_//_///_G

coupling. A disadvantage of the method is that synchronous <
regimes that correspond to neighboring Arnold tongues, e.g.
synchronization of ordera:(m+1), appear in this presen- ©
tation as nonsynchronous epochs. Respectively, in order t
reveal all the regimes, one has to analyze a number of plots
Another drawback of this technique is that if noise is rela-

tively st.rong, _th|s method becomes meffec_tlve and may be FIG. 10. Principle of the phase stroboscope, or synchrogram.

even misleading. Indged, frequent phasg S"PS mask the Pr€Sere a slow signala) is observed in accordance with a fast signal

ence of plateaucf. _F'_g' 7 and synchronlzatlon Can'be re- (o). Namely, it is observed when the cyclic phdsg of the signal

vealed only by statistical approach, i.e., by analysis of th&pown in (e) attains a certain fixed valué (dashed ling these

distribution of the cyclic relative phas& . instants are marked by peaks shown(@h Measured at these in-
For nonstationary data, such an analysis should be done Hiants, the phase of the slow signal wrapped modatm2(i.e., m

a running window; this approach turned out to be efficientadjacent cycles are taken as a one longer gyislelotted in (f);

for the analysis of synchronization between the activity ofherem=2. In this presentatiom:m phase synchronization shows

different brain areas as well as between brain and musclep asn horizontal lines. We note that if one signal, e.g., heartbeat,

activity from magnetoencephalography dp4)]. can be reduced to a point process, then the(g)ds obtained in an

obvious way.

B. Instantaneous frequency ratio
. . ... . periodically in time, but at timet, when the cyclic phase of
Another technlque_ for the detgctlon_ of synchronization ISanother one attains a certain fixed valaied, (t,)mod 2

based on the analysis of the ratio of instantaneous frequen-

cies of two signal§computation of these frequencies is de- V_Vhaér:nd construct synchrogramby plotting ¢/(ti) Vs t,
scribed in the AppendicgsFor stationary data this ratio
would be constant and would correspond to the windiog 1
tation number. _

As the precision of computation of frequencies for noisy Yt = 5[ ba(tomod 2r]. ®
data is rather poor, this method can be used only in addition
to the analysis of phase differences. Its advantage is thdl the noise-free case of.1 synchronization, the phase of
there is no need to search for appropriate valugsafidm;  the first oscillator attains the fixed valu for n distinct
moreover, an approximately constant value of the ratio cawalues of ¢, so that this plot exhibits1 horizontal lines.
be used for estimation of these integers. Besides, by analysi$oise smears out these lines, and some bands are expected to
of instantaneous frequencies in nonstationary signals one cdr¢ observed instead.
approach the question whether we indeed observe synchro- It is important that this technique can be generalized to
nization and not occasional coincidence of frequen¢see the case oh:m synchronization by consideration of adja-
below). cent oscillations of the second oscillator as one cyhe

phase within these cycles grows from 0 ter®):

C. Phase stroboscope: a synchrogram

The method presented here is closely related to the con-
struction of a Poincarsection for a dynamical system. For
example, a common way to study the dynamics of a periodi-
cally driven oscillator is to observe it stroboscopically with see Fig. 10. An important feature of this graphic tool is that,
the period of the external force. Here we use a “phase stroin contrast to phase difference plots, only one integer param-
boscope,” i.e., we observe the phase of one oscillator nogterm has to be chosen by trial. Moreover, several synchro-

1
Ym(te) = 5[ b2(tymod 2mm], (6)
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nous regimes can be revealed within one plot, and the tran- (a) (b) (c)

sitions between them can be traced. Indeed, if due to 1

nonstationarity the coupled systems exhibit a transition from, —eo—8—0—

e.g., 3:1 to 5:2 locking, then this is reflected in the proposed

presentation witm=2 as a transition from a 6- to a 5-line

structure; an example for our experimental data is presentec

in Sec. VA. o—o0—o
We stress two essential differences of this tool from those

used in[21,24-26. a(t) 30, o
(i) For the construction of the plots we use for thaxis

instantaneous phases instead of the time interval since the

previous inspiration. This allows ug) to address phase re- (d) (e) M

lations and to reveal phase-locking phenomena, i.e., to speal 1 ————

of synchronization in strict physical terms afio) to deal

with nonstationary data and neglect the variation of the res-

piratory period. v
(i) Wrapping the instantaneous phase that is defined on ' —e—0—

the whole real line intd0,2m] interval allows us to look m PP

for synchronous epochs of arbitrary ordem and not only B
n:1. . (t) 30, Time

We note that if one of the signals, e.g., heartbeat, can be 3¢0,~A 3¢,+A
considered as a point process, then the natural way to choose
the instants of the stroboscopic observatipis to take them FIG. 11. Different efficiency of straightforward analysis of the
as the instants of occurrence of characteristic events,R.g., relative phase and synchrogram technique in the case of synchroni-
peaks in an ECG. In the context of the analysis of cardioresZation via extemal forcing(a), (b), and(c)] and modulatior{(d),

(e), and(f)]; 3:1 locking is taken here as an example. In the first

iratory interaction, we call such plots cardiorespiratory syn- .
ghrogrya/ms(CRS’s) [27] P P y sy case point event§‘heartbeats’) occur at three equally spaced val-

A verv important broperty of the svnchroaram is that it is ues of the “respiratory” phasésee text These values are shown
y p. . property ynen 9 . by black points on circléa) and the corresponding radii. The noise
equally effective in case of synchronization either by exter-

| ic forci On th h ahtf smears these values; this is illustrated by the gray band around the
nal or parametric Torcing. On the contrary, the straig tor'radii. In this case, the distribution of the cyclic relative phase shows

Ward_ approach, 1€, the analysis of phase dlfferenc_es, IS F single maximuntb). In the case of modulation, the events are not
sentially less efficient in the case of parametric forcing, i-€.equally distributed on circléd) and the respective distributiofe)
modulation. To illustrate this, we analyze a model examplepas three maxima and is essentially broader than the one shown in
Suppose the first signal is a pure sine wave, as an analogy {g). As a result, the synchronization seems to be not well expressed.
respiration, and the second one is a point process that imievertheless, synchrograrte and(f) efficiently reveal synchroni-
tates heartbeat. Let also 3 “heartbeats” occur within eachyation in both cases. The difference between synchronization via
“respiratory” cycle, i.e., 3:1 synchronization takes place. external forcing or modulation shows up by different distances be-
First we consider the case without modulation. Let thetween the horizontal bands in these plots.

“heartbeats” occur at the following values of the “respira-

tory” phase: ¢,(t) = po+27/3-K, where g, is some con- and the distribution of the cyclic relative phase has three
stant anck=0,1,2 . .. . Therelative phasep; ; at the times  peaks. Noise blurs these peaks so that they may overlap;
ty when the “heartbeats” occur is, respectivelyg ((ty) nevertheless, the resulting distribution is rather broad if com-
=3¢, — pn=3(¢pgt 2m/3-k) —27- k=3¢, and in the dis- pared with the case without modulation. Hence, in this case,
tribution of the cyclic relative phas#; ;= ¢3,mod 2 one  the analysis of the distribution is not reliable for the detec-
observes aj peak; in the presence of noise this peak istion of synchronization. The synchrogram, on the contrary,
smeared. Now suppose that modulation takes place, i.edemonstrates in both cases three bands and is, therefore,
“heartbeats” appear within each “respiratory” cycle with a equally effective. The only difference is that these bands are
nonuniform step: either equally or nonequally spacégig. 11).

Time

bo—A+2m/3-k, k=0,36,... V. DETECTING SYNCHRONIZATION BETWEEN HEART
RATE AND RESPIRATION
(1) =14 Pot+2mI3-K, k=1,4,7,... . . g e th ot the ab
_ In this section we describe the application of the above-
PotA+2ml3-k, k=258, presented methods to experimental data. We recall that res-
piratory signals are narrow-bandgd. Fig. 1(b)], and, there-
Then, the relative phase attains three different values, fore, their phase and frequency can be computed by means of
the Hilbert transform(see Appendix A electrocardiograms
[cf. Fig. (@] can be reduced to point procesgesquences
3(¢o—A), of R peak$ and treated as described in Appendix B. We
e31(t) =1 3o, present the details of our analysis for two subjects, and then

3(phot+A), summarize the results.
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®) FIG. 14. Distribution of the cyclic relative phask; /27 cal-

culated in a running window400 heartbeajsand coded by gray
scales also gives some indication of synchronization in the time
interval 600—1400 s. Black color corresponds to the maximal val-
ues.

500 1000 1500
Time (s)

FIG. 12. The data for subject A: time course of RiRterbeat tribution in a running window(Fig. 14); the preference of a
intervals(a) and of the instantaneous frequerfdy) of respiration  artain value of¥ 5 ; within the last~900s is clearly seen.
(b) clearly demonstrate the nonstationarity of the time series. The next step is to perform the stroboscopic analysis of
the respiratory phases as described in Section IV C. The CRS
clearly exhibits six horizontal lines within the last1000 s

The sequence of R-R intervals and frequency of respiratFig. 15); this is confirmed by the respective distribution
tion for subject A(Fig. 12 clearly demonstrate the nonsta- (phase-density histograrshowing six well-expressed peaks.
tionarity of the data. First, we analyze the generalized phasghis presentation makes the presence of 3:1 phase locking in
difference ¢, , for different valuesn and m and instanta- the data quite evident.
neous frequency rati@=ig. 13. The latter is an indication of
the possibility of 5:2 locking within the first=300 s and of B. Example of frequency locking

3:1 locking appearing after=750s. Nevertheless, from the . i _ )
Within the first~300 s the CRS for subject &ig. 15

analysis of relative phase only, we cannot reliably confirm )
the occurrence of synchronized epochs. Indeggd, exhibits has a clear 5-band structure. These bands are not horizontal;

some plateaus interrupted by phase slips only for the last 400
s(seeinletin Fig. 1B ¢s,, as well as the values of relative 20 @g& x;\m-@wy,%mﬁ%

o ?A ,. oé qgﬁ 5 “
h e for other i rati i i i 15 -ah. I, ““Q‘?ﬁ:&ﬁ ,@"&o&'q?wm
p as t |OCk|ng at|OS, dISplayS no plateaus in this - .gd, %'. Aiﬂ _£ ) Qo %b ? %

A. Example of phase locking

: = ue a o &3‘59
presentation. _ _ . 3OR “:f;%,,; e -fwww""*@% el o
The presence of 3:1 locking becomes more evident if we” o5 %ﬁw %“ A ﬁ“"“‘w‘fw@mg& % o&afm%"’;wf I
consider the distribution of the cyclic relative phaksg [cf. 00 [ A 52“% it w"&:?;?’%w ”9”%:;5:0“‘“ i
Eq. (2)]. As the data are nonstationary, we compute this dis-
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FIG. 13. Generalized phase difference and frequency ratio for ;’:;w % P00 5570 0 sy M%ﬁw{:

w,(t)

subject A. Relative phase;; (8 shows some indication of 3:1 101 Y ooc"d"’@d’@ @w@ww%m@%w
phase locking. For a comparatively short period of time one can see 93 r;;:;:":;:::ﬁ i“’i’:wﬁt‘"’w@w
plateaus in the plot op3 ; vs time, interrupted by phase slijsee 0-9200 < 1200 = Tg:@ C“"’WQ:ZOO 00 o4
inlet). The time dependence gf; , (b) remains approximately con- Time (s)

stant during the first 300 s but displays no distinct plateaus, as can

be seen from the zoomed plbhlet). The instantaneous frequency FIG. 15. (8) CRS of subject A, showing the transition from a

ratio is shown in(c). 5-band structuré5:2 locking to a 6-band structuré3:1 locking.
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hence, the distribution of, is practically uniform, so that

we cannot speak of phase locking. Nevertheless, the occur-

rence of these bands shows that, on average, two adjacent FIG. 17. (a) CRS of subject D demonstrates 6-band structure in

respiratory cycles contain 5 heartbeats, so that this epoch cdime range 400—1200 s confirming 3:1 phase locking. Note that there

be considered as an example of frequency locking. is no phase locking in the statistical sense in those intervals where
Another illustrative example can be found in the data ofthe generalized phase differenidég. 16b)] indicates phase lock-

subject D; these data were already introduced in Fig. 3. Th&'9:

analysis of relative phase and instantaneous frequency ratio

(Fig. 16 indicates epochs of 3:1 and 5:2 synchronization. We observe that cardiorespiratory synchronization tends

The CRS plot confirms that we encounter statistical 3:1t0 become weaker with increasing RSA. Thus, these two

phase locking within the time intervat400—1200s(Fig.  effects might be the consequence of two competing physi-

17). The interval 1200—1800 s represents frequency locking@logical mechanisms. Another observation is that synchroni-

the relative phases , fluctuates around a constant value, sozation seems to be more pronounced in male subjé€ls

that, on average, the frequency rafip/f,=5:2. Although

we can find some short epochs with 5 distinct bafelg., VI. DISCUSSION AND OUTLOOK

aroundt=1400s), and the distribution @f, is not uniform,

we cannot with confidence speak of phase locking in this

case. From the other side, long-lasting coincidence of fre-

guencies by pure chance seems to be very unlif@ynpare

with the model example in Sect. II)A

Time (s)

Concerning the interpretation of observed phase structures
we have to be aware of an important issue: how can we be
sure that these patterns of the relative phase indeed indicate
synchronization, and, respectively, underlying nonlinear dy-
namics? How reliable is this indication? There is no straight
way to answer these questions so far. Actually, as synchro-
nization is nota state, but a proces®f adjustment of

The experimental results are summarized in Table Il. Thehythms due to interaction, we cannot prove its existence if
subjects are listed there in the order of ascending intensity offe do not have access to the system parameters and cannot
respiratory sinus arrhythmia. The latter is characterized ircheck experimentally that the synchronous state is stable to-
the following way. First we compute the RSA amplitude for wards variation of the parameter mismatch within a certain
every respiratory cycle as the difference between the longesange. As we are not able to do such experiments on humans,
and the shortest R-R interval within this cycle; if an R-R the only way to get some confirmatigbut certainly not a
interval spans two neighboring cycles, it is considered tgroof) of our conclusions is to make use of the fact that the
belong to that one, which contains more than 50% of thelata are nonstationary. Indeed, we can trace the variation of
interval. Next, we calculate the median of the distribution ofthe instantaneous frequencies of both signals and their rela-
the RSA amplitude for all respiratory cycles; this quantity istion. If we find some epochs, as in the case of our data,
taken as a measure of the RSA intensity. where both frequencies vary, but their relation remains stable

C. Summary of experimental results
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TABLE Il. Summary of the results: the subjects are listed in the order of ascending amplitude of respi-
ratory sinus arrhythmia; the amplitude of RSA is characterized by median and the interquartile range of the
distribution of the RSA amplitude within every cycleee text The results show that synchronization and
RSA seem to be competing phenomena. Note the indication of more pronounced synchronization in male

subjectg50].
RSA (9

Code Sex Median IQR Synchronization
A m 0.015 0.040 3:11000 3, 5:2(300 9, 8:3(20 9
B m 0.031 0.038 3:Iseveral spells of 40)s
C m 0.046 0.057 3:1209,7:2(209, 4:1(20 9
D f 0.056 0.057 5:2 and 3:(several spells of 30)s
E m 0.067 0.047 7:260 9, 3:1 and 4:1(20 9
F f 0.074 0.075 11:420 9
G f 0.083 0.070 No synchronization detectable
H f 0.264 0.296 No synchronization detectable

(Fig. 18, this can be considered as a strong indication insurrogate data techniqugsl,25,4Q. However, we see some
favor of our conclusion. serious problems in this approach. The usual formulation of
Another indication that also can be obtained using the facthe null hypothesis that is used for nonlinearity tests is to
of nonstationarity of the data is the presence of several difeonsider a Gaussian linear proc¢58] with a power spec-
ferentn:m epochs within one record. Indeed, one can argudrum that is identical to that of the tested signal; more so-
that observed phase or frequency locking of, e.g., order 3:Iphisticated method$3] imply also preservation of the prob-
could be due to the coincidence of frequencies of the unability distribution. Modification of this null hypothesis for
coupled systems. Nevertheless, occasional coincidence tie tests for synchronization—consideration of two surrogate
frequencies having the ratios exactly corresponding to neighsignals that preserve the linear cross correlation between the
boring Arnold tongue$3:1, 8:3, and 5:2 in case of subject A, original data—seems to be insufficient. Indeed, due to the
cf. Fig. 19 seems to be very unlikely. definition of synchronization, we are interested in the rela-
If the data are rather stationary and we are not able to fintion between instantaneous phases, whereas the variations of
such epochs, the situation is more difficult. From the firstamplitudes and their interrelation is of no importance. The
sight, a natural way to address this problem is to use here thesual way to construct surrogatéandomization of Fourier
phasesused in[51] mixes the phase and amplitude proper-

— 110 ' ‘ ' ' ties transforming the variation of instantaneous phase into
@ 1
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FIG. 18. A transient epoch within the data of subject A confirms
the existence of synchronization. The periods of cardx®) and FIG. 19. Another transient epoch within the data of subject A.
respiratory cyclesT) are shown in(@ and(b), respectively. After  The periods of cardiatR-R) and respiratory cyclesT( are shown
a short epoch of nonsynchronous behayitt50-1200 sthe fre- in (@ and (b). The ratio of instantaneous frequenci@s jumps

quencies of heart rate and respiration change, probably due to theetween the values 1/3, 3/8, 2/5, and 3/7 corresponding to the
influence of a certain control mechanism, and become locked, i.eneighboring synchronization regions; these values are shown by
f, /If,~1/3. In the next 50 s we observe that, although both frequenhorizontal lines. Very short epochs of synchronization can be seen
cies decrease, this ratio remains almost cons@ntThis means from the CRS(d) as several repeating patterns. So, e.g., the 8-point
that one of the systems follows the other one, i.e., synchronizatiopatterns mean 8:3 synchronizati¢® different values of relative
takes place. 3:1 phase locking is also clearly seen from @RS phase repeat themselves within 3 respiratory cycles
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the variation of instantaneous amplitude and vice versa. Besignal £(t), which is a complex function of time defined as
sides, the signals generated by self-sustained oscillators pos-
sess certain properties of the distribution of instantaneous
amplitudes(see[54] and references thergirand this distri- L(t)=s(t) +13(t) =A(t)e'?), (A1)
bution is destroyed by the Fourier phase randomization.
As a separate related problem, we mention quantificatiofvhere the functiof®(t) is the HT ofs(t),
of synchronization strength. Two measures have been pro-
posed to quantify statistical phase locking from the distribu-
tion of the relative phasgtQ]; the quantification of synchro- _ o[ s(7)
grams remains an open question. S(t)y=m Pf_w t—7r
To conclude, although the general problem of reliability
of estimates for the considered inverse problem requires fur- . ] )
ther investigation, in the case of our experiments we ca@nd P means that the integral is taken in the sense of the
claim with high confidence that we have shown synchroni-Cauchy principal value. The instantaneous amplitéde)
zation between the cardiovascular and the respiratory systef'd the instantaneous phaggt) of the signals(t) are thus
in humans. In the present paper we have confirmed our eafniquely defined from Eq(Al). _
lier communicatior{27] that phases of both rhythms can be  As one can see from E¢A2), the HT can be considered
locked with different ratios::m, and not only withn:1 as ~ @s the convolution of the functiors¢t) and 147t. Due to the
was shown in previous works. Our finding demonstrates thaproperties of convolution, the Fourier transfo8fw) of 3(t)
the cardiorespiratory interaction cannot be described in termis the product of the Fourier transformssgt) and 1/#t. For
of “triggering” of one oscillator by another ong23]. physically relevant frequencias>0,S(w)= —1S(w). This
From our time-series analysis we cannot directly draw ameans that the Hilbert transform can be realized by an ideal
conclusion on the origin of coupling that is responsible forfjlter whose amplitude response is unity, and phase response
the effect we observe. Nevertheless, we can make the follows 5 constants/2 lag at all frequencieE56].
ing remarksi(a) From the analysis of a transient epahg. An important advantage of the analytic signal approach is
18) we see that first the heart rate remains practically conthat the phase can be easily obtained from experimentally
stant while the frequency of respiration decreases. Duringneasured scalar time series. Numerically, this can be done
this epoch the systems are not synchronized. Then, botfja convolution of the experimental data with a precomputed
rhythms accelerate abruptly, and synchronization sets irgharacteristic of the filtefHilbert transformer [46,57,59.
This sudden change might be caused by the chemorecepto&ghough HT requires computation on the infinite time scale,
signaling that the concentration of GOn the blood in- je  the Hilbert transformer is an infinite impulse response
creased due to slow breathing. Note that the onset of syriiter, the acceptable precision of about 1% can be obtained
chronization is accompanied by the appearance of RSA, i.ewijth the 256-point filter characteristic. The sampling rate
by increased activity of some parts of the autonomous nefmyst be chosen in order to have at least 20 points per average
vous systemANS). Hence, in this particular case cardiores- period of oscillation. In the process of computation of the
piratory synchronization may be related to central neuratonvolutionL/2 points are lost at both ends of the time se-
regulation. (b) Preliminary results of the work in progress ries, wherel is the length of the transformer. Alternatively,
[55] show that synchronization can be also observed in heaf§iT can be obtained by performing fast Fourier transform
tranSplant SUbjeCtS. These SUb]eCtS have no direct neuraﬁl:FT) of the Origina| SignaL Sh|ft|ng the phase of every fre-
regulation of the heart rate by ANS; therefore, in this casequency component by /2, and applying inverse FFT.
some other mechanisms are responsible for the locking phe- Although formally A(t) and ¢(t) can be obtained for an
nomenon. arbitrarys(t), they have clear physical meaning onlys(t)
is a narrow-band signal, see the detailed discussid®h
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wave result in negative values of instantaneous frequency.
From a physical point of view, we expect that the instanta-
A consistent way to define the phase ofabitrary sig-  neous frequency is a slowlyvith respect to the characteris-

nal is known in signal processing as the analytic signal contic period of oscillations varying positive function of time
cept[56,46,57. This general approach, based on the Hilbertand has a meaning of a number of oscillations per time unit.
transform(HT) and originally introduced by Gabor in 1946 This is especially important for the problem of synchroniza-
[58,56, unambiguously gives thistantaneous phase and tion where we are not interested in the behavior of the phase
amplitudefor a signals(t) via construction of theanalytic  on a time scale smaller than the characteristic oscillation pe-

FREQUENCY OF A CONTINUOUS SIGNAL
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riod [16]. There exist several methods to obtain the estimates APPENDIX B: PHASE AND FREQUENCY OF A POINT

of f(t) in accordance to this viewpoint; for a discussion and PROCESS
comparison, seg60].
Here we use the technique that is called60] a “maxi- The series oR peaks can be considered as a sequence of

mum likelihood frequency estimator.” Suppose the instantapoint events taking place at timgs. Phase and slowly vary-
neous phase(t) is unwrapped into the infinite interval, so ing frequency of such a process can be easily obtained. In-
that this function is growing, although not necessarily mono-yee(, the time interval between tipeaks corresponds to
tonic. Then we perform for each instant of time a local poly-gne complete cycle of the oscillatory process; therefore, the
nomial fit on an interval essentially larger than the characterphase increase during this time interval is exactly Bence

istic period of oscillations. The(analytically obtainegd we can assign to the times the values of phaseb '
derivative of that polynomial function in this instant gives an = b(t) =27k, It is difficult to deal with this time serikes
estimate of the frequency that is always positive. Practicallybecal';Se it is ﬁot equidistantly spaced. Nevertheless, we can

we perform it by means of a Savitzky-Golay filter; a 4th- K f the fact that it i tonically | .
order polynomial and the interval of approximation equalma € use of the fact that 1t 1S a monotonically Increasing

approximately 10 characteristic periods seems to be a reasofynction of time, and invert it. The resulting procegey) is
able parameter choice. The instantaneous frequency corfduidistant, as the phase step is. Now we can apply the
puted in this way practically coincides with the maximum of Polynomial fitting technique described in Appendix A to ob-
running autoregression spectrum obtained, e.g., by means BN the instantaneous peridg=T(¢y). Inverting the series

the Burg techniqué29], cf. Fig. 3. once again we obtain the frequenty= f(t,) = 1/Ty.
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