PHYSICAL REVIEW E VOLUME 60, NUMBER 1 JULY 1999

Mass extinction in a dynamical system of evolution with variable dimension
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Introducing the effect of extinction into the so-called replicator equations in mathematical biology, we
construct a general model where the diversity of species, i.e., the dimension of the equation, is a time-
dependent variable. The system shows very different behavior from the original replicator equation, and leads
to mass extinction when the system initially has high diversity. The present theory can serve as a mathematical
foundation for the paleontologic theory for mass extinction. This extinction dynamics is a prototype of dy-
namical systems where the variable dimension is inevitgBi£063-651X99)06707-0

PACS numbd(s): 87.23—n, 87.10+e, 05.40—a, 05.65+b

INTRODUCTION large dimensional replicator equations with random interspe-
cies interactions and the extinction thresholdexginction
Mathematical biological models of evolutiji—6] have  dynamics
been a recent object of study in relation to complex systems The extensive numerical simulations show that the behav-
[7], in which the techniques of statistical physics play a pow-©F Of the extinction dynamics is quite different from the
erful role. In particular, the problem of the extinction of a P€havior by the original replicator equations without an ex-

species in an ecosysteff] has been discussed within the [T CL NEREIL Rt e (R RS SRR el
framewqu of phy5|cs[2—4_,€§. On the other h_and, the by a small number of parameters. That is to say, a distribu-
mechanism of mass extinction has been a classical and co

. ) d COn of a basin size of each attractor is characterized by a
troversial problem studied by a number of researchers in paﬁower law Moreover, the dependence of the results on the
leontology[10—12 and evolutional biology13]. The con- :

. X o rameters suggests that the original replicator equations
clusions based on the results of these studies can be dividggihout the extinction threshold should also follow the same

into two categories, one emphasizing exogenous sheds  |ayy. Therefore, extinction dynamics can be a powerful tool
luck) [10,14-16 and the other, endogenous causbad for investigating the complex behavior of the original repli-
genes [4,17]. By combining both views, a mathematical cator equations because extinction dynamics has rather
model of mass extinction has been propog&8l, which is  simple attractors, while the original replicator equations of-
highly phenomenological. In this paper, we not only com-ten have complex attractors, such as chaoieteroclinic
bine the views of the bad luck effect and the bad gene effecgycles
in extinction, but also construct a model of mass extinction  \we also find several significant features that characterize
starting from a traditional mathematical biological equation,mass extinction. Defining theiversityas the number of ex-
which describes the dynamics of populations of interactingsting species, we first find that final value of this quantity is
species. largely independent of its initial value. Second, we find that
This model reflects the former viethe bad luck effedt  mass extinction does not occur immediately after an environ-
e.g., the situation where several biotas, which have beemental change, but begins after a numbeinaiuction times
separated from each other for a long time, are suddenly in25]. The dependence of this time development of the diver-
tegrated into a larger ecological network by some exogenousity, the extinction curveon the parameters is extensively
shock (biotic fusion [19,20. (One example of this kind of studied. The time evolution of other important variables is

large-scale extinction, caused by such biotic fusion, can bgiso studied, which araverage fitnesanddistribution of the
seen in a comparison of the number of families of land maminterspecies interaction coefficients

mals in North America and South America before, during,

and after the formation of the Panama land bridge between MODEL
the two continents in the Pleistocene epoch about two mil-
lion years agd21].) We assume that the interaction coeffi-
cients for this produced ecosystem can be written in the form First, let us consider the following ordinary differential
of a random matrix22-24. Meanwhile, following the latter equations called theeplicator equationgRE) [1],

view (the bad gene effegtwe adopt the concept of aax-

Replicator equations with random interspecies interactions

N N
tinction threshold which we introduce into the replicator dx(t) : \
equationg 1] of the population dynamics. We refer to these g X le aijxi(t)_jél ax; (Dx(t) | (1)
on anN, dimensional simplex
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The replicator equations have become well-establishetb a fixed point, but also complex behavior, suchhasero-
models in many field§l], including sociobiology, studies of clinic orbits [26,27] or chaos[28,29, even at low dimension
the prebiotic evolution of macromolecules, mathematicaN,=>4).
ecology, population genetics, game theory, and even eco- It is useful to transform the variable;(t) to y;(t)
nomics. In particularN, dimensional RE is equivalent to the =l0g(x;(t)) and to deal with the replicator equations, in the
N,— 1 dimensional general Lotka-Volterra equatidd, the form of difference equations by the simple Euler method, as
analysis of which is one of the main subjects of mathemati- .
cal biology. The variable; denotes the@opulation densitpf yi(t+1)=y;(t) + At(f;(t)— 1), 3
species. N, denotes the initial number of species, that is, the
initial value of diversity. The i(,j)th element of the matrix

A=(a;;) determines the effect of speciesn the change rate fi()=2 a;en®, (4)

of species. Here we use;; = — 1 for intraspecies interaction .

coefficients, and we assign the interspecies interaction coef-

ficients a;;j(i#]) as time-independent Gaussian random (=2, &iOf (1), (5)
I

numbers with mean 0 and variange In general, this ran-

dom asymmetric interaction matrix drives this system into a

nonequilibrium state. where At is a small constant for the discretization, and is
The assumptions we make for these asymmetric randomsed as the unit of time in the following simulations and

interactions are based on the hypothesis that a biotic fusiofigures. f;(t) andf_(t) denote the fitness dth species and
reorganizes species relationships in a random fasf0h  average fitness over all species, respectively. The transfor-
This kind of ecosystem with random interaction can be promation is effective, in particular, for numerical calculations
duced, for example, by a reduction in a habitat area, Whicrbecause some (xﬁ(t)’s often take a very small value, which

paleontologists have asserted to be a trigger for mass extinghay cause underflow. Hereafter, we use E8s-(5) in the
tion [12]. Because the reduction in a habitat area may confingumerical calculations.

many biologically isolated species to a narrow area, it drives
them into competition and, eventually, brings about biotic
fusion. In this sense, a large-scale biotic fusion of many bio-
tas can occur as well as a fusion of two biofa6]. More- We should note here that extinction is not well defined in
over, even a biotic fusion of only two biotdas the forma- the RE model with larg®\; and random interactions because
tion of the Panama land bridgenay change the interaction such a model generally has heteroclinic orbits. When a het-
a;; even if bothith andjth species belong in a same biota, eroclinic orbit approaches saddle where some species are
and the two-biota fusion may yield a rand@y because, for extinct, the population densities exponentially approach zero.
example, the biotic fusion may changes the preference dflowever, they never actually reach zero because the orbit is
predation for each speciés.g.,ith species in North America bound in theinterior of the simplex(2). In the vicinity of the
may preferkth species in South America thath species in  saddle, the values for these population densities are too small
North America. to cause underflow by naive numerical calculations. Never-
Here we note that, for example, for marine animals, theheless, some of these populations eventually begin to revive,
biotic fusion can take place not only by a decline in sea levelgausing the orbit to leave for another saddle. This transition
which causes habitat area reduction, but also by an increagenong saddles continues cyclically or chaotically. The expo-
in the sea level, which causes a connection of sea areas sep@ntial approach of population to zero and its revival to the
rated from each other for a long time. Therefore, the bioticorder O(1) play a significant role in heteroclinic orbits.
fusion hypothesis here can be an explanation for the questidrdowever, in the real world, such a small population density
of why a number of mass extinctions take place because afannot be sustained. In this sense, heteroclinic orbits have
both the decline or the increase in the sea level. One of theever been believed to be biologically significant.
purposes of the present study is to show that any large-scale Considering the above problem, we introduce the param-
biotic fusion and any subsequent random interspecies integter d to the dynamic$Eqgs.(1)—(2)] to represent the extinc-
actions may play a role in the bad luck effect for mass exdion threshold; at each discrete time step, the population den-
tinction. sity x (=expfy,)) is set to zero if this quantity becomes less
Several pioneering studies of such a random interactiothan . The population densities of the surviving species
model have been carried out using the theory of randorgx;} (i#k) are then renormalized to satisBy . x;=1. This
systems. However, these studies have dealt with limitedenormalization implies that the niche of an extinct species is
cases, such as the local stability condition for a linear versionlivided among the survivors. The diversity decreases
of RE [23], the replica variational theory for RE with sym- through the above process, and we denote its valué. e
metric random interactions, which ensures equilibrium stateitroduction of § is also nothing but a finite size effect on
[2], and the dynamic mean field theory for noise-driven RERE, because coincides with a minimum unit of reproduc-
with asymmetric interactiong3] only in the parameter re- tion for each species, and its reciprocab Lorresponds to
gion, where the asymmetry is weak and the system is erthe permissible population size of an ecosystem.
sured to approach a fixed point. On the other hand, the global It must be noted here that the present model belongs to a
behavior of RE with fully asymmetric random interaction is class of systems for which the dimension is a time-dependent
hardly treated analytically, because the equations are highlyariable. Since this time-dependence is inevitable not only in
nonlinear and the dynamics often show not only convergencpopulation dynamicg30,31, but in many other fields as

The extinction dynamics
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well, such a highly nonlinear model has never been system- 105 F
atically analyzed.

Whenever there is a given set of paramet®rsg and an 104
initial diversity N;=N(t=0), the initial state {x;(0)}
evolves until a steady state is achieved. Extinction never oc-
curs in this steady state, and there remains a stable subecc 10°
system with a comparatively small number of surviving spe-

cies (core speciesNg (=<N,). Although almost all orbits Af 102 |
converge to an equilibrium point in this state, we also find %
periodic orbits. Chaotic orbits are very rare. Heteroclinic or- V o |
bits are never achieved because the existence of the &inite
prohibits any orbit from approaching a saddle. Such stability

is always achieved by any finité. This is a new type of 100
destruction of a high dimensional attractor, which is, in gen-

eral, calledcrisesin the theory of chaof32]. Therefore, let 10" |

us refer to this kind of dynamics asxtinction dynamics
(ED). By a series of extensive numerical simulations, we
investigate the features of ED, especially the dependence o
ED on three parameterbl,, v, andé.

From the point of view of random system theory, it is  F|G. 1. Basin-size distribution$S(n)), (vertical axis as a
important to observe typical behavior for ED by executingfunction of rankn (horizontal axis for (a) N,=64, sampled from
random averagef quantities over samples of a random ma- 100 000 initial states and averaged over ten samples afid (b)
trix A. Hereafter, we will, in general, write this average asN,= 128 from 20000 initial states and three sample#\of

(.. )a

| | |
100 10" 102 10% 10*
rank n

largerN, provides a larger number of attractors and hence, a

RESULTS smaller exponent. On the other hand, the independenée of
strongly suggests that the basin-size distribution of the origi-
nal RE (ED in the limit 5—0) also follows the power law.

The first results of this paper concern the basin-size disThis conjecture is relevant to the hierarchical coexistence of
tribution for ED with a large number of basins of attraction. gan infinite number of attractors in RB3]. The power law of
Here, we identify each “attractor” only by the composition a rank-size relationship with an exponent near unity is often
of core species, not by its trajectory. In other words, even ifreferred to as Zipf's laW34] in linguistics and other diverse
several isolated attractors coexist in a system of core speciefelds [35].
we do not discriminate between these attractors and we re-
gard them to be in one basin of “attraction.” The reason for The extinction curves
this is that, in ED, such coexistence is rare, and this classi- _
fication of basins of attraction also agrees with the classifi- Figure 2 shows the second result of this paper: average
cation of subecosystems created by ED. diversity as a function of time{N(t)), (the extinction

In order to obtain the basin-size distribution, Ve iterate
ED starting from a sufficient number of random initial states o[
in a system with the same parameters and the same randol v=2.0
matrix A, (b) count basin sizeS; as the number of initial N24096 — - — e 6=0.0001
states that converge joh attractor, andc) make a rank-size '
distributionS(n) by sorting{S;}'s, where the natural number 108
n denotes the rank of each basin, and can reach the tota
numberM of attractors found in the simulation. For example,

The basin-size distribution

an attractor with ranin=1 indicates that it has the largest ,A‘f
basin sizeS(1), while another attractor with rankl means 5 42|
v

that it has the smallest basin si%M). Therefore, in gen-
eral, the rank-size distributio8(n) is a nonincreasing func-
tion of n. Moreover, the above process is iterated for a suf-
ficient number of random matrices with the samev, and 10" |
we finally obtain a basin-size distributiqi$(n)), for a pa-
rameter set{S(n))’s for various parameter sets are shown
in Fig. 1.

It is clear that the basin-size distributid®(n)), charac-
teristically follows a power law. Moreover, each exponent of
the power depends only oN,, neither oné nor v. This
exclusive dependence dW, can be understood intuitively FIG. 2. Extinction curve$average diversityN(t)), vs timet]
because the number of combinations of core speftl®s  for various values oN, with §=0.0001 andy=2.0. Each curve
number of attractod)sdepends only orN,. Therefore, a represents an average taken over 1000 samplés of

10 10 102 108 104
Time
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FIG. 3. DistributionP(Ng) of the final diversityNg of core FIG. 4. () Extinction curvegaverage diversityN(t))4 vs time

species for several values of . The distribution was obtained t] for various values ofv with N,=64 and §=0.0001, averaged
using 1000 samples of random matride$1000 runs of extinction over 1000 samples d&. (b) The average diversity of the core spe-
dynamics. cies{Ng)a is shown as a function af.

curve). Two significant characteristics can be observed from Figure 4 concerns the variation of extinction curves with
this figure. The first is that the average final diversidg),  v. As v becomes larger, the induction tintg becomes

is independent ol . This result implies that no matter how shorter[Fig. 4@)], and{Ng), becomes smallefiFig. 4(b)].
large the diversity of initial species, the average diversity ofConsequently, when the order of the interspecies interaction
species in the final state is small by comparison. That isoefficients becomes large compared to the absolute value of
Ng<N,. In other words, when a large random ecosystenthe intraspecies oneqd;=—1}), the avalanche of mass
emerges as a result of a biotic fusion, a mass extinction oéxtinction begins earlier, and a smaller diversity of species
“size” N,;—(Ng)a will occur. Second, the avalanche of survives. The extinction curves for several valuessadire
mass extinction begins after sonmeluction timg25]t,, and  also shown in Fig. 5. It should be noted that the final diver-
ends in each case at nearly the same tigle10®(=t,). As  sity (Ng)4 is independent frond. This means that, no matter
N, becomes largert, also becomes larger and approacheshow smallé is, extinctions are inevitable in ED. This inevi-
tr. Therefore, for a sufficiently larg\,, the extinction tability is consistent with the fact that no extinction occurs in
curve shows a sharp droptat Such an abrupt mass extinc- RE without the extinction thresholdé&0). In fact, the
tion occurring on a short time scale is highly relevant to thesimulation and the analytical estimation equally show
notion of punctuated equilibrig 36].

The induction time and the abrupt drop in diversity at a
large N, is explained by the small rate of change for each
att=0, and a faster than exponential decaypfor extinct
species. At timet=0, the absolute value of the fitness
fi(O)EEE\ilaijxj(O) [the first term in the parentheses of the
right-hand side of the equatiof)] for each speciesis of
estimated ordeO(+/v/N,) by a simple calculation. The ab-

solute value of the average fitne$$O)EEi'\':'lfi(0)xi(0)
(the second term in the parenthesbkas the same order.

Therefore, adN, becomes larger, the absolute value of the

change ratd;—f att=0 becomes smaller in proportion to
1/YN,, which makes the induction time larger because ar o' |
smaller change rate makes populations change more slowly e
However, the rapid decay eventually drives populations into
extinction around the induction time. Therefore, almost all
species, except for core species, are expected to become e
tinct synchronously in the limit of larghl, .

It should also be noted here not only that the average
diversity (Ng)a of a core species is independent df but FIG. 5. Extinction curve$average diversityN(t)), vs timet]
also that the distributio(Ng) of N itself does not depend for various values ofs with N,=64 andv=2.0, averaged over
onN,, as shown in Fig. 3. 1000 samples oA.

=
2

N=64
v=2.0

elative diversity: <N(t)>a/N,

100 10’ 102 10° 104 10° 108
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FIG. 6. Time development of average fitne‘_s($) over 1000
samples ofA with N;=64, v=2.0, andé=10""’ (solid line). Each
dotted line represents one sample. The fitrfegees up and down

and, in general, the final value is not the highest.

t,~—log(d), andt, diverges to infinity in the limité—0,
that is, no extinction occurs in finite time. From Figs. 2, 4,
and 5, we can conclude thég), depends only ow, but

PRE 60
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FIG. 7. Time development of the distributid®(a;;)) of ele-
ments{a;} of interaction matrices averaged over 2000 samples.
N,=64, v=2.0, andé=10"".

DISCUSSION

In this paper, we have ignored any effects of immigrants
or invaders, which increase the diversity, and we have fo-

not on N, nor 4, which is in contrast with the parameter ¢, sed on global biotic fusion where no species ever comes

dependence ofS(n)), only onN; .

The average fitness and the nature of the shrink matrix

Here we discuss the time development of average fithes
through extinction dynamics, as depicted in Fig. 6. It shoul

S

from the outside. Moreover, we did not consider any mu-
tants, because the avalanche of mass extinction occurs so
quickly that no significant evolution of mutants can occur.
By neglecting these effects, the nature of extinction on a
rather short time scale was exclusively clarified. However,
aby introducing the effect of increasing diversiyhe process

f speciation [37], we can study the nature of ED on a much

be noted that the average fitness takes on positive valuea,r er time scale. In fact, an analysis of the interesting prob-
except during the short period at the beginning. This remind 9 : ’ y 9p

us that the average fithess is a nondecreasing function if the
interaction matrix is ensured to be symmetric, as in the equa-
tion of selection in population genetics. The final value for

the average fitness~0.4 is higher than what would be ex-
pected for a randomly generated ecosystem with the sami
diversity (Nc~8). Thus, more stable ecosystems are self-

organized by ED. We also observe thdi{(t)), does not
show a monotonic increase and reaches a maximum value ¢
a time neart,. This, in general, suggests that the average,‘\i
fitness shoots up in response to the avalanche of extinction of
low-fithess species around the induction time and settles
down to a final value via competition among core species.
The time development for the distribution of elements of
interaction matrices via extinction dynamics is depicted in
Fig. 7. The average od;; shifts to a positive value, which
means that the interaction matrix of the subecosystem be
comes cooperative via extinction dynamics. This also con-
tributes to an increase in average fitness. It should be notes
that the distribution continuously holds its Gaussian distribu-
tion shape. Therefore, the interspecies interaction coefficients

06

04

02

0

0

2000 3000 4000 5000
Time

of core species are still random, and various types of rela- FiG. 8. Time development of the averag; ) of elementsa;;

tionships among core species are realized by ED. The timef interaction matrices averaged over 2000 sampis=64, v
development of a;; ) is also shown in Fig. 8.

=2.0, andé=10"".
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