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Parameter dependence of stochastic resonance in the stochastic Hodgkin-Huxley neuron
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Recently, the phenomena of stochastic resonance~SR! have attracted much attention in the studies of the
excitable systems under inherent noise, in particular, nervous systems. We study SR in a stochastic Hodgkin-
Huxley neuron under Ornstein-Uhlenbeck noise and periodic stimulus, focusing on the dependence of prop-
erties of SR on stimulus parameters. We find that the dependence of the critical forcing amplitude on the
frequency of the periodic stimulus shows a bell-shaped structure with a minimum at the stimulus frequency,
which is quite different from the monotonous dependence observed in the bistable system at a small frequency
range. The frequency dependence of the critical forcing amplitude is explained in connection with the firing
onset bifurcation curve of the Hodgkin-Huxley neuron in the deterministic situation. The optimal noise inten-
sity for maximal amplification is also found to show a similar structure.@S1063-651X~99!03407-8#

PACS number~s!: 87.10.1e, 05.40.2a
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In the last decades, the phenomena of stochastic r
nance~SR! @1# have attracted much attention@2,3# in the
studies of noisy systems including recent works on coh
ence resonance@4#, which is a SR-like resonance in the sy
tem without periodic signal. Biological systems includin
excitable nervous systems have been much studied
theoretically @5–7# and experimentally@8,9# because they
constitute one of the most important systems showing
phenomena due to the high nonlinearity in their dynami
responses and large inherent noise. Among them, sen
nervous systems have drawn much attention since stoch
neural dynamics is proposed to play a key role in the sen
mechanism of detecting faint, information-bearing sign
traveling through noisy environments@9#. Much of theoreti-
cal works have been done to explain this sensing mechan
through studies of various neural systems@5–7#.

SR phenomena arise in nonlinear stochastic syste
some of which possess an inherent natural frequency, A t
cal example of the nonlinear system with a natural freque
is provided by the models of neurons, while that withou
natural frequency, the bistable system. In the case of
bistable system with the standard double-well potential, J
and Hänggi studied SR as a function of the forcing amplitu
@10#. At a small frequency range, they observed the existe
of a critical forcing amplitude where the resonance pheno
ena disappears. They found that this critical forcing am
tude corresponds to the parameter where the determin
system makes a transition from nonswitching dynamics
switching dynamics. In this study, they also found that
optimal noise intensity with maximal amplification of th
signal increases monotonically as the stimulus frequenc
increased.

In this paper, we study a neural system with a natu
frequency with a focus on the frequency dependence of
critical forcing amplitude and the optimal noise intensity.
this study, we use the Hodgkin-Huxley~HH! neuron, which
is a paradigm for tonically spiking neurons, under a perio
stimulus and an Ornstein-Uhlenbeck~OU! noise. We find
that both the critical forcing amplitudeAc and the optimal
noise intensityDopt show bell-shaped structures as a fun
PRE 601063-651X/99/60~1!/826~5!/$15.00
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tion of the stimulus frequency, and they become minim
near the natural frequency of the HH neuron. In fact, it
found that the bell-shaped structure ofAc as a function of the
forcing frequency corresponds exactly to the firing onset
furcation curve for thenoiselessHH neuron under periodic
stimulus only. Interestingly, we also found that the frequen
dependence of the optimal noise intensity on the stimu
frequency also displays a similar bell-shaped structure w
the nonmonotonic frequency dependence.

The HH neuron, which is derived from the biophysic
analysis of the squid giant axon@11#, shows typical dynam-
ics of a real neuron, the spiking behavior and the refract
period, and serves as a canonical model for tonically spik
neurons based on nonlinear conductances of ion chan
This HH neuron consists of four nonlinear coupled ordina
differential equations, one for the membrane potentialV and
the other three for gating variablesm,n,h for ion-channel
dynamics,

dV

dt
5I ion1I ext1I syn,

dm

dt
5

m`~V!2m

tm~V!
,

~1!
dh

dt
5

h`~V!2h

th~V!
,

dn

dt
5

n`~V!2n

tn~V!
,

where

I ion52gNam
3h~V2VNa!2gKn4~V2VK!2gl~V2Vl !.

~2!

The first equation in Eq.~1! is the voltage-current relation
with three kinds of currents: ionic currentI ion , external
stimulus currentI ext , and synaptic currentI syn. The ionic
current I ion represents the current flow generated from
826 ©1999 The American Physical Society
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FIG. 1. ~a! Phase diagram of the noiseless HH neuron under sinusoidal stimulus in the parameter space of the forcing frequenv and
the forcing amplitudeA. The firing state is denoted in gray, and the nonfiring state and bistable state, in white. The dashed curve re
the firing onset bifurcation curve, and solid curves, the boundaries of mode-locking states.~b! The mode-locked membrane potenti
responses forA55 mA /cm2 and ~i! v550 Hz ~1/1! and ~ii ! v5100 Hz ~1/2!. The profiles of the sinusoidal stimulus currents are a
superimposed in dotted curves.
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ionic transport through the membrane and depends non
early on the gating variablesm, n, h. External stimulus cur-
rent I ext represents the external stimulus to a neuron,
synaptic currentI syn, the influence from other neuron
through synaptic connections. The constantsgNa , gK , andgl
are maximal conductances for sodium, potassium, and l
age currents, andVNa , VK , andVl are corresponding rever
sal potentials. The parametersm` , h` , n` , andtm , th , tn
represent the saturated values and the relaxation times o
gating variablesm,n,h, respectively. Details on these param
eter values can be found in@11–13#.

In this paper we take the external stimulus to be tim
dependent sinusoidal currentI ext(t)5A cos(2p v t), where
A is the amplitude of forcing current,v is the frequency, and
t is the time in units of msec. The synaptic currentI syn rep-
resents the noisy component of the stimulus in a neuron f
synaptic input fluctuations@14#. We model this noisy curren
as an additive noise from an OU process,

td

dIsyn

dt
52I syn1A2Dj~ t !, ~3!

where j(t) is Gaussian white noise, andD and td are the
noise intensity and the correlation time of the OU noise.
our numerical study, we take a typical synaptic decay time
td52 msec. Numerical integration of the HH neuron in E
~1! is carried out with a fourth order Runge-Kutta algorith
and that of the exponentially correlated synaptic noise in
~3! with the integral algorithm proposed by Foxet al. @15#
with an integration time step of 0.02 msec.
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First we present dynamical responses of thenoiselessHH
neuron under sinusoidal current~deterministic condition! for
a later comparison with the studies with noise~the stochastic
condition!. The phase diagram of the deterministic HH ne
ron in the parameter space of the forcing frequency and
forcing amplitude is shown in Fig. 1~a!, which is consistent
with the experimental results on the squid giant axon in@16#.
In the phase diagram, parameter values for the firing state
denoted in gray, and those for the nonfiring state or
bistable region between the firing state and the nonfir
state, in white. In the firing region, mode-locking phenome
appear due to nonlinear interaction between the forcing
quency and the natural frequency of the HH neuron, whic
typical in nonlinear dynamical systems with two competi
periods @17#. In the mode-locked responses, the ratio b
tween the forcing frequency and the response frequency
comes a rational. Typical mode-locked responses in
noiseless HH neuron are shown in Fig. 1~b!. Note that a
hierarchy of mode-locked regions with various integer rat
exist but for simplicity only the boundaries of mode-locke
regions with ratios 1/1, 1/2, and 1/3, wherep/q denotesp
firings of spikes duringq periods of the forcing current, ar
shown in solid lines in Fig. 1~a!. Especially, the tongue
shaped boundary in a dashed curve in Fig. 1~a! separates the
region with no firing from the region with firing~shaded
region! as the forcing amplitude increases. This curve rep
sents the bifurcation curve for the firing onset, which pr
duces a bell-shaped structure as a function of the forc
frequency. Note that the forcing amplitude required for t
firing onset becomes minimal near the frequency of abou
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FIG. 2. Stochastic HH neuron under OU nois
and periodic stimulus withA51.0 mA/cm2 and
v50.05 kHz. ~a! The membrane potential re
sponse for noise intensityD510 is shown in a
solid line and the sinusoidal stimulus current in
dashed line,~b! its spike trains,~c! the power
spectrum calculated from the spike train, and~d!
The SNR as a function of noise intensityD shows
SR.
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Hz, which is close to the natural frequency of the HH neur
observed under constant current stimuli.

A typical dynamical response of this stochastic HH ne
ron with the OU noise in Eq.~3! is presented in Fig. 2~a! and
its spike train, a typical measure in neuroscience, in F
2~b!. This spike train is obtained by recording times for t
generation of spikes,

V~ t !5(
i 51

N

d~ t2t i !, ~4!

wheret i is the time at which thei th spike initiates andN is
the total number of spikes in the given time interval. T
power spectral density is calculated from the spike tr
through the fast Fourier transform as in Refs.@18,19#. This
spectrum in Fig. 2~c! is characterized by broadband bac
ground noise with a signal peak at the forcing frequencyv
and its higher harmonics at integer multiples of the forc
frequency. The signal-to-noise ratio~SNR! is obtained from
the power spectrum as

RSN510 log10F S~v!

N~v!G , ~5!

whereRSN is the SNR, the signal powerS(v) is the height of
the signal peak, and the noise powerN(v) is the amplitude
of the background noise measured at the base of the s
peak. The obtained SNR values are plotted as a functio
the noise intensityD to yield the well-established SR curv
@18# in Fig. 2~d!.

Now we fix the forcing frequency and study the SN
curves for various values of the forcing amplitudeA. For
example, we choose two forcing frequenciesv50.05 kHz
and 0.1 kHz and show the variations of the SNR curves
n
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different forcing amplitudes in Fig. 3. We find that the st
chastic HH neuron has a critical forcing amplitudeAc ,
above which the resonance with a maximal SNR disappe
similar to the bistable system. Forv50.05 kHz, the critical

FIG. 3. The SNR curves of a stochastic HH neuron for vario
forcing amplitudes and forcing frequencies.~a! SNR curves forA
51.0, 1.4, 1.8mA/cm2 with v50.05 kHz. ~b! SNR curves for
A51.8, 2.2, 2.6mA/cm2 with v50.1 kHz. Arrows indicate the
maxima in SNR.
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forcing amplitude Ac is between 1.4mA/cm2 and
1.8 mA/cm2. Note that the SNR value increases asA in-
creases because the dynamical response of the HH ne
becomes more synchronized with stronger periodic stimu
Similarly, for v50.1 kHz, the critical forcing amplitudeAc
is between 2.2mA /cm2 and 2.6 mA/cm2. This critical forc-
ing amplitude depends strongly on the forcing frequency

We focus our attention on the functional dependence
the critical forcing amplitudeAc on the forcing frequencyv.
In the bistable system, the critical forcing amplitude i
creases monotonously as a function of the forcing freque
@10#. In Fig. 4, we show the dependence ofAc on the forcing
frequencyv. We find for the stochastic HH neuron, as t
forcing frequency increases, the critical forcing amplitudeAc
decreases in the low-frequency regime but it increases in
high-frequency regime. Therefore, the dependence ofAc on
v produces a bell-shaped structure. The minimum forAc is
found to lie near the natural frequency of the system as
Fig. 4. We find that this structure for the frequency dep
dence of the critical forcing amplitudeAc is related to the
firing onset bifurcation curve for the deterministic HH ne
ron shown in Fig. 1. In fact, the critical forcing amplitud
curve in Fig. 4 is found to coincide with the firing ons
bifurcation curve in Fig. 1~a! within error bars.

In the case of the bistable system, the critical forcing a
plitude corresponds to a transition from nonswitching
switching dynamics in the deterministic condition. A nonli
ear system with natural frequency, for example, the HH n
ron, in the deterministic condition displays a similar dynam
cal transition from a nonfiring state to a firing state, whe
dynamics switch between the quiescent and the spiking
namics. The firing onset bifurcation curve gives the bou
ary for this switching transition from the nonfiring state
the firing state. Similarly to the case of the bistable syste
the critical forcing amplitudeAc in the stochastic HH neuron
corresponds to the firing onset bifurcation point. The be
shaped structure of the critical forcing amplitude and
minimality of Ac near the natural frequency of the neuron a
consequences of the corresponding structure in the deter
istic condition, which is due to the nonlinear resonance
tween the natural frequency of the HH neuron and the fo

FIG. 4. Critical forcing amplitudeAc as a function of forcing
frequencyv. The critical forcing amplitude lies in the solid lines
ron
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ing frequency. Note that unlike our case, the monoton
frequency dependence of the bistable system was obta
for small frequency with a narrow range@10#.

Our paper shows that the analysis of the firing onset
furcation curve in the deterministic condition provides a k
to the understanding of the parameter dependence of r
nance phenomena in the stochastic HH neuron. To illust
this further, we also studied the frequency dependence
optimal noise intensityDopt with fixed A51.0 mA/cm2. In
Fig. 5, the values ofDopt for various forcing frequencies ar
presented in the parameter space of forcing frequencyv and
noise intensityD with the estimate of errorbars calculate
from the five trials for each frequency. We find thatDopt also
shows a bell-shaped structure similar to one for the criti
forcing amplitude;Dopt becomes minimal near the forcin
frequencyv50.06 kHz close to the natural frequency of th
HH neuron. As the forcing frequency moves away fromv
50.06 kHz, the required level ofDopt increases accord
ingly. The nonmonotonous frequency dependency ofAc and
Dopt differs from that of the bistable system.

In conclusion, we have studied the parameter depende
of SR in the excitable system through the stochastic
neuron. In particular, we have studied numerically the f
quency dependence of the critical forcing amplitudeAc ,
above which resonance disappears, and the optimal n
intensityDopt , where SNR is maximal. Our analysis of S
phenomena requires the understanding of the structure o
firing onset bifurcation curve for the deterministic syste
similar to the analysis of coherence resonance@4# where the
understanding of the bifurcation property in the determinis
condition is also a key to the understanding of the resona
phenomena under noise. The minimal values ofDopt andAc
at the natural frequency of the neuron and the tongue-sha
frequency dependency ofDopt andAc are understood in con
nection with the firing onset bifurcation curve obtained in t
deterministic condition. Similar phenomena have also b
found in the simulations of the stochastic FitzHugh-Nagu
neuron and are expected to hold for a large class of stoc
tic nonlinear systems with a natural frequency. The nonm

FIG. 5. Optimal noise intensityDopt as a function of forcing
frequencyv with a fixed forcing amplitudeA51.0 mA/cm2. The
values ofDopt for various frequencies are shown with error ba
calculated from five trials.
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notonous dependence ofDopt on the forcing frequency for
small forcing amplitudes is quite interesting, which probab
can be understood within the framework of the linear
sponse theory of stochastic resonance. Our results may
vide a useful tip for fine tuning of SR through the control
signal parameters based on the analysis of the frequency
s

o

on

v

-
ro-

e-

pendence of the firing onset bifurcation curve in t
determinis-tic condition.
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