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Parameter dependence of stochastic resonance in the stochastic Hodgkin-Huxley neuron
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Recently, the phenomena of stochastic reson&B8& have attracted much attention in the studies of the
excitable systems under inherent noise, in particular, nervous systems. We study SR in a stochastic Hodgkin-
Huxley neuron under Ornstein-Uhlenbeck noise and periodic stimulus, focusing on the dependence of prop-
erties of SR on stimulus parameters. We find that the dependence of the critical forcing amplitude on the
frequency of the periodic stimulus shows a bell-shaped structure with a minimum at the stimulus frequency,
which is quite different from the monotonous dependence observed in the bistable system at a small frequency
range. The frequency dependence of the critical forcing amplitude is explained in connection with the firing
onset bifurcation curve of the Hodgkin-Huxley neuron in the deterministic situation. The optimal noise inten-
sity for maximal amplification is also found to show a similar struct{isBs.063-651X%99)03407-§

PACS numbdps): 87.10+¢€, 05.40-a

In the last decades, the phenomena of stochastic restion of the stimulus frequency, and they become minimal
nance(SR) [1] have attracted much attentid@,3] in the  near the natural frequency of the HH neuron. In fact, it is
studies of noisy systems including recent works on coherfound that the bell-shaped structure/qfas a function of the
ence resonandel], which is a SR-like resonance in the sys- forcing frequency corresponds exactly to the firing onset bi-
tem without periodic signal. Biological systems including furcation curve for thenoiselessHH neuron under periodic
excitable nervous systems have been much studied bogtimulus only. Interestingly, we also found that the frequency
theoretically[5—7] and experimentally[8,9] because they dependence of the optimal noise intensity on the stimulus
constitute one of the most important systems showing SHrequency also displays a similar bell-shaped structure with
phenomena due to the high nonlinearity in their dynamicathe nonmonotonic frequency dependence.
responses and large inherent noise. Among them, sensory The HH neuron, which is derived from the biophysical
nervous systems have drawn much attention since stochasg@alysis of the squid giant axda1], shows typical dynam-
neural dynamics is proposed to play a key role in the sensinigs of a real neuron, the spiking behavior and the refractory
mechanism of detecting faint, information-bearing signalsPeriod, and serves as a canonical model for tonically spiking
traveling through noisy environmenf8]. Much of theoreti- neurons based on nonlinear conductances of ion channels.
cal works have been done to explain this sensing mechanisihis HH neuron consists of four nonlinear coupled ordinary
through studies of various neural systeffs 7). differential equations, one for the membrane potentiahd

SR phenomena arise in nonlinear stochastic system#)e other three for gating variables,n,h for ion-channel
some of which possess an inherent natural frequency, A typdynamics,
cal example of the nonlinear system with a natural frequency
is provided by the models of neurons, while that without a
natural frequency, the bistable system. In the case of the
bistable system with the standard double-well potential, Jung

dv
a:|i0n+|ext+|synv

and Hanggi studied SR as a function of the forcing amplitude dm  my(V)—m

[10]. At a small frequency range, they observed the existence dt (V)

of a critical forcing amplitude where the resonance phenom- 1)
ena disappears. They found that this critical forcing ampli- dh h.(V)—h

tude corresponds to the parameter where the deterministic at W

system makes a transition from nonswitching dynamics to

switching dynamics. In this study, they also found that the dn  n.(V)—n

optimal noise intensity with maximal amplification of the
signal increases monotonically as the stimulus frequency is
increased.

In this paper, we study a neural system with a natura
frequency with a focus on the frequency dependence of the | — g\ m3h(V—Vy,) —gxn*(V—Vy)—g,(V—-V,).
critical forcing amplitude and the optimal noise intensity. In ®)
this study, we use the Hodgkin-Huxlél#H) neuron, which
is a paradigm for tonically spiking neurons, under a periodicThe first equation in Eq(l) is the voltage-current relation
stimulus and an Ornstein-Uhlenbe¢®U) noise. We find  with three kinds of currents: ionic currertf,,, external
that both the critical forcing amplitudd. and the optimal stimulus current.,;, and synaptic currenits,,. The ionic
noise intensityD,,; show bell-shaped structures as a func-currentl;,, represents the current flow generated from the

dat (V)

}Nhere
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FIG. 1. (a) Phase diagram of the noiseless HH neuron under sinusoidal stimulus in the parameter space of the forcing freguéncy
the forcing amplitudéA. The firing state is denoted in gray, and the nonfiring state and bistable state, in white. The dashed curve represents
the firing onset bifurcation curve, and solid curves, the boundaries of mode-locking $tdhe mode-locked membrane potential
responses foA=5 uA /cm? and (i) =50 Hz (1/1) and(ii) ®=100 Hz(1/2). The profiles of the sinusoidal stimulus currents are also
superimposed in dotted curves.

ionic transport through the membrane and depends nonlin- First we present dynamical responses oftbeselesdHH
early on the gating variablas, n, h. External stimulus cur- neuron under sinusoidal currefeterministic conditionfor
rent | o, represents the external stimulus to a neuron, ana later comparison with the studies with noigige stochastic
synaptic currentlgy,, the influence from other neurons condition. The phase diagram of the deterministic HH neu-
through synaptic connections. The constanis, gk, andg; ron in the parameter space of the forcing frequency and the
are maximal conductances for sodium, potassium, and leakercing amplitude is shown in Fig.(d), which is consistent
age currents, andy,, Vk, andV, are corresponding rever- with the experimental results on the squid giant axofiLl.
sal potentials. The parameters,, h.,, n,,, andr,,, 7, 7, In the phase diagram, parameter values for the firing state are
represent the saturated values and the relaxation times of tldenoted in gray, and those for the nonfiring state or the
gating variablesn,n,h, respectively. Details on these param- bistable region between the firing state and the nonfiring
eter values can be found j11-13. state, in white. In the firing region, mode-locking phenomena
In this paper we take the external stimulus to be time-appear due to nonlinear interaction between the forcing fre-
dependent sinusoidal curreht,(t)=A cos(27 wt), where quency and the natural frequency of the HH neuron, which is
Ais the amplitude of forcing currend is the frequency, and typical in nonlinear dynamical systems with two competing
tis the time in units of msec. The synaptic currégf, rep-  periods[17]. In the mode-locked responses, the ratio be-
resents the noisy component of the stimulus in a neuron frorfween the forcing frequency and the response frequency be-
synaptic input fluctuationgl4]. We model this noisy current comes a rational. Typical mode-locked responses in the
as an additive noise from an OU process, noiseless HH neuron are shown in Figb)l Note that a
" hierarchy of mode-locked regions with various integer ratios
syn exist but for simplicity only the boundaries of mode-locked
TaTgp eyt V2D (), ) regions with ratios 1/1, 1/2, and 1/3, whepéq denotesp
firings of spikes duringy periods of the forcing current, are
where &(t) is Gaussian white noise, aridl and 74 are the  shown in solid lines in Fig. ). Especially, the tongue-
noise intensity and the correlation time of the OU noise. Inshaped boundary in a dashed curve in Fig) $eparates the
our numerical study, we take a typical synaptic decay time ofegion with no firing from the region with firindshaded
74=2 msec. Numerical integration of the HH neuron in Eq.region as the forcing amplitude increases. This curve repre-
(1) is carried out with a fourth order Runge-Kutta algorithm sents the bifurcation curve for the firing onset, which pro-
and that of the exponentially correlated synaptic noise in Eqduces a bell-shaped structure as a function of the forcing
(3) with the integral algorithm proposed by Fet al. [15]  frequency. Note that the forcing amplitude required for the
with an integration time step of 0.02 msec. firing onset becomes minimal near the frequency of about 55
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Hz, which is close to the natural frequency of the HH neurondifferent forcing amplitudes in Fig. 3. We find that the sto-
observed under constant current stimuli. chastic HH neuron has a critical forcing amplitude,

A typical dynamical response of this stochastic HH neu-above which the resonance with a maximal SNR disappears,
ron with the OU noise in Eq3) is presented in Fig.(@ and  similar to the bistable system. Far=0.05 kHz, the critical
its spike train, a typical measure in neuroscience, in Fig.
2(b). This spike train is obtained by recording times for the 20 . . T

generation of spikes, 2:};2 -
A=1.8 -
18 e .
L
V(=2 s(t-ty), (4) R I . -
i=1 3l 2 —
14 L

wheret; is the time at which théth spike initiates andN is

the total number of spikes in the given time interval. The

power spectral density is calculated from the spike train 12
through the fast Fourier transform as in Rdfs8,19. This
spectrum in Fig. &) is characterized by broadband back-
ground noise with a signal peak at the forcing frequeacy
and its higher harmonics at integer multiples of the forcing . A8
frequency. The signal-to-noise ratiSNR) is obtained from A=22
the power spectrum as A28 -

20 - . : .

18 - o |

SNR
\
HI

S(w)} 5

Rsn= 10 Iogw{ m

whereRgy is the SNR, the signal pow&( ) is the height of
the signal peak, and the noise powfw) is the amplitude
of the background noise measured at the base of the signal
peak. The obtained SNR values are plotted as a function of

the noise intensity to yield the well-established SR curve (b)

[18] in Fig. 2(d). . FIG. 3. The SNR curves of a stochastic HH neuron for various
Now we fix the forcing frequency and study the SNR forcing amplitudes and forcing frequencida) SNR curves forA

curves for various values of the forcing amplitude For =1.0, 1.4, 1.8 uAlcm? with ©=0.05 kHz.(b) SNR curves for

example, we choose two forcing frequencies-0.05 kHz ~ A=1.8, 2.2, 2.6 uAlcm? with @=0.1 kHz. Arrows indicate the
and 0.1 kHz and show the variations of the SNR curves fomaxima in SNR.
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FIG. 4. Critical forcing amplitudeA. as a function of forcing

frequencyw. The critical forcing amplitude lies in the solid lines. FIG. 5. Optimal noise intensit,; as a function of forcing
frequencyw with a fixed forcing amplitudeA=1.0 uwA/cm?. The

values ofD,, for various frequencies are shown with error bars
calculated from five trials.

forcing amplitude A, is between 1.4uAlcm? and
1.8 uwAlcm?. Note that the SNR value increases Asn-
creases because the dynamical response of the HH neurtg frequency. Note that unlike our case, the monotonous
becomes more synchronized with stronger periodic stimulugrequency dependence of the bistable system was obtained
Similarly, for =0.1 kHz, the critical forcing amplitudd,  for small frequency with a narrow rang&0].
is between 2.2, A /cm? and 2.6 wAlcm?. This critical forc- Our paper shows that the analysis of the firing onset bi-
ing amplitude depends strongly on the forcing frequency. furcation curve in the deterministic condition provides a key
We focus our attention on the functional dependence ofo the understanding of the parameter dependence of reso-
the critical forcing amplitudé\, on the forcing frequency.  nance phenomena in the stochastic HH neuron. To illustrate
In the bistable system, the critical forcing amplitude in-this further, we also studied the frequency dependence of
creases monotonously as a function of the forcing frequencgptimal noise intensity,,; with fixed A=1.0 uA/cm?. In
[10]. In Fig. 4, we show the dependenceffon the forcing  Fig. 5, the values oD, for various forcing frequencies are
frequencyw. We find for the stochastic HH neuron, as the presented in the parameter space of forcing frequeneyd
forcing frequency increases, the critical forcing amplitéde  noise intensityD with the estimate of errorbars calculated
decreases in the low-frequency regime but it increases in th&om the five trials for each frequency. We find tiiag,; also
high-frequency regime. Therefore, the dependenca.ofn  shows a bell-shaped structure similar to one for the critical
o produces a bell-shaped structure. The minimum&piis forcing amplitude;D,,; becomes minimal near the forcing
found to lie near the natural frequency of the system as ifrequencyw=0.06 kHz close to the natural frequency of the
Fig. 4. We find that this structure for the frequency depen-HH neuron. As the forcing frequency moves away fram
dence of the critical forcing amplituda, is related to the =0.06 kHz, the required level oD,y increases accord-
firing onset bifurcation curve for the deterministic HH neu- ingly. The nonmonotonous frequency dependencpoénd
ron shown in Fig. 1. In fact, the critical forcing amplitude D, differs from that of the bistable system.
curve in Fig. 4 is found to coincide with the firing onset  In conclusion, we have studied the parameter dependence
bifurcation curve in Fig. (a) within error bars. of SR in the excitable system through the stochastic HH
In the case of the bistable system, the critical forcing am-euron. In particular, we have studied numerically the fre-
plitude corresponds to a transition from nonswitching toquency dependence of the critical forcing amplitullg,
switching dynamics in the deterministic condition. A nonlin- above which resonance disappears, and the optimal noise
ear system with natural frequency, for example, the HH neuintensity D,,;, where SNR is maximal. Our analysis of SR
ron, in the deterministic condition displays a similar dynami-phenomena requires the understanding of the structure of the
cal transition from a nonfiring state to a firing state, wherefiring onset bifurcation curve for the deterministic system
dynamics switch between the quiescent and the spiking dysimilar to the analysis of coherence resonarevhere the
namics. The firing onset bifurcation curve gives the bound-understanding of the bifurcation property in the deterministic
ary for this switching transition from the nonfiring state to condition is also a key to the understanding of the resonance
the firing state. Similarly to the case of the bistable systemphenomena under noise. The minimal value®gf; andA,
the critical forcing amplitudé\ in the stochastic HH neuron at the natural frequency of the neuron and the tongue-shaped
corresponds to the firing onset bifurcation point. The bell-frequency dependency &%, ,; andA. are understood in con-
shaped structure of the critical forcing amplitude and thenection with the firing onset bifurcation curve obtained in the
minimality of A. near the natural frequency of the neuron aredeterministic condition. Similar phenomena have also been
consequences of the corresponding structure in the determifeund in the simulations of the stochastic FitzHugh-Nagumo
istic condition, which is due to the nonlinear resonance beneuron and are expected to hold for a large class of stochas-
tween the natural frequency of the HH neuron and the forctic nonlinear systems with a natural frequency. The nonmo-
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notonous dependence Bf,,; on the forcing frequency for pendence of the firing onset bifurcation curve in the
small forcing amplitudes is quite interesting, which probablydeterminis-tic condition.

can be understood within the framework of the linear re- This work was supported by the Ministry of Education
sponse theory of stochastic resonance. Our results may prdirough the BSRI progrant971-0202-009- and special
vide a useful tip for fine tuning of SR through the control of fund at POSTECH. We would like to thank H. Kook and S.
signal parameters based on the analysis of the frequency di- Han for stimulating discussions.
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