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Counterion-mediated, non-pairwise-additive attractions in bundles of like-charged rods
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Stiff polyelectrolyte chains, such as DNA, can attract each other in solution even though they have the same
sign of charge. The attractions are mediated by multivalent counterions, which lead to an effective interaction
at the two-chain level that is attractive at short range and repulsive at long range. However, the effective
interchain interactions are not pairwise additive. We present a formulation that allows theoretical treatment of
the many-chain problem without assuming pairwise additivity. We show that a bundle of chains held together
by counterion-mediated attractions can be described in terms of a bulk and surface free energy, and discuss the
temperature dependence of the attractj@1.063-651X99)00907-1

PACS numbes): 87.14.Gg, 87.15:v, 61.20.Qg, 61.25.Hq

[. INTRODUCTION mum depth of attraction decreases as the temperature in-
creases and the ionic crystal me[8]. A closely-related
Experiments on solutions of stiff polyelectrolyte chains, zero-temperature picture was recently proposed by Leikin
such as DNA[1] or F-actin[2], clearly show that the like- and Kornyshey12]. They suggest that the helical structure
charged chains can attract each other in the presence of mwf DNA and the preference for specific binding sites on the
tivalent ions of the opposite sigftounterions Even long, DNA chain, rather than the condensed counterion interac-
stiff, charged viruses such as the tobacco mosaic virus and fibns, determine the periodic structure for ions at zero-
virus, which can be regarded as thick, stiff polyelectrolytestemperature that gives rise to an attraction.
exhibit attractiong2]. The fact that the attractions are ob- Recently, we showed that the charge-fluctuation and
served for a wide range of stiff polyelectrolytes and a varietyionic-crystal pictures are not contradictory, but actually are
of multivalent counterions indicates that specific interactionccomplementary to each othg¢t3]. When we incorporated
are not responsible. Rather, there appears to be a genethk nonzero ionic radius into the charge fluctuation approach,
electrostatic mechanism that depends primarily on the vawe found oscillatory charge correlations that grow in range
lency of the counterion. as the temperature is lowered, and eventually diverge at the
Another striking experimental feature is that the attrac-spinodal for the ionic crystal. Thus, at higher temperatures
tions do not appear to lead to macroscopic phase separatiowhere the charge correlations are liquidlike, a charge fluc-
Instead, the chains tend to form dense bundles of a fairlyuation picture might more accurately describe the origin of
well-defined thicknes$1,2]. Thus, the counterion-mediated the attraction, but at lower temperatures where the charge
interaction between the chains appears to have a differembrrelations are solidlike, the ionic crystal is a better descrip-
character from ordinary attractions that lead simply to phaséion. We note that molecular dynamics simulations by
separation at sufficiently high concentrations. Stevenq 14] show that counterions diffuse quite rapidly and
In addition to integral equation methof3], two theoret-  freely within the bundles, and are therefore not frozen in a
ical approaches have been used to explain the attractionstystalline arrangement.
The first approacfd—7] was originally proposed by Oosawa  In previous papers, we have shown that our results are in
[4] nearly thirty years ago, and is based on a charge fluctuaguantitative agreement with simulatiof& of the interaction
tion picture. In this picture, nonuniformities in the density of between two infinite rod§6], but that the form of the two-
condensed counterion§.e., counterions near the chains rod interaction is not particularly useful because the effective
along the chain length give rise to nonuniformities in theinteractions among rods are not pairwise-addifi¥e This is
charge distribution that can become correlated from ondecause the charge distributions on the rods can be affected
chain to another, leading to a van der Waals-like attractionby the presence of another rod. By calculating the free en-
This attraction increases with decreasing temperature, bergy of an N-rod bundle explicitly, we showed that the
cause the interchain charge correlations increase as the eldmreakdown of pairwise additivity leads to qualitative changes
trostatic interchain interaction increases relative to the therin the behavior of bundles. The assumption of pairwise ad-
mal energy{5]. The valence of the counterion is important ditivity leads to the prediction that the equilibrium bundle
because the attraction between chains must be strong enousitze is finite, but the explicit calculation shows that the equi-
to overcome the repulsion due to the net charge on eadibrium bundle size is infinite. This appears to contradict the
chain. As the counterion valency increases, the attractioexperimental observation of a well-defined finite bundle size.
grows and the repulsion shrink§]. The second approach However, numerical simulations by Stevdsf] and a re-
[8—11], originally proposed by Rouzina and Bloomfidll, = cent theoretical argumenfl5] suggest that the kinetics of
is based on a zero-temperature picture. At zero temperaturbundle formation might set the bundle size, so that the sys-
a system of chains and counterions should form a perfectem never reaches equilibrium.
neutral ionic crystal, and it is not surprising that the interac- The primary purpose of this paper is to provide a detailed
tions between chains are effectively attractive. The maxidescription of our theoretical approach. Our model and the
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calculations that lead to a closed form expression of the frequite complicated to apply to our bundle system, and it also
energy of a bundle oN rods are presented in Sec. Il. For assumes point ions. Although our two-state approach is
small N, the free energy can be evaluated numerically bycrude, it does allow us to include the nonzero ionic radius, as
diagonalizingN X N-dimensional matrice7]. In the largeN ~ we have done in Sec. IV.
limit, it is possible to analyze the free energy analytically We definef, to be the average number of condensed
[16]. We have shown that in the salt-free case, it is possibleounterions per monomer; we do not assume fhds de-
to describe the free energy of a large bundle in terms of @&ermined by the Manning criterion, but solve for it self-
bulk free energy and surface free eneft§]. In Sec. Ill, we  consistently as a function of the number of rods and the
extend the asymptotic analysis to the case of added salt. llattice constana. Because condensed counterions can move
Sec. IV, we address the controversial question of thelong the rods or exchange with free counterions, the effec-
temperature-dependence of the attraction. In RE3], we  tive charge of a monomer can fluctuate. The charge on
showed that it is necessary to incorporate the nonzero radiusonomers of rod j can assume the values
of the ions in order to capture the correct temperature depen-
dence of the charge correlations. Here, we show that the gj(s)=—fo+mz ey
ionic size is also crucial to the temperature dependence of the
inter-rod attractions. Once the ionic size is taken into ac- . .
count, we find that the depth of attraction increases as teMNherem:O'.l’z’3' gtc. is the number of condensed counteri-
perature decreases, in agreement with simulafi@hsSec. V ons occupying a given monomer. If we assume that a 'afge
examines the dependence of our results on the lattice struE'—umber of condensed counterions can be_ a§5|gned to a given
ture within the bundle. Finally, Sec. VI summarizes the ag-monome, then we can apply the ceniral limit theorem to the
vantages and disadvantages of our approach. charge dlstr|but|on,. and can treat the charge per monomer,
gj(s) as a Gaussian variable. Thus, we characterize the
charge distribution by two quantities: the net charge on the
Il. MODEL AND FREE ENERGY rod and the variance in the charge of a monomer on the rod,
A. Model given, respectively, by

In our calculations, we study a bundle Nf negatively-
charged rods parallel to tleedirection and placed on a lattice a=(q;(s))q. 5q25<(q(s)—<qi(s)>)2)q=22fc, (2
in the xy-plane. Inside a condensed DNA bundle, the con-
centration is very high, with a center-to-center chain spacing
of 25 A (DNA itself has a diameter of roughly 20)Aat  where the averagg. . .), is over all realizations of charge
comparable bulk concentrations, DNA packs in a hexagonaflistribution. Note that identical expressions tpand 592 in
lattice [17]. Our analytical expressions are completely gen-terms of f. and Z have been derived by an independent
eral and apply to any lattice structure, but we have typicallymethod by Golestaniaf20].
assumed a square lattice for our numerical calculations. We In the absence of interactions, charges at different sites
will discuss the dependence on lattice structure in Sec. V. are assumed to be uncorrelated:

Each rod consists dfi monomers of lengttb, and each
monomer carries a negative charge-of, (in units of the , ,
electronic charge) that is assumed to be distributed uni- (60i(8)60;(s"))q= 8jj 6(s—8"). 3
formly. Note that the actual charge distribution for DNA is
helical; this nonuniform distribution can also lead to attrac-
tions at very short distances and low temperat(iie, but
we have not adopted this more realistic description here. Th
positively charged counterions have radiysand chargeZ.

In addition to the charges on the rods, there are mobile ions
in solution (free counterions and salt ionsWe allow for
these by including free ions labeled by the indexcarrying

In reality, the counterions are distributed with some spatithargeq“' For simplicity, we assume that the counterions

density profile around the rods, which can be approxmateé1re identical to one of the lonic species of the added salt,
. . . .~ although the theory can easily be extended to the more gen-

by the solution to the nonlinear Poisson-Boltzmann equation; : .
L . . éral case. We also assume that the concentration of rods is

We adopt the two-state approximation to describe this den-

sity distribution; that is, we divide the counterions into two very low, so that the concentration of free ions is negligible

classes, condensed and ffdel8]. A condensed counterion ggmepr?raeeittgl tggﬂ%%?;ﬁggg'on] (?[Iuss alé;ggstshs rt'rzg?)iremijoer:s
is approximated to lie on the nearest monomer, and to add & P = e B

. can be treated as overall neutfall]. Finally, it is useful to
chargeZ to the net charge of that monomer, while a free,

i /) — a2
counterion contributes to Debye screening of the electrostatif troduce the BJeFr“m lengthy’s e./EkBT’ na_lmely the
ength scale at which the electrostatic energy is comparable

interactions in the solution. Note that recent calculations b){o the thermal energisT. We will also use the dimension-
Kardar and Golestanigri9] avoid the two-state assumption 9¥s -

by expanding around the Poisson-Boltzmann result. Theiless Bjerrum length in units of the monomer lengt
calculation provides some justification for the two-state=/g/b. The Manning-Oosawa parame{é;18], a measure
model: when they approximate the counterion distribution®f the ratio of the electrostatic energy to the thermal energy,
with a step function, they recover our results. Expandings given byé&=/gfg in our notation.

around the Poisson-Boltzmann solution with its spatial dis- In terms of the charge variableg(s) on the rods and the
tribution of counteriongwithout assuming a step functipis ~ mobile ionsq,, along with their associated positiongs)

a definite improvement over our theory, but this approach isndr ,, the electrostatic interaction Hamiltonian is
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e E/ EN: %/I: qi(s)qj(sl) Here, we have used the matrix
2P 5 ri(s)—rj(s")| ng(r,r'y=ngd(r—r'), (9)

N M qi(s)q, qu0a whereng is the number density of mobile ions. In addition,
+22i 2;’ ; ri(s)—r ] + @ we have introduced the effective interactiondefined by

aa’ |ra_ra’|

Charge neutrality require;=q;(s) + = ,0,=0. v(r,r)=[v " t+ng X(r.r"). (10

B. Derivation of free energy This effective interaction is simply the screened Coulomb

, interaction, given in Fourier space by
The system can adjust the monomer chaigés) but not

their positionsr;(s). It can also adjust the free ion positions o dm/g
r,, but not their chargeg, . The partition function is there- Buv(a)=———7, 11
fore the sum over all realizations of the charge variables q°+ ks

g;(s) and the functional integral over the free ion positions

r wherex2=8m/gl, wherel is the ionic strength of the solu-

tion. Thus, tracing over the mobile ion positions at Gaussian
B gy _ _BH order is equivalent to Debye-ldkel theory[5]. The Gauss-
Z‘J Dro(e >q_f DraJ Dai(s)e" ™, (5 jan approximation is valid wheeksT>Z2e2n2® (in the case
) S of a Z:Z salj [22].
where the electrostatic Hamiltonian is given by E4). To The next step is to average over all possible charge dis-
see the effect of mobile ions on the interaction between tWqyiputions on the rodfthe average oveg;(s)]. Note that we
charges on the rods, we integrate over positions of mobilgtj| have a two-body screened Coulomb interaction
ions first. In order to treat the 'Fwo—bodyaqﬁ interactions, qi(s)q;(s'). We again use the Hubbard-Stratanovich trans-
we use the Hubbard-Stratanovich transformation to replacgrmation to replace this two-body interaction with a one-

the two-body interactions with a one-body interaction of thepqqy interaction of the charge with an effective dimension-
charge with an effective dimensionless electrostatic potentighss electrostatic potentidh(r):

T (r):

N M , . N M
Z:J pra< <exp| _;/B[Z S _Gi99(s) Z=< <exp[—1121 2 QJ(S)q)(rj(S))}>q>q), (12

T ss |ri(s)—ri(s")]

a-

N M (s) where the average over realizations®f(- )4 , is with re-
+22 E z | Q(| ) Uo | +|Z 9.9 (r )“> > spect to the probability distribution
= |i(S)—r, > ¢ @
I S I q v 1 _
©6) Wq):exp{—zf fdrdr’d)(r)v1(r,r’)¢(r’)}, (13
Here, the average over realizationsdof( - ), is with respect — 1 ) — ,
to the probability distribution wherev ~*(r,r’) is the inverse ofBv(r,r’)=/gexd —«dr

—r'[)/[r—r’|. The averages ovey;(s) and®(r) cannot be
1 , PP , evaluated exactly so we again retain only terms in @)
Wy =ex _Ef fdrdr W= (rr )W), (7)) yp to orderd2. This amounts to keeping two-point correla-
tions in the condensed counterions by taking Gaussian fluc-
wherev ~(r,r’) is the inverse o (r,r')=/g/|r—r'|. tuations ing;(s) [6], and is valid when the charge fluctua-
Equation(6) is exact, and for point charges,, the aver-  tions along the rods are not strong. Just as the Gaussian
ages can be carried out exactly. However, we assume thapproximation for® led to Debye-Hukel theory for the
fluctuations in the density of mobile ions are small, and remgbile ions, the Gaussian approximation fbrleads to a
tain only terms in Eq(6) up to order¥?. We make this one-dimensional Debye-lgkel theory for the monomeric
approximation in order to treat the mobile charges and theharges. However, it is not a standard one-dimensional
fixed charges on the rods in a consistent way. theory because the monomeric charges interact with each
Up to O(¥?), the partition function is then given by other, and with the charges on other rods, via three-

dimensional screened interactiomsin other words, our ap-
proximation is equivalent to treating each rod as a one-
dimensional Debye-Hikel system that interacts with itself

and with all the other rods via a three-dimensional Debye-
ijqj(s)jDra

1 1 —
Zocex;{ —Etrln(1+,8nsv)—§,8tr(nsv)

Huckel system of mobile ions.
Because of the geometry of the many-rod system, which
1 = , is nonuniform with the rods in specified positions, the com-
xexp{— 5:32. 2 qi(s)q;(s"u(ri(s)—ry(s ))}- putation of the interaction between rods is nontrivial, even
b oss up to orderd?. We first integrate oved® to obtain a compact
(8) expression for the rod-rod interaction:
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1 . 1
ﬁfbundleziqz/B; g [8—(1+Bdq° U)ISJS ]6_qz

1 _
+trin[1+ B69°%v]— (self-energy, (14)

where the trace “tr” is over all rods and monomers. If the

rods are not parallel or iN is finite, the free energy in Eq.

(14) cannot be diagonalized, and the free energy must be

computed numerically.

The following discussion of how to further simplify Eq.
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the rod axes to write the matrix element;_)(s,js, as

(V)is,js'= (V)i j|s'—s| - The free energyF, ,qe Can then be
partially diagonalized by introducing a Fourier transform in
the z-direction (along the rod axgs For example, note that
the trace that appears in Ed.4) can be written out as

/+1
= ) (B‘Sq ) (U/)is,is-
(19

1tr|n[l+,85q 2]= Z E

We now Fourier transform froms to k, and replace the

(14) applies only when the rods are parallel and infinitely convolution integral with a product of the Fourier trans-
long. In that case, we can use translational invariance alonfiprmed matrix elements:

Z ﬁ Vis,i RITI vu 18¢~1:18 — L/

/Bl Vi 11 ) "ﬁit—hi(kZ)

2 Z (16)
- ¢ fe-1 ¢ powers
where,Bu_ij(kZ)ZZZBKo(Rij \/KSZ-F kzz), with R;; the distance between rodsindj andR;;=b. We then have
Ltrln1 + B¢ 2 27r D (k) i) 17
=0 i fe-1 ¢ powers
|
Similarly, the inverse matrix that appears in Ef4) is 1, 1, |1
BFounad @) = 59 %: §ij_$ M 5_(12

EJ 2 (1+B30%) 5y
ss

=Ei gzs D ZO(—l)/

S, /
X (B8G?) visis, - - - Vi (18)

P L

b K detsq?M (k)] - bNSGZT
+§Lmﬁn[ etoq M (k,)]— q°/s

21

= dk
xf 2—7:K0(b\/K§+k§),

whereKy(x) is the zeroth-order modified Bessel function of

If we have translational invariance, then the summation ovethe second kind.

{s} can easily be performed; in terms &f ;=v;; (k,=0), we
have

2 Z Vis,iys; -

s’

0
Vi, -

(19

U|/ 1S, llsr—L U||l ..

Both terms in Eqs(16) and (19) can be resummed. If we
define matricesvl (k) and °M to be

OM;j= 89728, +27 gKo( ksRjj),

Mij(k)= 89728 +27 gKo(Rij Vi +K),  (20)

The first term in Eq.(21) represents the effective repul-
sion among the rods, which is screened due to the condensed
counterions and mobile ions. The second term represents the
attraction due to fluctuations in the monomeric charge. When
N=2, then the free energy in ER1) reduces to that for two
rods[see Eq(6) in Ref.[6]]. The last term is the self-energy
that must be subtracted from the free energy. Note that the
free energy in Eq(21) cannot be written as the pairwise sum
of the two-rod interaction. The electrostatic free energy can
only be given as a sum of pair interactions when we retain
only the leading term in the expansion of E81) in powers
of 8g2 (i.e., up to monopole-dipole interaction®odgornik
and Parsegiaf23] also concluded that pairwise additivity is
invalid, based on an analysis that includes up to dipole-
dipole interactiongup to the second term in the expansion of
Eqg. (21)]; in contrast, our technigue includes all higher mul-
tipole interactions, which are required because the multipole

then the electrostatic free energy per monomer of the rodg€xpansion diverges at low temperature or short rod separa-

for a<L, is

tions.
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The electrostatic free energy in E(@1) depends on the and each site can either be empty or occupied by one coun-
average number of condensed counterions per mondmer, terion. In this case, the charge fluctuation is no longer given
We could simply use the Manning criterigd8] to setf,. by Eq.(2) but is given by
However, that criterion applies only to a single, infinitely S -
long rod, and the proximity of other rods should enhance oq=2zf.—Z°f¢. (24)
counterion condensation. We therefore solve fegrself-
consistently. We enclose the bundle in a large cylinder ofobviously, the expression for the average charge remains
radiusL, and length_, and construct the total free energy in unchangedg=—fo+Zf.. The corresponding entropic free
terms of the number of condensed and free counterions. Wenergy of condensed counterions per site can be obtained by
then equate the chemical potentials of condensed and frettingvo/ab? to unity:

counterions. The total free energy valid fef '<L is then
BFent. cong fe(Infe—1). (25

Nf,+ En bL2) The difference in the entropy of condensed counterions is
2 5 negligible, because the total entropy is dominated by the free

counterions. Thus, both models predict essentially the same

values forf.. The difference between the “fermion” model

fCMUO
BFrora= Nfe InF -1+

NfiM  ng 1,
X|In| —+ = |vo—1 +§nbLl(Innv0/2—1)

L2 2 and the previous “boson” model therefore lies only in the

+ different expressions forsg?. Note that the “fermion”

- Lf 5 model predicts a weaker attraction becagdgé is smaller in
—NZa/gf1Ko(ksb) + BFounde 75 —%s» (22 this case. In particular, the “fermion” model predicts no

attraction afT =0 for monovalent counterions because there
is complete condensatiorf =1, or 5q2=0), whereas the

wheref=(fo—2fc)/Z s the number of free counterions per “poson” version yields an attraction that saturates in that
monomer andvy=4/3xr; is the counterion volume. The |imit.

first three terms in Eq(22) correspond to the entropy of
mixing; the first describes the entropy of condensed counte-
rions confined to a volume which is smaller than the total
available space by a factor bf/ Lf , the second term corre- In the previous section, we derived a closed-form expres-
sponds to the mobile cations and the third term correspondsion for the free energy of a bundle of a fixed number of
to mobile anions. The last term is the standard Debyekidl  rods, N. In the asymptotic limitN—o, it turns out that the
result for the salt ions. free energy in Eq(21) can be further simplified analytically,
The fourth term in Eq(22) deserves some detailed dis- when the rods are parallel and infinitely long. In this section,
cussion. It is the contribution to the electrostatic free energywe will show that the free energy per rod becomes
from condensed counterions and rods given in@@). This  N-independent foN>1. In other words, the free energy
term is needed to set the reference potential for free counter, . is extensive. The asymptotic analysis will justify our
rions; if the interaction between a rod and a free counterioriinding in Ref.[7] that the equilibrium bundle size is either
is set to zero when they are separated by a distance muei=1 or N=«, and that the free energf,,nqe Changes
larger than«;l, then this term is the decrease in free energymonotonically withN.
due to condensation. Since we enforce condensation from the At first glance, it is surprising thafy,qe iS extensive,
beginning instead of charging the rods with counteri@®ee  especially when there is no added salt to screen the Coulomb
Eqg. (4)], this term does not naturally arise from our previousinteractions, since the system carries finite net ch@dleat
calculations. When an infinitesimal chardg’ (per mono-  grows linearly withN, i.e., Q=Ng. If we calculate the free
mer is added to a negatively charged rod of net chaje  energy by summing over all pairs of rods using the effective
the change in the electrostatic energy of the rod is two-rod interaction, then we would obtain a repulsive inter-
action of a bundle which increases lik& with »>1. Thus,
B o @ K the assumption of pairwise additivity leads to a superexten-
BOE= —N/’Bq’dq’f dz . (23 sive free energy. However, we showed by explicit calcula-
- z tion of Eq.(21) in Ref.[16] that in the case of no added salt,
it is possible to describe a large bundle in terms of a bulk

This charging process continues until the rod has net chargéee energyFy, and a surface free energiace In other
of g. Thus the free energy we need is an integration of Eqwords, the bundle free energy fdf>1 can be written as
(23) overq’ from 0 toq multiplied by the number of rods.  Fuundie™ NFpukt VNFgyitace WhereFp and F g aceare in-
This leads to the fourth term in E2). dependent oN. Here we will extend the analysis presented
in Ref.[16] to the case of added salt.
Instead of taking the limilN—c directly to obtain the
bulk free energy per rodk,,, we will define a second
The model introduced in the previous section assumesystem: an infinite lattice of rods made by replicating the
that an indefinitely large number of counterions can be asN-rod bundle periodically, so that th&(+1)th rod has the
signed to a given monomer. One can also consider a variasame charge distribution as the first one. This system will
of this model[24,11], where each rod consists M sites, have a free energy per bundle given Byeiqgic, Which can

. ASYMPTOTIC ANALYSIS OF THE FREE ENERGY

C. “Fermion” version of model
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be written as in Eq(21) in terms of two new matrice$§ M
and M(k,):

M=08q725) j +2782, Kolxs k=0k,)

X7y

XeXF[—ikJ_~jJ_],

M(kz)zéqugjﬂfrZ?B;& Ko( ks Kz K, )
xRy
xXexd —ik, -j, ] (26)
Here, the matrix indey, is conjugate to the rod positions on
the lattice and assumes the valugs=(jy,jy), where
jx.jy=0,1,... YN—1. Upon substitution of Eq(26) into
Eq. (21), we obtain

%Ko (rs) +27550% 2

N 47

7802 b1
BF, periodic— 2 ( )

* de ~, 2
X [ S+ 275507 o i )

[

~ dk
- bNﬁqz/Bf 2—7:Ko(b\/f<§+ K3, (27

wherek, is the wave vector conjugate to the periodically

repeated bundle:k, assumes the discrete valuds
= (2m/\N)(n,,n,) wheren,,n,=0,1, ..., JVN—1. The dis-

crete Fourier transform of the modified Bessel function

Ko(RijVk2+Kk2) is given by
JN-1
Kol ks Ky, K )= JE, Ko(alj, [VaZ+ k2 exdik, j,].
(29)

The function®K (k) that appears in the first term of Eq.
(27) is simply °Ko(k,=k, =0).

The bulk free energy can now be obtained by taking the

limit of Fperiogic a8 N—0¢. To take this limit, first note that
Ko(X)~(1/yX)e™ for x>1, so that the sunky(«s,k.k,)
and®Ky(ks) both approach finite valuesiCy(xs,k,k,)
and®Co(ks), respectively, adN—o. Furthermorek, be-
comes a continuous variable in the linfNt—o, so we can
replace the sum (ILI/)Ekl by an integral

f%’”a[dkl/(Zw)z][ ...] up to a correction of order W
The resulting bulk free energy per rod is then given by

73(12
Foulk= =
Ao o 1)+ 27 0007
b r2w/a dk, jw dk,
+= —In[1
ZJO (2m)? o 27T [

+27800%Ko( ks Ky, K, )]—b59%7 5

= dk
xf ZWZKO(b\/K§+k§).

(29
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Thus, the free energy per rod approaches a constant, i.e., the
bulk free energyF ik, in the limit of N—o, in accord with

our previous numerical resulf§]. In other words, the free
energy of a lattice of rods is extensive.

The next step is to look at a very large but finite bundle
and to include the contribution of the bundle surface to the
free energy. Note that we have considered a square lattice of
rods, so there areyN rods at the surface of a square bundle
of dimensionsyNx \/N. To study the surface tension, we
should consider the free energy difference

4\/NFsun‘ace: Foundie™ NFpuik (30)
and show thatFg ... is independent oN in the limit N
—oo. Here, Fyungie IS given by Eq.(21) and is specified by
the two matrices’M andM (k,) defined in Eqs(20).

Let us first consider the difference between the free en-
ergy of the finite bundle and the free energy per bundle for
the periodically-replicated bundle:

4\INBF giti = BFpundis— BF periodic
1
:E 2 [(OM—l OMOM—l)ij
0]

2
_(OMfl OMOM 71)ij]q_
5q*

b % dk -1
n EJ,OCE'” def1+M ~(k)-(M(k)

= M(K))]. (3D
Now note that in the limit of an infinite bundl®&y—«, we
must recove’M — %M andM (k)— M (k). This enables us
to expand Fgy in powers of °AM 1. (°M—-°M) and
M YK)[M(k)—M(k)] for large N. After subtracting the
self-energy, we find

J— 2( 1 )2
B 127 0007 Kol ko)

Ky

X E'VKLKO(Ks-kL)

k, =0

bl/1 = dk,
t3 (N)% J:w 5 Kolks Kz k)

7300 K o( ks Kz, K, )
1+27589%Ko( ks, Ky K, )

‘ . (32

ky

This is a generalization of our earlier resigee Eq(12) in
Ref.[16]] to the case of added salt. Again, we can replace
(UN)Zy [...] by [§™3[dk, /(2m)*], up to a correction of
order 1N. We then find that

F gix— constx (1+ O(1/N)) (33

in the limit N— oo,
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The quantityF g is related to the desired surface tensionvarying screening lengthx(r). Solving the linearized

FsurtacePy the equation Poisson-Boltzmann equation with a spatially varyir(r)

was quite difficult. The alternate approach that we have pre-

4\/ﬁFsurface:4\/ﬁFdiff+7:periodic_NFbulk- (34) sented here is a systematic treatment of the surface tension
using functional integral methods, and is equivalent to solv-
ing the linearized Poisson-Boltzmann equation with a step
function approximation to the ion density. The main advan-
tage of our approach is that it can easily be applied to more
general systems such as our bundle of rods.
Freriodgic=NFouid1+O(LN)). (35) In the low salt limit, Eq.(37) shows that the surface free

energy is independent of salt concentration and increases lin-
Given Eqs.(34) and(35), we find thatF ¢ ,ccapproaches an early with the Bjerrum length. On the other hand, in the high
N-independent constant &— <, with corrections of order salt limit, the surface free energy decreases with increasing
1/JN. salt concentration, and becomes negligible wh;efa2

In the no-salt limit,k;—0, we have shown in Ref16] > §q2/5. These results make physical sense. Surface effects
that the surface free energy originates only from the attracarise because the charge fluctuations along the rods suddenly
tive interactions characterized by the charge fluctuationglecay to zero at the outer surface of the bundle. This gives
892. This follows from the fact th8Ko(xs)~N in that limit  rise to a dipole layer at the outer boundary. In the low salt

However, by comparing Eq27) to Eq.(29), we see that the
leading correction td periogic— NFpu cOmes from replacing
the sum over discrete values lof by an integral. This cor-
rection is of order M. Therefore,

and thus the first term in Eq32) vanishes like M2, ' case, this dipole layer cannot polarize the surrounding solu-
In summary, we can combine E¢29) and(32) to write  tion, so the surface enerdin units of the thermal energy
the bundle free energ¥undgie @S increases linearly with the strength of the electrostatic inter-

actions (the Bjerrum length In the high salt case, on the
Foundie= N Fperiodict 4VNFitr=NFpuit 4VNFgymacat O(1),  other hand, the system can lower its free energy by forming
(360 aninduced dipole layer across the boundary. In other words,
the charge fluctuations along the rods at the surface of the

whereF i and F,race@re independent dil. Thus, a large bundle tend to polarize the surrounding ionic solution; this
bundle can be described as the sum of a bulk free energy an . . . ;
olarized solution then interacts with the charges on the rods.

a surface free energy. This result is useful to phenomenologl, . . . .

: X his is asecondorder effect, so it results in a second order
cal theories of bundle nucleation, etc. Why does the long- .

: “dependence of the surface free energy on the amplitude of

ranged repulsion between rods not lead to super-extensive i proviecdh ]
scaling of the free energy? The reason lies in the breakdowH® charge fluctuationssF s acé* 59 /g Finally, in the ex-
of pairwise-additivity of the effective rod-rod interactions. treme high salt IimitK§a2> 592/ g, the rods are so highly
The long-ranged repulsion between rods is highly screenescreened that they no longer interact with each other, and
in the explicit calculation because charge fluctuations ar¢here is no difference between a rod at the surface and a rod

correlated over many rods, not just pair by pair. This resultsleep within the bundle. In that case, the surface free energy
in an extensive bundle free energy, in accord with rigorousf the bundle vanishes. The conditioréa?s> 692/ is

arguments on electrostatic syste[2s]. equivalent to the conditiorg> k., Wherex_ ! is the screen-
o . ing length due to condensed counterionsk’
A. Limiting behavior of surface free energy =4789%/ g/ab. In other words, if the screening due to salt

To test our result for the surface free energy, let us tak@verwhelms the screening due to condensed counterions on
the limiting case of vanishing lattice constaat—~0, such the rods, then the surface free energy is negligible.
that g%/a?b=Z2n remains constant, whereis the number
density of condensed counterions. This corresponds to taking B. When are the interactions pairwise-additive?
the continuum limit of the lattice of rods. In this limit, the

system reduces to a Debye-tkel electrolyte. Then we have .

27 K o K V=4 < 1(82K2 + 82k24+ b2K2) . IF Wi that many-body effects are unimportant when the salt con-
259 "B ol ks, 2! i)__ 7/ gl(a%kL +a ks i 2)- € centration is high enough. This is because the salt screens the
use this expression in E¢32), then we obtain correlations between charges over many rods that are respon-

~ . ~ sible for the breakdown of pairwise additivif¢3]. Thus, we
[ 59°7 g if k2a?<69%/ g P 93]

From our analysis of the surface free energy, it is clear

a 2 should recover pairwise additivity at high ionic strength. On

b/" | 89?72 k2a? it K2a?> 6077 ;. the othezr hand, if there are no charge fluctuations along the

(37) rods, 69°=0, then the interaction between rods is purely
repulsive and pairwise additivity should again be valid.

In the low salt limit, asks— 0, the surface free energy per Therefore the criterion for pairwise additivity should depend

unit area, i.e., the surface tension, varies ath)sq% s on bo'thKS and 5q2. In fact, we find that pairwise additivity

~ k2, wherek_ ! is the Debye screening length associatedS valid when

with condensed counterions. This agrees with an earlier re-

sult of Onsagef{26], which was obtained by solving the

linearized Poisson-Boltzmann equation for a Debye#eél

electrolyte in contact with an immiscible medium. In order to Under these conditions, the expansion of the attractive part

calculate the surface tension, Onsager introduced a spatialbf the free energy in powers @2/ g is convergenfi.e., the

B Fsurfacé”

69°/ g<«2a’. (38)
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multipole expansion is convergent; see E2{)]. Note that that the AB, BC, and CA interactions are pairwise additive.
under the conditions of Eq38), the surface free energy is However, the charge distribution on the surface of rod A that
negligible [see EQq.(37)]. This is not surprising; when the interacts with rod B could be correlated with the charge dis-
interactions are so highly screened that inter-rod charge cotribution on the surface of rod A that interacts with rod C.

relations can be neglected, then pairwise additivity is recovThis correlation would lead to a breakdown of pairwise-

ered and there is no difference between surface rods and rodslditivity. This could be the origin of the discrepancy be-

deep inside the bundle. tween our criterion and Shklovskii's.

We note that the criterion E@38) always corresponds to
the regime where the interactions between rods are repulsive.
For the case=0.1 A%, pairwise additivity is valid when
a>30 A. When «,=0.001 A%, pairwise additivity is In all of our earlier calculations, we fixed the temperature
valid whena>3000 A. In both cases, the interactions be-and studied the dependence of counterion-mediated interac-
tween rods are repulsive and extremely weak in this regimetions on the lattice spacing, screening length, counterion va-
Thus, whenever the counterion-mediated interactionsiare lency, and other parameters. Here, we focus on the tempera-
tractive, pairwise additivity is not valid. ture dependence, which has been controversial in the

Recently, Shklovskii argued that the validity of pairwise literature. In the discussion that follows, we will imagine that
additivity should also depend on the rod radius. His arguwe can vary temperature without varying the dielectric con-
ments are based on the ionic crystal picture of a salt-fregtant. In reality, the dielectric constant tends to vary as 1/
solution, where the counterions form a Wigner crystal in aso that the Bjerrum lengthy’z=e?/ekgT is roughly con-
background provided by the charged rdd€)]. He distin-  stant. For our purposes, however, we will assume that low-
guishes between two regimes characterized by the dimerring T is equivalent to raising the Bjerrum length.
sionless parametetb/r o4, Wherer q is the rod radius. He Brownian dynamics simulations by Grbech-Jensen and
argues that the interaction is not pairwise-additive ifcoworkers[8] show unambiguously that the counterion-
Zblr,¢>1. In the regime wher&b/r,,4<1, on the other mediated attraction between two rods is strongest at zero
hand, he argues that the counterion-mediated interaction i@mperature, and weakens with increasing temperature. This
pairwise-additive because the rod radius is sufficiently larggs in accord with the picture proposed by Rouzina and
compared to the lattice spacing that only nearest-neighbaBloomfield[9], where the attraction originates from the fact
rods interact via their facing surfaces, which are almost plathat the system forms an ionic crystal at zero temperature.
nar. It is not straightforward to compare our criterion to his, Thus, the counterions form an ordered array between the two
since we assume infinitely thin rods and he assumes nmds that brings them together at low temperatures.
added salt. In order to compare our results, we now modify At higher temperatures, however, this ionic crystal melts
our criterion to include the nonzero rod radius. Note that forand the distribution of counterions along the rods is more
fixed temperature, counterion valence and linear charge sephquidlike than solidlike. At these temperatures, one can de-
ration b, the charge fluctuations per monomer remain fixedvelop a complementary picture, where nonuniformities of the
as the rod radius increases. However, the surface area of tiarge distribution along the rods become correlated from
monomer increases, so the charge fluctuation/surface areme rod to another, and lead to attractions. It has often been
decreases. This leads to a decrease in the effective value @fgued that this picture, since it is based on thermal fluctua-
592. As a result, the regime over which the rod-rod interac-tions of the charge distribution, should lead to an attraction
tion is pairwise-additive increases agq increases. Using that increaseswith increasing temperature, in contradiction
this argument, our criterion for pairwise-additivity can be with the simulations. In fact, this was the conclusion of
generalized to Oosawd 4], who first proposed the picture. This argument is

erroneous, however. The temperature dependence is more
( I rod

IV. TEMPERATURE DEPENDENCE OF ATTRACTION

2 complex because the attraction also reliesconrelations
b

between the charge distributions on the two rods; electro-
static interactions between the rods give rise to the correla-
For finite 592, this inequality can be met only when the tion, whereas thermal fluctuations tend to decrease the cor-

radius of rods is much larger than the length of rods. Qufelation. Barrat and Joannip] introduced a perturbation
criterion is therefore much more stringent than Shklovskii'sexpansion in powers 06g?/z and showed that to second
and depends on the length of the rods as well as on thewrder, the inter-rod correlation leads to an attraction that ac-
radius. tually increases with decreasing temperature. Another factor
Why is our criterion so different from Shklovskii’'s? Shk- that works in this direction is the effect of temperature on
lovskii assumes that as long as two rods of nonzero radiusounterion condensation. As the temperature decreases, the
are sufficiently close so that their facing surfaces are nearlpmount of counterion condensation increases, so the net
planar, then the interaction can be described as a pairwisghargeq per monomer decreases. As a result, the repulsion
sum of attractions described by correlated charge distribubetween the rods decreases, giving an effective attraction
tions on two-dimensional surfacéthe two-surface calcula- that increases with decreasing temperature.
tion has been carried out by Rouzina and Bloomf[&f. It Someone familiar with Debye-Huel theory, which is
is not clear that this guarantees pairwise-additivity of rod-rodalso based on a charge fluctuation picture, might consider the
interactions, however. Consider three rods, A, B, and C, in 4&&mperature dependence to be trivial. In an electrolyte solu-
triangular arrangement. Rods A and B, B and C, and C and Aion, the Debye-Hakel limiting law yields a free energy that
all interact along their facing surfaces. Shklovskii assumewaries as /g~ — 1/\/T. Thus, Debye-Hckel theory yields

5927 g< . k—0. (39

L2
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an attraction that increases with decreasing temperature. One O
might therefore expect that our calculation, where we con- I
sider one-dimensional Debye-Ekel systems interacting

with themselves and with each other via three-dimensional -0.01
Debye-Hickel interactions, to yield a similar result. It turns
out, however, that the situation in our rod system is not quite
so simple. Note that the form of E€6) in Ref.[6] leads to

an attraction thavanishesat T=0. The exact solution of a
similar model, on the other hand, leads to an attraction that is
strongest al =0 [11]. We find that the origin of the discrep-
ancy lies in our assumption that the ion radius is zero. In our -0.03
system, charges on different rods are discrete because the

rods are placed at discrete lattice points. It turns out to be

002 | 8

rebeundIe

important to treat intra-rod charge correlations at the same -0.04
level, so that charges on the same rod are also discrete. 6 10 20 30 40 50
In an earlier papef13], we showed that we can capture a (A)

the correct temperature behavior of the charge correlation

function if we incorporate the nonzero radius of the ions FIG. 1. Temperature dependence of the attradfiow sali. We

along the rods. The most straightforward way to include thenave plotted the free energy per monomer per ®gnqe as a

ionic radius along the rods is to allow short-ranged chargdunction of a, for a 16-rod bundle on a square lattice at low salt,

correlations over the ionic size. We introduce the one«x=0.001 A"l The reference temperature is room temperature

dimensional structure factor for a segment of lenthl3]: (300 K). There are three curves corresponding to different tem-

g(s—s')=0(|s—s’|-D)/D. Given this structure factor, peratures/g=6 A (solid), /g=9 A (dashey and/g=12 A

we found that the charge correlations along the axis of ddotted. Note that the attraction is strongest at small lattice spac-

given rod are oscillatory with an exponential decay. As theings a for the largest value of'g (the lowest temperatureHow-

temperature is lowered, the exponential decay length in€Ver. the_ trenq reverses at higher valuesi;oiﬂjis is an artifact of

creases, so that the correlations become longer-ranged. € Way in which we introduce the nonzero ion radius.

nally, at a very low temperature, the decay length diverges. . ) i o ]

This signals the spinodal to the ionic crystal; this is whereSion c_)f the nonzero ion radius. This is because the repulsive

the high-temperature “liquidlike” phase becomes unstablel€'m is governed by the zeig-component ofM;;(k;), and

to an ionic crystal. Thus, we were able to show that ourd(k,=0)=1.

approach is fully compatible with the low temperature pic- W€ now use Eq(41) to compute the bundle free energy

ture proposed by Rouzina and Bloomfield and others?S @ function of temperature, or equivalently, of the Bjerrum

[9,8,10. length/5. In Figs. 1 and 2, we have plotted the free energy
Here, we extend the analysis in REE3] to the free en- of a 16-rod bundle as a function of the lattice spacanipr

ergy. When we include the nonzero ionic size, the attractive

term in the free energythe second term in Eql14)] be- 0.0004 T T
comes r
1 — 1 , — = :
Etrln[1+,85q v]—»itrln[1+,86q gu] = 0r
o
o LL r
(_1)/+1 2N/ - / "q‘; :
=2 2 —— (B0 (v9) Nisss o |
40 -0.0004 -
where g is a matrix defined by gis,js,=5ij®(|s’ C
—s|—D)/D. Here,®(x) is the step function. In the case of -0.0008 - A A A
parallel, infinitely long rods, we can Fourier transform in the 20 30 40 50
z direction as before, and we find that the free energy of a a (A
bundle is still given by Eq(21) except that the matrii (k)
is now given by FIG. 2. Temperature dependence of the attractitigh sal.
We have plotted the free energy per monomer per Foghge as a
2\ . 27 502 - J2+ K2 function of a, for a 16-rod bundle on a square lattice at high salt,
89°Mij (k) — 8ij 2/ 5070 (Kz) Ko(Rij Vs k), (41) k=0.1 A~%. The reference temperature is room temperature. As in

Fig. 1, there are three curves corresponding to different tempera-
tures:/g=6 A (solid), /g=9 A (dashedl and/z=12 A (dot-
whereg(k,) =sink,D/k,D is the Fourier transform o®(|s’  ted. The main effect of lowering temperature is to increase the
—s|—D)/D. Note that the repulsive part of the free energy,amount of counterion condensation; this lowers the repulsive bar-
namely the first term in Eq21), is unaffected by the inclu- rier.
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three different values of/g. Our parameters areb 0001 T T
=17 A, M=10, Z=2,andD=4.2 A. The free energy is
plotted in units of the thermal energy at room temperature
(T=300 K). First consider the behavior at low salk (
=0.001 A1) described by Fig. 1. We find that the interac- or
tion between rods becomes more attractive/gsincreases L
(T decreases for small values of the lattice constaat
However, the attraction is weaker &g increases whea is
large. This is probably an artifact of our approximation for
the nonzero ion size, as we discuss further below. Note thates
our curves look different from the simulation resyl& be-
cause we have not included a short-ranged excluded volume
repulsion between the rods and counterions. As a result, the
free energy becomes increasingly attractiveaadecreases,
instead of reaching a minimum and becoming repulsive at I .
very smalla. Because of this, we cannot extract the free 0008t LT
energy at the minimum. Nevertheless, the fact that the attrac- o 10 20 30 40 50 60
tion grows as/g increases for small suggests that the N
minimum is deeper at higi'y, or equivalently, lowT, in
agreement with the simulations. FIG. 3. Dependence on lattice structure. We have plotted the
At high salt concentrationsk=0.1 A1), Fig. 2 shows free energy of a bundl&fp e, as a function of the number of rods
that the system develops a significant barrier in the free erN in the bundle, for two different lattice structures: hexagdttatk
ergy [7]. As /g is increased, the barrier is lowered and thecurves and squarthin curves with squargsThe lattice constant
attraction increases. This is again consistent with the lovis @=30 A, the salt concentration i&;=0.07 A™*, and the Bjer-
temperature ionic crystal picture. Note that the repulsive bar™m length is 7.1 A. The solid lines correspond to the total free
rier decreases with increasing mainly because the amount S"€79Y Fbunae: We have also plotted the attractive and repulsive
of counterion condensation increases, and the net charg@ntibutions separately, as the dotted and dashed curves, respec-
therefore decreases. ' ively. Ngte that the magnitude of the .repuIS|orl1 is very similar for
We now turn to the potentially disturbing result that the both lattice structures, b_ut. the attractive contribution is Iar_ger for
. . the hexagonal lattice. This is what makes the hexagonal lattice more
attraction appears to weaken with decreasinat large lat- stable.
tice spacinga of the bundle. Is it possible that the origin of

this unphysical result is the Gaussian approximatlandom — ya4ion incurred by the hexagonal lattice within our model. It
phase approximatio We believe that the problem lies in ig ~powever, worthwhile to compare the free energy of a
the way in which we have included the nonzero ionic sizégyare-lattice bundle with that of a hexagonal-lattice bundle.
through a one-dimensional form factor. Instead of doing arp;g comparison is shown in Fig. @he thin solid curves
perturbative calculation, we could carry out a self—consistenpnarked with squares represent results for the square lattice,
calculation for the charge structure. The net result would bgypjje the thick solid lines represent results for the hexagonal
to replace the one-dimensional form facfs) with the |aiice). Note that free energy is somewhat lower for the
charge correlation function, which would be solved for Self'hexagonal lattice, showing that the hexagonal lattice is more
consistently. Such an approach would lead to a more acClgaple even though there is frustration. We have plotted the
rate description of the system. However, it would not affectgcreened repulsive and attractive contributions separately
our most important result, which is that the equilibrium yasheq and dotted curves, respectiyety show that while
bundle size is infinit¢7]. This is because the attraction will ¢ renyision is slightly stronger for the hexagonal lattice, as
still be short-ranged, while the repulsion will be unaffectedgypected, the attraction is significantly stronger also, leading
by the form ofg(s) becauseg(k,=0) is still unity. The 55 |ower free energy for the hexagonal case. It is not too
requirement thag(k,=0)=1 is known for electrolyte SOlu-  gyrprising that frustration does not prevent the hexagonal

bundle

-0.001"

-0.002

tions as the Stillinger-Lovett second moment condifiddl.  |5ttice from being more stable, since we are not at extremely
low temperatures. For our parameters, the ordering of the
V. DEPENDENCE ON LATTICE STRUCTURE counterions along the rods is liquidlike, not solidlike, and the

anticorrelation in charge from one rod to the next is not too

In all of the calculations so far, we assumed that the rOdq'arge' so the effects of frustration are re|ative|y weak.
in the bundle were organized into a square lattice. This is an

unphysical choice of lattice structure; the true structure is
hexagonal[17]. It is important to note that our model is
unphysical in that condensed counterions are placed directly The general approach that we have adopted, of describing
on the rod, leading to charge fluctuations along the rod. In ¢he rods with associated condensed counterions as one-
hexagonal packing, the anticorrelation between charges odimensional Debye-Htkel systems coupled to each other
neighboring rods leads to frustration. In reality, the countethrough a three-dimensional Debye-tkel ionic solution,
rions sit in between the rods, so there is no frustration whemelies on the first term in a perturbatidioop) expansion that

the rods are hexagonally packed. The advantage of a squgpeobably diverges in the regime of interest. However, good
lattice is that it avoids the unphysical consequences of frusapproximations can be useful beyond their range of validity.

VI. SUMMARY
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The important question is: what physics is left out by ourcondensed counterions sih the rods in our model, whereas
description? In the case sfimpleDebye-Hickel theory, two  they really should sit in between the rods. In other words, the
important qualitative effects are left out: ionic associationsstructure of the ionic crystal is not captured correctly by the
(counterion condensatiprand the possibility of oscillatory model. This is probably a source of greater quantitative error
charge correlations. We have gone beyond the simple theomt low temperatures than is the Gaussian approximation.
by including counterion condensation within a two-state The main advantage of the formulation presented here is
model. We have also shown that it is important to include thehat it leads to a tractable analysis of the many-rod problem.
nonzero ionic radius, so that the charge distribution along th@his is especially important because many-rod interactions
rod is discrete, not continuous. This leads to qualitativelylead to qualitatively different behavior than is predicted by
correct behavior in the charge correlatigiss], which are  the pairwise sum of two-rod interactiof3]. Moreover, it
oscillatory with an exponential decay length that increaseshows that for large bundles, the simple approach of treating
with decreasing temperature, as well as the correct temper#hie bundle free energy as the sum of a bulk free energy and
ture trend at small separations of the rods. Thus, although surface free energy is valid. This is important to phenom-
our approximations will not lead tquantitativelyaccurate enological treatments of bundles. Finally, our formulation
behavior at low temperatures, they predict the corqeatli-  can be used to study questions relevant to kinetics, such as
tative behavior. the energetic factors that govern the kinetics of bundle for-
Since our approach predicts a transition to an ionic crystamation[15].
at low temperatures, it bridges the gap between the “charge
fluctuation” picture and the zero temperature “ionic crys-
tal” picture. However, this is mainly a conceptual advan-
tage: our approach is not the best one at extremely low tem- We gratefully acknowledge the support of the National
peratures, because the model itself is not accurate there. Tiseience Foundation through Grant No. DMR-9619277.
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