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Calculation of electromagnetic properties of regular and random arrays of metallic
and dielectric cylinders
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A method is developed to calculate electromagnetic properties of arrays of metallic and dielectric cylinders.
It incorporates and exploits cylindrical boundary conditions and Rayleigh identities for efficient, high-accuracy
calculation of scattering off individual layers that are stacked into arrays using scattering matrices. The method
enables absorption, dispersion, and randomness to be incorporated efficiently, and reproduces known results
with vastly improved speed and accuracy. It is used to demonstrate existence of states introduced into photonic
band gaps of a dielectric array by disorder, and anomalous absorption behavior in arrays of aluminum cylin-
ders.[S1063-651X99)01511-1

PACS numbgs): 03.50.De, 42.25.Bs, 78.20.Bh, 78.20.Ci

We present an efficient, high-accuracy method to calcuunit cell of each layer to improve accuracy and speed further.
late the electromagnetic properties of regular or random ar¥We note that of the over 20 articles in the photonic band gap
rays of cylinders in a stratified background. The optical prop-bibliography[9] dealing with metallic photonic crystals, all
erties of such arrays, regular or random, are being studied fatse the Drude model rather than measured optical properties
application to novel photonic devices and band-gap materiof real metals, as used here. Some recent Wbk does use
als, with the aim of controlling the flow of light. Materials of Mmeasured properties, but deals with a single grating of cyl-
this type are the optical analogs of semiconductors, and talnders, not a stack of gratings. Finally, although some other
loring of their band structure, density of states, defects, anf’€thods can deal with inclusions of arbitrary shape, subject
wave localization properties is a promising tool for the de-{0 the inaccuracies mentioned above, they are most often
sign of materials with specified optical propert[ds2]. applleq to structures w!th cyI;ndncaI inclusions, the structure

Our method, which is constructed for geometries as infor which our method is optimized and one that allows the

; : udy of a wide range of physical phenomena.
Eia%\ ;é;a;itidgsntﬁgri%grf c?fe ggg?)ttgélsccﬁ]raiy,liﬁggr:l?r??ﬁj[ We present results that highlight the key advantages of
. y riapping cy our method. The first concerns stacks of cylinders with ran-
unit cell of each layer, arranged arbitrarily. It uses local co-

ordinates around each cvlinder for easv and aceurate im dom refractive indexes, for which our results are more accu-
I Y asy PPate and of higher resolution than any presented before. This
sition of boundary conditions at their surfaces, even whe

lets us identify strongly polarization dependent, disorder-

the refractive index contrast with the embedding medium iS° duced features in the photonic band gap. We also consider

arbitrarily large. It achieves its speed by dealing with eacha regular stack of aluminum cylinders, for which the use of

lrzﬁecreatsé ?h-:']‘i?puaéafvgirgitr)llertnh’;r?ﬁ\r/‘e?gi‘é?]l'g?lzyirsm%riéicﬁr'easured optical properties leads to pronounced and surpris-
que, g 9 nIng new absorption features.

also allows one to use measured optical properties, so th
idealized(e.g., Lorentz models of the materials are not re-
quired. Though some elements of our technique are used
elsewhere, it is unique in uniting and generalizing them in a
single formulation. By contrast, plane-wave methf@lssuf-

fer inaccuracy due to the Gibbs phenomenon when the index
contrast is large, as in metallic systems, the transfer matrix
method [4,5] suffers from instability and inaccuracy for
structures with a moderate or large number of inclusions per
unit cell, while finite-difference time-domain metholdg re-
quire simple analytic forms for the material response.

The class of methods most closely related to ours is the
Korringa-Kohn-Rostoker(KKR) type, which have been
widely used to calculate electronic energy bands in solids,
and which implicitly incorporate lattice sums in matrix ele-
ments. The closest relative, the layer KKR method of Ste-
fanou et al. [7], was developed for spheres. However, this
method uses the relatively slow Ewald summation technique
to evaluate matrix elements, whereas we use rapid, accurate FIG. 1. Three layers of a grating stack are shown, together with
expressions for the global lattice sums due to Tweffdldy  the incident wave and the reflected and transmitted zeroth orders of
We also use local lattice sums for each of the cylinders in theliffraction from the stack.
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We consider a plane wave of wavelengthincident in  Graf's addition theorem. The global sums are evaluated us-
free space at an angl on the structure in Fig. 1, in which ing methods described previoudi§,13).
each layer has a unit cell di. nonoverlapping cylinders, For given#,, Eq.(4) is solved for theB!_, from which the
with radii a; and refractive indexes, , located with centers coefficients of outgoing plane waves éXp, X+ xpy)] from
on the midline withx=c, . This cell is replicated with period the given layer are determine®, in the +y (reflection
D along thex axis; d=D/N. is the mean separation of cyl- direction andT, in the —y (transmissiop direction. Here
inders. There aréN, layers in the full structure, with the | — (k24212 with
separatiorh chosen to equal for present purposes, although P P

this is not essential. Note thaf andn, may vary between ap=ksing,=ksing;+2mp/D, (5)
cylinders, andc; may vary between layers. The only essen-

tial requirement is that a common periBdcan be identified 1 = Ne o imas

for all layers. We solve the scattering problem using a szmmi_w |21 Bre (Mt e, (6)

method devised for normal incidenfl] and later general-

ized to arbitraryg; [8]. We generalize it to arbitrarM. and  and similarly forT,. The amplitudesR, and T, constitute
NL. ) ) o one column of the scattering matricesand 7, respectively;

~ The fields around each cylinder are specified in terms of §ne full matrices follow by varyingg; over the angles, of
single component\(=E, for TM polarization,V=H, for  the diffraction orders of the layer. They contain the data
TE polarization, wherez is the direction of the cylinder peeded from one layer in order to solve a stack. In our cal-
axeg. The potential is specified in local polar coordinatescjations we takdp|<P and|m|<M, soNy=2M+1 is

(ri,6)) via the Bessel expansion the number of cylindrical harmonics used aNg=2P +1 is
oc the order of the scattering matrices used to couple the layers.

V(r,,6,)= A3 (kr)+BLY, (kr)le™ (1 If reflection p; and transmissiorr; matrices for layerg

(r.61) mzz—w[ mdm(KI1) B Yin(kr) @ =1 to N are known, the reflectiorR and transmissior/”

) o ) matrices with layeN+1 added are
for ri>a,, with a similar expansion for,<a,. These ex-

pansions are matched @t=a, using continuity of tangential Rne1=Pns1Ft TN RNZ— s i RN) YTrnet, ()

field components. This enables the interngk(a,) coeffi-

cients to be eliminated, giving Tni1=T(ZT— pnsaRN) Y 7Ns1s (8)
Al =-m! Bl (2)  whereZ is the identity matrix of ordeNp. We thus recur-

sively find the complex reflection and transmission coeffi-
where theM|, depend on polarization, wave numberand  cients of a stack with an arbitrary numbéy of layers. Fur-
n, [12]. The boundary conditions at the cylinders are thusther details will be given elsewhef&5].
satisfied forany complexn,, without exhibiting the Gibbs Accuracy was verified by comparing the results for a
phenomenon that plagues Fourier methods. regular array of dielectric cylinders with those of Betlal.
The c:oefficientsB'm are found using a Rayleigh identity [5], a layer of aluminum cylinders with those of Horwitz
[13], according to which the first term in E€L), correspond- et al. [16], and transmission of multiple layers of perfectly
ing to the source-free part &, must have its sources on all conducting cylinders with band structures for square and
cylinders except, or at infinity. Hence, hexagonal arraygl7]. We also checked reciprocity and en-
. ergy conservation, which are satisfied to machine precision,
2 Al (kr)eimé— iK(xsi independent of truncation to finitsly, and Np, even for
o Pm m(Kr)e™1=exgik(xsin6;—y cosé;) ] absorbing cylinders.
Parameterd\,, andNp are determined by, then,, and
- _ the minimum distance between cylindelyy, is set by con-
+ _E 2| BhYm(K|r —rgl)e™%, (3 vergence for a single layeNp by that for the stack. At long
moear wavelengths we obtain accurate results vith= 3 or 5, and
where 6, is the polar angle of,—r, and the sum oveq Np increases a3 and h decrease. For short wavelengths

+1 includes all cylinders butin the central unit cell, and all Nm~@a/\, while at very long wavelengths accurate results
cylinders in other cells. The Bloch condition and Graf's ad-are obtained usinfly=3 andNp=1, with the scattering

dition theoren{14] are used to give a set of linear equationsmatrices reducing to scalars. For large systems the runtime
for B! scales ad, max{(NyNo)*N3}, the first term in the brackets

is due to matrix inversions for a single layer, and the second

* Ne * arising from inversions needed for layer coupling. The linear
> S.mBL+iMmIBl+ > > &a BY dependence oN, means we can treat systems with laNje
m=-e a=la#l m=-c much more efficiently than direct inversion, nonlayer meth-
=—i(—1)" exdikc, sing,Jexp(iné;). (4  ods[18], which scale a\}.

Below we consider periodic square arrays of cylinders of
Here theS'rﬂ are lattice sums for the local environment of identical radius in free space. In Figs. 2 and 3, we consider a
each cylinder, which are used to reduce the sums over cybtack of ten layers of dielectric cylinders, with=>5, refrac-
inders in Eq.(4) to just those lying in the central unit cell. tive indexes uniformly distributed between 2.8 and 32,
They can be obtained from global lattice su@g using =0.3d, andD =5d. The solid line in Fig. 2 shows transmit-
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FIG. 2. Transmittance averaged over 100 realizations vs wave- = 2 0 0 05 1.0
length for a random dielectric array with parameters given in the
text. Inset: intensity attenuation coefficieatvs k. The dot-dash FIG. 4. Left panel: photonic band diagram for TM polarization
line highlights the Urbach tail. (V=E,) for a square array of perfectly conducting cylinders, with

parameters given in the text akdalong thel’-X axis shown in the
tance vs wavelength for TM polarization, averaged over 100nset; the horizontal axis gives values lo§in 6. Right panel: re-
realizations per wavelength. Far~0.3D=1.5d, Ny,=21, flectanceR, transmittancel, and absorptancé for 25 layers of
andNp=27 yielded transmittances accurate to five decimapluminum cylinders. Shaded bars between the panels denote bands.
places, taking around 40 s per wavelength per realization on

a 500 Mflop processor. Fak~20D=100d, Ny=9, and  compared with Fig. 4 of Sigalaat al.[20], obtained using a
Np=1 sufficed, taking arouh5 s per wavelength per real- yansfer-matrix metho@4] whose results were less accurate

ization. | N _ ‘i (+20%) and did not have the resolution to exhibit the physi-
In Fig. 2 we also compare the transmittance of the ra”'cally significant features evident here.

domized stack with that of its periodic counterpéttshed Figure 3 is similar to Fig. 2 but is for wavelengths in TE

line). The transmittance is not strpngly affected by disorder olarization. The first band gap is weak, so the effects of
except at the long wavelength sides of the two band gaps;.

causing them to narrow. Note the fine structure in the firsfjlsorder are clearest in the prominent second gap, which is

gap and the exponential behavior of the attenuation coefﬁ_§trongly narrowed, with states entering from both sides. The

cient « vs k evident in the inset to Fig. 2. Herey= inset shows two Urbach tails regions with different slopes;
—(INTY/N_h, whereT is the total energy transmitted in all TE polarization thus shows asymmetry similar to TM polar-

propagating orders ang - -) denotes ensemble averaging. ization (Fig. 2). The_per_iodic structprg has a narrow band
This shows formation of an Urbach-like tail, the extension ofareund\ =1.63d, which is almost eliminated by disorder.
the spectrum of states into the gap by disorder, as in analo- The right side of Fig. 4 shows reflectance, transmittance,
gous semiconductor systeffi9]. The asymmetry in the ef- and absorption vs wave number &t=0 for a periodic
fects of disorder on the band gaps indicates that states on tisguare stack of 25 layers of aluminum cylinders, with
low-frequency side of the gap are more affected by index=1 wum, a=0.2 um, and complex refractive index from
disorder than the high-frequency on@s Figure 2 should be standard tablef21]. The number of layers is chosen so the
stack’s long wavelength transmittance is negligible. Note the
— — — strong absorption by the array, even where the reflectance of
‘ solid aluminum is over 98%. The left side of Fig. 4 shows
0.1 \\ 1 the photonic band structure for a square array of perfectly
conducting cylinders: absorptance peaks at right correspond
to the photonic bands at left. Asvaries, the bands in Fig. 4
move, with the position of the lowest scaling as’
«In(d/2a) [17,22. Thus, asa decreases, the absorption peak
moves to longer wavelengths and widens. Hence, remark-
ably, asa— 0 the enhanced absorption shifts further into the
region where bulk aluminum strongly reflects. The curves in
the right panel of Fig. 4 correspond to a single angle of
incidence(the vertical line through") in the left panel. The
i fact that these curves are sensitive to the full bBErRd is due
107 : e to the infinite number of grating ordegsin Eq. (5), which
L5 2 4 6 8 10 A sample this whole interval.
In summary, we have developed a method of calculating
FIG. 3. As for Fig. 2, but for TE polarization. electromagnetic properties of regular or random arrays of

<T> 1 p

103 ¢




PRE 60 BRIEF REPORTS 7617

cylinders, which can provide results of unprecedented accuwill pursue further applications to dispersive and lossy pho-
racy and resolution for a wide variety of problems, usingtonic crystals, and to the study of localization in two-
workstations rather than supercomputers. Already, thiglimensional disordered systems.

method has revealed the existence of Urbach tails of states

introduced into photonic band gaps by disorder, and anoma- We thank D.R. McKenzie for helpful suggestions. The
lous absorption behavior in arrays of metal cylinders. WeAustralian Research Council supported this work.
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