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Immense delocalization from fractional kinetics
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We observe immense delocalization of the order &ffbd a kicked Harper model when a control parameter
K is taken to beK* =6.349 972. This “magic” value corresponds to special phase space topology in the
classical limit, when a hierarchical self-similar set of sticky islands emerges. The origin of the effect is of the
general nature and similar immense delocalization can be found in other sysB163-651X99)03912-4

PACS numbsgs): 05.45.Mt, 05.60.Gg

The problem of quantum delocalization in systems cha- H=K cosp+ K cosxd(t), (1)
otic in the classical limit has attracted much attention in the
field of quantum chao$1,2]. The important problems of —n - .
transport and spectral featurls-7] considered here reflect Where momentunp=hn=—ih(d/Jx) and coordinate are
the quantum nature of this phenomena. A class of delocadimensionless canonical paix,p]=ih, h is the dimension-
ization problems due to classical fractional kinetics has beeltess Planck constaf®2], K is a control parameter of chaos,
found recently as wel[8—10]. A paradigm of fractional or While 6;(t)=ZX,5(t—n) is a train of 5 kicks with a period
strange kinetic§12,13 has been related to the unusual pe-T=1. Inthe classical limit this Hamiltonian I(_eads to the_map
havior of dynamically chaotic trajectories which have fractalPn+1=Pnt K SiNX;, Xp .1 =%,— K 'sinpy., which due to its
coherent structures in phase space and time simultaneousfPecial sSymmetry properties has the same phase space topol-
Dynamics of particles resembles to some extentytigpe 09 @S the web mapp,.1 =X, Xn+1=—Pn—KSiNpPyiq
processes leading to superdiffusion, supermixing, and larg 8_]' For this s_ymmetrlcal form quantum dynamics is delo-
long lasting fluctuations. All these “superfeatures” can becallzed, and diffusion takes pla¢8-5,19 even for small
easily observed when a control parameter of the system, Sa/)glues ofK 3]. . . .
K. is specially selected with a high accurddyl,15. Some For the classical counterpart, whéhis small, chaotic

. .. _dynamics is realized inside the narrow stochastic ],
recent results show that abnormal properties of chaotic klnetézd most of the phase space is occupied by stable orbits
ics can be observed in quantized syst¢Bis10], where co- '

) i o= . With K growing, the chaotic region becomes wider and at
herent space-time structures of trajectories in the classiclyme condition ok chaos becomes global. For example

limit can stimulate delocalization. An experimental evidencewhenK:S, small stability islands are invisible and the dy-
of suph process has been presgnted as pell In MEeSO-  namics is strongly chaoti¢4]. Nevertheless, wheiK in-
scopic physics of modern materigld,7,16,17 the signifi-  creases, bifurcate reconstruction of phase space with arising
cance of the problem of delocalization cannot be overestiof so-called accelerator islands takes platé,15. It hap-
mated. For a simplified model, namely, the kicked Harpepens each time wheK>2xn, n=1,2, ..., within a small
model, that described such phenomena we show that thefgterval AK [14,15. While the presence of such islands has
exist a special “magic” value of the control parametef a specific interest, more important bifurcations appear for
=6.349 972, for which delocalization effect can b€ fitnes  special values oK within AK when hierarchical sets of
higher as for regular values . This value ofK* corre- islands-around-islands emerges. These “magic” valkés
sponds to the strongest classical superdiffusion, when trajegive rise to strongly anomalous diffusion with long flights of
tories are trapped for an arbitrary long time near the boundthe Levy type[14,15. Indeed, aK =K* =6.349 972 such a
aries of the hierarchical self-similar set of islands. bifurcation was observed. The accelerator islands corre-
The kicked Harper modéKHM) can be considered as a sponding to forthfold symmetry are shown in Figajl Cor-
simplified model for the exploration of chaotic dynamics of responding to this Poincargection chaotic trajectory with
Bloch electrons in the presence of a magnetic field and sulflights in extended phase space is shown in Fig).1A
ject to an alternating electromagnetic field. It appears natutransport for this value oK* corresponds to anomalous dif-
rally in the chaotic web dynamics corresponding to kicksfusion in momentum spacg?)~t*, with transport expo-
combined with fourfold symmetry rotatigri8]. The variety —nent u=1.27 [14], while for normal diffusionu=1. The
of interesting phenomena of classical and quantum diffusiomssential increasing of transport due to the flights is shown in
as well as localization-delocalization transitions in a wideFig. 1(c).
range of parameters have been observed in R&fs2(]. It This bifurcation in classical dynamics affects the quantum
has been shown recentl21] that KHM describes properly transport nature as well. This is described by the time depen-
cyclotron resonance in the 2D electron gas in antidot arraydent Schrdinger equation. Since the Hamiltoni&b) is pe-
[2,16] and organic metalgl7]. riodic in time, the Floquet theory can be applied. The dy-
We consider KHM in the following symmetrical form:  namics is determined by an evolution operator upon one
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FIG. 1. (a) Properties of the KHM map near the magic
=K*=6.349972--: a trajectory in the phase space fii=K*
after 2x 10P iterations. The islands corresponds to the acceleratio
mode.(b) The same as ilta) a trajectory in extended phase space
with well resolved flights after & 10° iterations.(c) Normalized
kinetic coefficient obtained fronM,=(p?(t)) for variousK near
K* after averaging over fQtrajectories for each value d¢¢ with
0.5X 10° iterations. Sharp maximum correspondsKib.
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FIG. 2. Level occupation amplitudég,| vs n for various values

of K andh=0.015683. Data ploted after 200 iterations, dad
—K=5.5; (b) —K=6.0; (c) —K=6.7; (d) —K=K*=6.349972;
(e) —K=K} =6.349 906.

periodT=1. From Eq.(1) we obtain

. K -~ K
U(T=1):exp[ —i ﬁcos{h(n+ ex)]}exp{ —i F]cosx],
()

where the quasimomentui, appears here in consequence

of the periodicity of the systenil) in x. In the following

analysisf,=0. Hence, evolution of the system is determined

by the following quantum map for wave functions:
T(x,t+T)=0W(x,t). ©)

In the framework of this map we have studied the time evo-

lution of the moments

Mam=(p*"(1))=h>"™(n*"(t)) =h*">] [f,(1)|*n°",

0

W(x,t)= > fa(t)e? ™,

n=—ow

4

wherem=1,2.4 and|f,(t)|? is probability of level occupa-
tion at timet determining the energy growth spreading over
the unperturbed spectrum. The initial occupation value is
fa(t=0)=6n1-

For iteration of the majg3) we use the standard technique
of the fast Fourier transforf23,24 with up to N=2% mo-
mentum eigenstates. The results of the numerical analysis
depicted in Figs. 2—4 show that in the narrow region of val-
ues of the parametdt nearK* the quantum dynamics ex-
hibits immense delocalization that differs essentially from
the delocalization observed in the previous studi@s5].
Prhese differences are due to the classical fractional or
strange kinetics. In the classical limit hierarchical set of is-
lands forK* leads to long flights which have “reduced”
chaotic properties since the flights correspond to the part of
trajectories that stick to the islands boundaries. Reduced
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In(t) FIG. 4. Level occupation amplitudég,| vs n for various values
of h and K=K} after 2600 iterations anéa) —K} =6.3072,h
FIG. 3. Log-log plot of the even quantum momeMs,,, m —0.4023; (b) —K*=6.3388,7=0.2052; (c) —K* =6.3436; h

=1,2,4 vs number of iteratiorisfor K=K* andh=0.015 683. =0.1547;(d) — K =6.3459;10.1241.

chaos increases delocalization in the quantum case. The levglitydes|f,,| for curves 1 and 4 at=1x10% we find that

of the chaos reduction depends on how regular is the islandge difference between them is of order of4at shows that
hierarchy. In Fig. 1a) dark strips correspond to the stickiness the delocalization for “magic” value&* has classical na-
of trajectories. The smaller are islands in their hierarchy setyyre.

the smaller the strip of sticky domaji4,15, the smaller the We conclude by a comment that observation of strong
level of randomness. That is why we need a fairly accuratejelocalization of the order of £Gor the standard maf9] is
tuning of the control parameter to observe the effect the im—of the same nature, although it was obtained for not sfall

megzsngglr?:;lgjggg'l and 4 in Fig. 2 we observe effect OfWe conjecture that a similar delocalization can be found in
e : ) any other physical system if the corresponding magic value
delocalization of order 0&%?~ 1057 of the level occupation y Pty y D g mag

, x of the control parameter is discovered. A proper adjusting of
amplitude. Curve 5 corresponds to the renormali¥§fl  {he control parameter to obtain strongly anomalous transport

=2K*sin(v/2)/h [19] and shows a small increase of the ef- can be interesting for the realization of mesoscopic devices
fect. Increasing of the transport exponegntfor anomalous  with effective controlling of conductivity.

diffusion in both classical and quantum dynamics is another We should comment that the appearance of the accelera-
manifestation of the role of sticky islands hierarchy. Thetor mode islands is a result of a bifurcation and topological
moments plot in Fig. 3 demonstrates the existence of anomaeconstruction of the phase space. Another result of this re-
lous exponentsw from Eq. (4): M,,,~t#m with different  construction is a change of cantori properties. We may ex-
values ofu in different time windows similarly to the clas- pect that simultaneously with emerging of a hierarchical set
sical one[14,15. The values ofu,, where obtained within of islands, a hierarchical set of cantori has to appear. This
time intervalt>100. The strong intermittent characterf,  leads us to the conclusion that the problem of quantum de-
as a function ofm: u,=u=1.4, u,=3.3>2u, u,=6.9 localization can be also considered from the point of view of
>4 can be a result of short time iteration of E§) with  a corresponding restructure of quantum barriers as it was
t=<200. These values of the transport expongntshow mentioned in Ref[25]. Unfortunately, we do not know too
strong superdiffusion which even exceeds the classical onenuch about the cantori bifurcation and their topological re-
We observed also that the valueswofyrow asK approaches construction.

1 HPSL *
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