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Immense delocalization from fractional kinetics
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We observe immense delocalization of the order of 109 for a kicked Harper model when a control parameter
K is taken to beK* 56.349 972. This ‘‘magic’’ value corresponds to special phase space topology in the
classical limit, when a hierarchical self-similar set of sticky islands emerges. The origin of the effect is of the
general nature and similar immense delocalization can be found in other systems.@S1063-651X~99!03912-4#

PACS number~s!: 05.45.Mt, 05.60.Gg
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The problem of quantum delocalization in systems c
otic in the classical limit has attracted much attention in
field of quantum chaos@1,2#. The important problems o
transport and spectral features@1–7# considered here reflec
the quantum nature of this phenomena. A class of delo
ization problems due to classical fractional kinetics has b
found recently as well@8–10#. A paradigm of fractional or
strange kinetics@12,13# has been related to the unusual b
havior of dynamically chaotic trajectories which have frac
coherent structures in phase space and time simultaneo
Dynamics of particles resembles to some extent Le´vy-type
processes leading to superdiffusion, supermixing, and la
long lasting fluctuations. All these ‘‘superfeatures’’ can
easily observed when a control parameter of the system,
K, is specially selected with a high accuracy@14,15#. Some
recent results show that abnormal properties of chaotic ki
ics can be observed in quantized systems@8–10#, where co-
herent space-time structures of trajectories in the class
limit can stimulate delocalization. An experimental eviden
of such process has been presented as well@11#. In meso-
scopic physics of modern materials@2,7,16,17# the signifi-
cance of the problem of delocalization cannot be overe
mated. For a simplified model, namely, the kicked Harp
model, that described such phenomena we show that t
exist a special ‘‘magic’’ value of the control parameterK*
56.349 972, for which delocalization effect can be 109 times
higher as for regular values ofK. This value ofK* corre-
sponds to the strongest classical superdiffusion, when tra
tories are trapped for an arbitrary long time near the bou
aries of the hierarchical self-similar set of islands.

The kicked Harper model~KHM ! can be considered as
simplified model for the exploration of chaotic dynamics
Bloch electrons in the presence of a magnetic field and s
ject to an alternating electromagnetic field. It appears na
rally in the chaotic web dynamics corresponding to kic
combined with fourfold symmetry rotation@18#. The variety
of interesting phenomena of classical and quantum diffus
as well as localization-delocalization transitions in a wi
range of parameters have been observed in Refs.@1–20#. It
has been shown recently@21# that KHM describes properly
cyclotron resonance in the 2D electron gas in antidot arr
@2,16# and organic metals@17#.

We consider KHM in the following symmetrical form:
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H5K cosp1K cosxd1~ t !, ~1!

where momentump5h̃n̂52 i h̃(]/]x) and coordinatex are
dimensionless canonical pair@x,p#5 i h̃, h̃ is the dimension-
less Planck constant@22#, K is a control parameter of chaos
while d1(t)5(nd(t2n) is a train ofd kicks with a period
T51. In the classical limit this Hamiltonian leads to the m
pn115pn1K sinxn , xn115xn2K sinpn11, which due to its
special symmetry properties has the same phase space t
ogy as the web map:pn115xn , xn1152pn2K sinpn11
@18#. For this symmetrical form quantum dynamics is de
calized, and diffusion takes place@3–5,19# even for small
values ofK @3#.

For the classical counterpart, whenK is small, chaotic
dynamics is realized inside the narrow stochastic web@18#,
and most of the phase space is occupied by stable or
With K growing, the chaotic region becomes wider and
some condition onK chaos becomes global. For examp
whenK55, small stability islands are invisible and the d
namics is strongly chaotic@4#. Nevertheless, whenK in-
creases, bifurcate reconstruction of phase space with ari
of so-called accelerator islands takes place@14,15#. It hap-
pens each time whenK.2pn, n51,2, . . . , within a small
interval DK @14,15#. While the presence of such islands h
a specific interest, more important bifurcations appear
special values ofK within DK when hierarchical sets o
islands-around-islands emerges. These ‘‘magic’’ valuesK*
give rise to strongly anomalous diffusion with long flights
the Lévy type @14,15#. Indeed, atK5K* 56.349 972 such a
bifurcation was observed. The accelerator islands co
sponding to forthfold symmetry are shown in Fig. 1~a!. Cor-
responding to this Poincare´ section chaotic trajectory with
flights in extended phase space is shown in Fig. 1~b!. A
transport for this value ofK* corresponds to anomalous di
fusion in momentum spacêp2&;tm, with transport expo-
nent m51.27 @14#, while for normal diffusionm51. The
essential increasing of transport due to the flights is show
Fig. 1~c!.

This bifurcation in classical dynamics affects the quant
transport nature as well. This is described by the time dep
dent Schro¨dinger equation. Since the Hamiltonian~1! is pe-
riodic in time, the Floquet theory can be applied. The d
namics is determined by an evolution operator upon o
7580 © 1999 The American Physical Society
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FIG. 1. ~a! Properties of the KHM map near the magicK
5K* 56.349 972•••: a trajectory in the phase space forK5K*
after 23105 iterations. The islands corresponds to the accelera
mode.~b! The same as in~a! a trajectory in extended phase spa
with well resolved flights after 53105 iterations.~c! Normalized
kinetic coefficient obtained fromM25^p2(t)& for variousK near
K* after averaging over 104 trajectories for each value ofK with
0.53105 iterations. Sharp maximum corresponds toK* .
periodT51. From Eq.~1! we obtain

Û~T51!5expH 2 i
K

h̃
cos@ h̃~ n̂1ux!#J expH 2 i

K

h̃
cosxJ ,

~2!

where the quasimomentumux appears here in consequen
of the periodicity of the system~1! in x. In the following
analysisux50. Hence, evolution of the system is determin
by the following quantum map for wave functions:

C~x,t1T!5ÛC~x,t !. ~3!

In the framework of this map we have studied the time e
lution of the moments

M2m5^p2m~ t !&5h̃2m^n̂2m~ t !&5h̃2m(
n

u f n~ t !u2n2m,

C~x,t !5 (
n52`

`

f n~ t !e2p inx, ~4!

wherem51,2,4 andu f n(t)u2 is probability of level occupa-
tion at timet determining the energy growth spreading ov
the unperturbed spectrum. The initial occupation value
f n(t50)5dn,1 .

For iteration of the map~3! we use the standard techniqu
of the fast Fourier transform@23,24# with up to N5218 mo-
mentum eigenstates. The results of the numerical anal
depicted in Figs. 2–4 show that in the narrow region of v
ues of the parameterK nearK* the quantum dynamics ex
hibits immense delocalization that differs essentially fro
the delocalization observed in the previous studies@3–5#.
These differences are due to the classical fractional
strange kinetics. In the classical limit hierarchical set of
lands for K* leads to long flights which have ‘‘reduced
chaotic properties since the flights correspond to the par
trajectories that stick to the islands boundaries. Redu

n

FIG. 2. Level occupation amplitudesu f nu vs n for various values

of K and h̃50.015 683. Data ploted after 200 iterations, and~a!
2K55.5; ~b! 2K56.0; ~c! 2K56.7; ~d! 2K5K* 56.349 972;
~e! 2K5Kh* 56.349 906.
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chaos increases delocalization in the quantum case. The
of the chaos reduction depends on how regular is the isla
hierarchy. In Fig. 1~a! dark strips correspond to the stickine
of trajectories. The smaller are islands in their hierarchy
the smaller the strip of sticky domain@14,15#, the smaller the
level of randomness. That is why we need a fairly accur
tuning of the control parameter to observe the effect the
mense delocalization.

Comparing curves 1 and 4 in Fig. 2 we observe effect
delocalization of order ofe22;109.57 of the level occupation
amplitude. Curve 5 corresponds to the renormalizedKh*

52K* sin(h̃/2)/h̃ @19# and shows a small increase of the e
fect. Increasing of the transport exponentm for anomalous
diffusion in both classical and quantum dynamics is anot
manifestation of the role of sticky islands hierarchy. T
moments plot in Fig. 3 demonstrates the existence of ano
lous exponentsm from Eq. ~4!: M2m;tmm with different
values ofm in different time windows similarly to the clas
sical one@14,15#. The values ofmm where obtained within
time intervalt.100. The strong intermittent character ofmm
as a function ofm: m15m51.4, m253.3.2m, m456.9
.4m can be a result of short time iteration of Eq.~3! with
t<200. These values of the transport exponentm show
strong superdiffusion which even exceeds the classical
We observed also that the values ofm grow asK approaches
to the ‘‘magic’’ valueK* .

Finally, in Fig. 4 we display a level of delocalization fo
K5K* for various values of the Planck constanth̃. The
smaller ish̃, i.e., the more the system is classical, the str
ger the delocalization. Again, comparing the occupation a

FIG. 3. Log-log plot of the even quantum momentsM2m , m

51,2,4 vs number of iterationst for K5K* and h̃50.015 683.
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plitudes u f nu for curves 1 and 4 atn513104, we find that
the difference between them is of order of 1010. It shows that
the delocalization for ‘‘magic’’ valuesK* has classical na-
ture.

We conclude by a comment that observation of stro
delocalization of the order of 105 for the standard map@9# is
of the same nature, although it was obtained for not smalh̃.
We conjecture that a similar delocalization can be found
any other physical system if the corresponding magic va
of the control parameter is discovered. A proper adjusting
the control parameter to obtain strongly anomalous trans
can be interesting for the realization of mesoscopic devi
with effective controlling of conductivity.

We should comment that the appearance of the acce
tor mode islands is a result of a bifurcation and topologi
reconstruction of the phase space. Another result of this
construction is a change of cantori properties. We may
pect that simultaneously with emerging of a hierarchical
of islands, a hierarchical set of cantori has to appear. T
leads us to the conclusion that the problem of quantum
localization can be also considered from the point of view
a corresponding restructure of quantum barriers as it
mentioned in Ref.@25#. Unfortunately, we do not know too
much about the cantori bifurcation and their topological
construction.

We thank M. Edelman for help in preparing Fig. 1. Th
research was supported by the U.S. Departments of N
Grants and by U.S. Department of Energy. A.I. was a
supported by the Israel Science Foundation and by the N
ersachsen Ministry of Science, Germany.

FIG. 4. Level occupation amplitudesu f nu vs n for various values

of h̃ and K5Kh* after 2600 iterations and~a! 2Kh* 56.3072, h̃

50.4023; ~b! 2Kh* 56.3388, h̃50.2052; ~c! 2Kh* 56.3436; h̃

50.1547; ~d! 2Kh* 56.3459; h̃0.1241.
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