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Matrix formulation for the propagation of light beams with orbital and spin angular momenta
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Jones matrices describe the polarization, or spin angular momentum, of a light beam as it passes through an
optical system. We devise an equivalent of the Jones matrix formulation for light possessing orbital angular
momentum. The matrices are then developed to account for light that has both spin and orbital angular
momentum.@S1063-651X~99!07412-7#

PACS number~s!: 42.25.Bs
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The behavior of polarized light as it passes through b
fringent optical components is well described by an appro
devised by Jones@1#. The beam is represented in terms o
column vector, the Jones vector, the elements of which
the complex amplitudes of the orthogonally polarized co
ponents. Optical components such as linear and circular
larizers, phase retarders, etc., are represented by 232 matri-
ces called Jones matrices: matrix multiplication accounts
the passage of the light through a sequence of optical
ments. An alternative formulation derived by Mueller@2#,
based on the Stokes parameters, is not able to deal fully
the superposition of coherent beams, but has the advan
of being applicable to partially as well as fully polarize
light. A full account of both the Jones and Mueller matric
and their application, has been given by Gerrard and Bu
@3#.

Polarized light is associated with spin angular momentu
It is now well established@4–10# that light beams may pos
sess well defined orbital angular momentum. Beams with
azimuthal phase dependence of exp(ilf), such as Laguerre
Gaussian beams, have an orbital angular momentum ol\
per photon@4#. Such modes may be readily created in t
laboratory by passing the Hermite Gaussian modes usu
emitted by lasers, through a mode converter@5# which con-
sists of two canonically disposed cylindrical lenses orien
at 45° to the axes of the mode. The indices~n, m! character-
izing the Hermite Gaussian modes give the indices~l, p! of
the Laguerre Gaussian modes, wherel 5un2mu and p
5min(m,n) @4#.

Hermite Gaussian and Laguerre Gaussian modes
form complete, orthogonal, basis sets from which any a
trary field distribution may be described. The order of
mode is defined@5# by N5n1m52p1u l u and does not
change as the mode is converted or rotated. There is an e
analogy between a waveplate for polarized light and a m
converter; see Fig. 1. Just as a phase shift is introduced
tween orthogonal polarization components by birefring
waveplates, so mode converters based on cylindrical le
introduce a phase shift between orthogonal modes of
same order. This equivalence allows polarization and m
structure to be treated in similar ways and leads to a form
lation, analogous to the Jones matrix approach, for mode
orderN.
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The Poincare´ sphere is an equivalent representation to
Jones matrix formulation for polarized light. Any state
polarization may be represented by a point on the sph
waveplates and other polarizing elements then move the
larization state to another position on the surface of
sphere. It has been shown@11#, that there exists an orbita
angular momentum equivalent to the Poincare´ sphere for
modes of orderN51. A Poincare´ sphere approach to arb

FIG. 1. Quarter and half wave plates andp/2 or p mode con-
verters play equivalent roles for spin and orbital angular mom
tum.
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TABLE I. @(N11)3(N11)# matrices for modes of orderN.

p/2 converter

@C~p/2!#53
1 0 0 0 0 0 ¯ ¯

0 2 i 0 0 0 0 ¯ ¯

0 0 21 0 0 0 ¯ ¯

0 0 0 i 0 0 ¯ ¯

0 0 0 0 1 0 ¯ ¯

0 0 0 0 0 2 i ¯ ¯

¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

4
p converter

@C~p!#53
1 0 0 0 0 0 ¯ ¯

0 21 0 0 0 0 ¯ ¯

0 0 1 0 0 0 ¯ ¯

0 0 0 21 0 0 ¯ ¯

0 0 0 0 1 0 ¯ ¯

0 0 0 0 0 21 ¯ ¯

¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

4
Mode filter ~e.g.HGN22,2!

@F~N22,2!#53
0 0 0 0 0 0 ¯ ¯

0 0 0 0 0 0 ¯ ¯

0 0 1 0 0 0 ¯ ¯

0 0 0 0 0 0 ¯ ¯

0 0 0 0 0 0 ¯ ¯

0 0 0 0 0 0 ¯ ¯

¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

4
Mode rotation matrix forN51

@rot~f!#5F cos~f! sin~f!

2sin~f! cos~f!
G

Mode rotation matrix forN52

@rot~f!#5F cos2 f
sin 2f

&
sin2 f

2sin 2f

&
cos 2f

sin 2f

&

sin2 f
2sin 2f

&
cos2 f
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trary order ofN is, however, not easy to devise as high
order geometries are required. This is not a difficulty fo
matrix formulation.

In this paper we show that just as there is a two elem
Jones column vector and a set of 232 matrices for polarized
light, so there is an (N11)-element column vector and a s
r

nt

of @(N11)3(N11)# matrices to describe the passage
modes of orderN, which may possess orbital angular m
mentum, through a series of optical components such
mode converters and beam rotators. For these matrice
apply, N must be conserved and the modes must have
same Rayleigh range and beam waist. Most imaging syst
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TABLE I ~continued!.

Mode rotation matrix forN53

@rot~f!#53
cos3 f )cos2 f sinf ) cosf sin2 f sin3 f

2) cos2 f sinf
cosf13 cos 3f

4

2sinf13 sin 3f

4
) cosf sin2 f

) cosf sin2 f
sinf23 sin 3f

4

cosf13 cos 3f

4
) cos2 f sinf

2sin3 f ) cosf sin2 f 2) cos2 f sinf cos3 f

4
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satisfy this requirement, but those with optical compone
which may result in energy exchange between modes suc
optical fibres, holograms apertures and nonlinear crystals@9#,
will not.

Any mode of orderN can be expanded as the sum
(N11) Hermite Gaussian, or Laguerre Gaussian, mode
the same order@4,5#. It follows that such a mode may b
represented by a column vector with (N11) elements

F aN,0

aN21,0

¯

¯

a1,N21

a0,N

G ,

wherean,m is the complex amplitude coefficient of the~n, m!
Hermite Gaussian mode. For example, a Hermite Gaus
~2, 0! mode oriented at 45° to the laboratory frame is rep
sented by a three element column vector containing the c
plex amplitude weightings of the~2,0!, ~1,1!, ~0,2! Hermite
Gaussian modes, respectively. This rotated Hermite Ga
ian mode is transformed to a Laguerre Gaussian, by pas
the beam through ap/2 converter, which introduces phas
shifts between the constituent modes of (m2n)p/4.

The matrices were developed by consideration of the
of each optical component. The way in which ap/2 con-
verter transforms a (n,m) Hermite Gaussian mode to a~p,l!
Laguerre Gaussian mode is well understood@5#. This con-
verts a mode with no orbital angular momentum into o
possessing it. The relative phases of the initial and final co
ponent modes are known and the nature of the required
trix follows easily enough. Likewise the matrix for ap con-
verter, which converts a mode with orbital angul
momentuml to one with 2 l , follows readily. It is rather
more difficult to determine the form of the matrix for th
rotation of a mode. Each element of the matrix can be
duced by considering the form of the decomposition of e
of the individual modes as it is rotated through an anglef.
We may note that components of the higher orders of
rotation matrix follow from the transformation of angula
momentum eigenfunctions under finite rotation, given by
pressions~4.1.15! or ~4.1.23!, in the book by Edmonds@12#
on angular momentum.
ts
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The optical component analogous to a polarizer is a m
filter which selects one constituent mode from those in
column vector. Such filters have been developed and
ployed to preferentially transmit specific modes@13#. The
matrices forp/2 converters,p converters, mode filters an
mode rotations are given in Table I.

To show how the matrices may be used, consider ag
the ~2,0! Hermite Gaussian mode. The column vector rep
senting such an input mode is that for mode orderN5n
1m52. The vector, therefore, has three components.
first term in the column vector indicates that the input mo
is indeed the~2,0! mode and the subsequent zeros show t
there is no admixture of~1,1! or ~0,2! modes. When the
mode is oriented at 45° and passed through ap/2 converter,
the column vector describing the output beam is given b

@C~p/2!#3@rot~45°!#3@HG2,0#

F 1 0 0

0 2 i 0

0 0 21
G33

1

2

1

&

1

2

21

&
0

1

&

1

2

21

&

1

2

4 3F 1
0
0
G53

1

2

i

&

21

2

4 .

From Beijersbergenet al. @5#, we recognize the Hermite
Gaussian coefficients of this output beam as a Lagu
Gaussian mode with indicesl 52 andp50.

The coefficients of the column vectors in the Jones ma
formulation correspond, respectively, to vertically and ho
zontally polarized light. It would be possible to formulate a
equivalent representation in which the coefficients were
right and left handed circular polarizations. In the same w
our beam description in terms of Hermite Gaussian mo
could be replaced with a description in terms of Lague
Gaussian modes. Conceptually there is no difference
tween the two approaches, except that in our formulation
matrices for optical components are simple and the rota
matrix relatively complicated while for a column vecto
based on Laguerre Gaussian modes, the inverse would b
case.
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TABLE II. @2(N11)32(N11)# matrices for polarized modes of orderN.

p/2 converter

@C~p/2!#5

l

1 0 0 0 0 0 0 0 0 0 ¯ ¯

0 1 0 0 0 0 0 0 0 0 ¯ ¯

0 0 2 i 0 0 0 0 0 0 0 ¯ ¯

0 0 0 2 i 0 0 0 0 0 0 ¯ ¯

0 0 0 0 21 0 0 0 0 0 ¯ ¯

0 0 0 0 0 21 0 0 0 0 ¯ ¯

0 0 0 0 0 0 i 0 0 0 ¯ ¯

0 0 0 0 0 0 0 i 0 0 ¯ ¯

0 0 0 0 0 0 0 0 1 0 ¯ ¯

0 0 0 0 0 0 0 0 0 1 ¯ ¯

¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

m

p converter

@C~p!#5

l

1 0 0 0 0 0 0 0 0 0 ¯ ¯

0 1 0 0 0 0 0 0 0 0 ¯ ¯

0 0 21 0 0 0 0 0 0 0 ¯ ¯

0 0 0 21 0 0 0 0 0 0 ¯ ¯

0 0 0 0 1 0 0 0 0 0 ¯ ¯

0 0 0 0 0 1 0 0 0 0 ¯ ¯

0 0 0 0 0 0 21 0 0 0 ¯ ¯

0 0 0 0 0 0 0 21 0 0 ¯ ¯

0 0 0 0 0 0 0 0 1 0 ¯ ¯

0 0 0 0 0 0 0 0 0 1 ¯ ¯

¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

m

l/4 waveplate

@W~l/4!#5

l

1 0 0 0 0 0 0 0 0 0 ¯ ¯

0 i 0 0 0 0 0 0 0 0 ¯ ¯

0 0 1 0 0 0 0 0 0 0 ¯ ¯

0 0 0 i 0 0 0 0 0 0 ¯ ¯

0 0 0 0 1 0 0 0 0 0 ¯ ¯

0 0 0 0 0 i 0 0 0 0 ¯ ¯

0 0 0 0 0 0 1 0 0 0 ¯ ¯

0 0 0 0 0 0 0 i 0 0 ¯ ¯

0 0 0 0 0 0 0 0 1 0 ¯ ¯

0 0 0 0 0 0 0 0 0 i ¯ ¯

¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯
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Light with a particular mode structure, and so a defin
orbital angular momentum may also be polarized and ha
defined spin angular momentum. In many instances the
attributes of the beam will remain totally uncoupled and
resultant beam may be determined by two independent
d
a
o

e
l-

culations: one with the Jones matrices and the other with
matrices developed for orbital angular momentum. Howev
this is not always the case; for example in the calculation
the eigenmodes of beams within laser resonators ‘‘out
plane’’ ring geometries and birefringent optical compone
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TABLE II ~continued!.

l/2 waveplate

@W~l/2!#5

l

1 0 0 0 0 0 0 0 0 0 ¯ ¯

0 21 0 0 0 0 0 0 0 0 ¯ ¯

0 0 1 0 0 0 0 0 0 0 ¯ ¯

0 0 0 21 0 0 0 0 0 0 ¯ ¯

0 0 0 0 1 0 0 0 0 0 ¯ ¯

0 0 0 0 0 21 0 0 0 0 ¯ ¯

0 0 0 0 0 0 1 0 0 0 ¯ ¯

0 0 0 0 0 0 0 21 0 0 ¯ ¯

0 0 0 0 0 0 0 0 1 0 ¯ ¯

0 0 0 0 0 0 0 0 0 21 ¯ ¯

¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

m

Mode filter ~e.g.,HGN22,2!

@F~N22,2!#5

l

0 0 0 0 0 0 0 0 0 0 ¯ ¯

0 0 0 0 0 0 0 0 0 0 ¯ ¯

0 0 0 0 0 0 0 0 0 0 ¯ ¯

0 0 0 0 0 0 0 0 0 0 ¯ ¯

0 0 0 0 1 0 0 0 0 0 ¯ ¯

0 0 0 0 0 1 0 0 0 0 ¯ ¯

0 0 0 0 0 0 0 0 0 0 ¯ ¯

0 0 0 0 0 0 0 0 0 0 ¯ ¯

0 0 0 0 0 0 0 0 0 0 ¯ ¯

0 0 0 0 0 0 0 0 0 0 ¯ ¯

¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

m

Polarizer; for vertical polarization

@P~l !#5

l

0 0 0 0 0 0 0 0 0 0 ¯ ¯

0 1 0 0 0 0 0 0 0 0 ¯ ¯

0 0 0 0 0 0 0 0 0 0 ¯ ¯

0 0 0 1 0 0 0 0 0 0 ¯ ¯

0 0 0 0 0 0 0 0 0 0 ¯ ¯

0 0 0 0 0 1 0 0 0 0 ¯ ¯

0 0 0 0 0 0 0 0 0 0 ¯ ¯

0 0 0 0 0 0 0 1 0 0 ¯ ¯

0 0 0 0 0 0 0 0 0 0 ¯ ¯

0 0 0 0 0 0 0 0 0 1 ¯ ¯

¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

m
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give rise to rotations of the mode profile and state of po
ization, respectively@14#. The corresponding eigenvalues r
late to the round trip loss and it is unclear how they could
determined from independent calculation of the orbital a
spin eigenmodes. Another example, which we analyze
-

e
d
e-

low, is the recently studied rotational frequency shift@10#
where the orbital and spin angular momentum interact
such a way that the total angular momentum is the impor
parameter, not the individual contributions.

More generally, the study of the orbital angular mome



7502 PRE 60L. ALLEN, J. COURTIAL, AND M. J. PADGETT
TABLE II ~continued!.

Mode rotation matrix forN51

@rotmode~f!#5F cos~f! 0 sin~f! 0

0 cos~f! 0 sin~f!

2sin~f! 0 cos~f! 0

0 2sin~f! 0 cos~f!

G
Mode rotation matrix forN52

@rotmode~f!#5

l

cos2 f 0
sin 2f

&
0 sin2 f 0

0 cos2 f 0
sin 2f

&
0 sin2 f

2sin 2f

&
0 cos 2f 0

sin 2f

&
0

0
2sin 2f

&
0 cos 2f 0

sin 2f

&

sin2 f 0
2sin 2f

&
0 cos2 f 0

0 sin2 f 0
2sin 2f

&
0 cos2 f

m

Polarization rotation matrix forN51

@rotmode~f!#5F cos~f! sin~f! 0 0

2sin~f! cos~f! 0 0

0 0 cos~f! sin~f!

0 0 2sin~f! cos~f!

G
Polarization rotation matrix forN52

@rotmode~f!#53
cosf sinf 0 0 0 0

2sinf cosf 0 0 0 0

0 0 cosf sinf 0 0

0 0 2sinf cosf 0 0

0 0 0 0 cosf sinf

0 0 0 0 2sinf cosf

4
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tum of light beams is a rapidly expanding field and it is n
yet clear where it may lead. It is possible that there will
other applications where the interaction of polarization a
orbital angular momentum is best examined within a sin
formalism. It is therefore of considerable interest to exte
the matrices describing the mode composition to include
multaneously the polarization behavior previously describ
by Jones matrices. Such matrices would then be able
model the propagation of both spin and orbital angular m
mentum, through an optical system comprising both pola
ing and mode transforming components.

Any combination of polarized modes of orderN can be
expressed as a 2(N11) element column vector containin
the complex weightings of orthogonally polarized Herm
Gaussian modes of the same order, as with
t

d
e
d
i-
d
to
-
-

FIG. 2. Experimental configuration for the observation of t
rotational frequency shift.~Arrows and shading on the mode distr
butions indicate the polarization and the sense of the azimu
phase, respectively.!
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3
aN,0~↔ !

aN,0~l !

aN21,0~↔ !

aN21,0~l !

¯

¯

¯

¯

a1,N21~↔ !

a1,N21~l !

a0,N~↔ !

a0,N~l !

4 ,

where the arrows in brackets denote the orientation of
polarization. The intensity is simply given by the square
the modulus of the vector representing the beam.

The @2(N11)32(N11)# matrices for the mode con
verters are based on those obtained previously, but each
must be repeated along the diagonal so that both pola
tions are rephased. The@2(N11)32(N11)# matrices for
waveplates are based on the corresponding Jones mat
but the whole of each matrix must be repeated along
diagonal to act on each mode independently.

The rotation matrices are more complicated. The mo
may be rotated with an image rotator and the polarizat
independently rotated by the use of a waveplate. The m
rotation matrix includes the same terms as ourN dependent
matrix given in Table I, but they must be diagonally repea
to rotate modes of both polarizations and interspaced w
zeros to prevent their mixing. Similarly, the matrix for th
rotation of the polarization is identical to that used within t
Jones matrix formulation, but is diagonally repeated to rot
the polarization state of each of the individual Herm
Gaussian modes. The matrices for mode converters, w
plates, mode filters, polarizers and rotations are given
P
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Table II.
To confirm the effectiveness of the matrix formulatio

we modelled our rotational frequency shift experiment@10#
for a circularly polarized,s561, Laguerre Gaussian mode
This enables us to find the frequency shift which results fr
the rotation of a beam containing both spin and orbital
gular momentum. In the experiment, beam rotation was
troduced by simultaneously rotating ap converter and half-
wave plate; see Fig. 2. The matrix description of the out
beam becomes

@rotpot~f!#3@rotmode~f!#3@W~l/2!#3@C~p!#

3@rotmode~2f!#3@rotpot~2f!#3@LGl ,p~s561!#.

A change in the handedness of the circularly polarized lig
such that the spin angular momentum component is ei
additive or subtractive from the orbital angular momentu
gives a total angular momentum of the beam of (l 61)\ per
photon. The frequency shift may be correctly deduced
comparison with its nonrotated equivalent to be (l 61)V,
whereV is the angular frequency of the beam. This offe
powerful evidence of the utility of the matrices.

We have shown that there is a set of matrices equiva
to the Jones matrices which can express the behavior of
possessing orbital angular momentum and have develo
them to account simultaneously for polarization. These m
trices can be used in any optical system which conser
mode order. The equivalent of the Mueller 434 matrices,
which depend upon the four Stokes parameters, for orb
angular momentum is currently the basis of further inve
gation.

It is a pleasure to acknowledge the contribution of Prof
sor S. M. Barnett who drew to our attention to the rotati
matrix in Ref.@12#.
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