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Matrix formulation for the propagation of light beams with orbital and spin angular momenta
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Jones matrices describe the polarization, or spin angular momentum, of a light beam as it passes through an
optical system. We devise an equivalent of the Jones matrix formulation for light possessing orbital angular
momentum. The matrices are then developed to account for light that has both spin and orbital angular
momentum|S1063-651X99)07412-7

PACS numbd(s): 42.25.Bs

The behavior of polarized light as it passes through bire- The Poincaresphere is an equivalent representation to the
fringent optical components is well described by an approaciones matrix formulation for polarized light. Any state of
devised by Jonefl]. The beam is represented in terms of apolarization may be represented by a point on the sphere;
column vector, the Jones vector, the elements of which ar@aveplates and other polarizing elements then move the po-
the complex amplitudes of the orthogonally polarized com{arization state to another position on the surface of the
ponents. Optical components such as linear and circular p&phere. It has been shoihl], that there exists an orbital
larizers, phase retarders, etc., are representedX® datri- angular momentum equivalent to the Poincamhere for

ces called Jones matrices: matrix multiplication accounts fop,gdes of ordeN=1. A Poincaresphere approach to arbi-
the passage of the light through a sequence of optical ele-

ments. An alternative formulation derived by Muellgt],
based on the Stokes parameters, is not able to deal fully with
the superposition of coherent beams, but has the advantage
of being applicable to partially as well as fully polarized
light. A full account of both the Jones and Mueller matrices
and their application, has been given by Gerrard and Burch

Polarized light is associated with spin angular momentum.

linear ¥ circular
polarization g polarization
[3]

It is now well establishef4—10] that light beams may pos-
sess well defined orbital angular momentum. Beams with an
azimuthal phase dependence of éxp), such as Laguerre
Gaussian beams, have an orbital angular momentui& of
per photon[4]. Such modes may be readily created in the
laboratory by passing the Hermite Gaussian modes usually
emitted by lasers, through a mode conveftrwhich con-
sists of two canonically disposed cylindrical lenses oriented
at 45° to the axes of the mode. The indi¢esm) character-
izing the Hermite Gaussian modes give the indidep) of

the Laguerre Gaussian modes, whdre|[n—m| and p
=min(m,n) [4].

Hermite Gaussian and Laguerre Gaussian modes both
form complete, orthogonal, basis sets from which any arbi-
trary field distribution may be described. The order of a
mode is defined5] by N=n+m=2p+|l| and does not
change as the mode is converted or rotated. There is an exact
analogy between a waveplate for polarized light and a mode
converter; see Fig. 1. Just as a phase shift is introduced be-
tween orthogonal polarization components by birefringent
waveplates, so mode converters based on cylindrical lenses
introduce a phase shift between orthogonal modes of the
same order. This equivalence allows polarization and mode
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structure to be treated in similar ways and leads to a formu- FIG. 1. Quarter and half wave plates and® or 7~ mode con-
lation, analogous to the Jones matrix approach, for modes akrters play equivalent roles for spin and orbital angular momen-

orderN.
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TABLE I. [(N+1)X(N+1)] matrices for modes of ordé\.

/2 converter

r1 0 0 0 o0 '
O -i 0 0 0 o0
0O 0 -1 0 0 0
O 0 0 i 0 o0
[C2]=1g 6 o o 1 o
0O 0 0 0 0 -
7r converter
"1 0 o0 0 o0 "
0 -1 0 0o o0
0 0 1 0 o0
0 0 0 -1 0 O
[CmI=l g o o 1 0
o 0 0 0 0 -1

Mode filter (e.g.HGy_2)

o 0O O O 0 o 7
0O 0O O O 0 o
0O 0O 1 0 0 O
0O 0O O O 0 o
[FN=221=1 5 6 0 0o 0o o
0O 0O O O0O o0 o
Mode rotation matrix foN=1
[rot( )] cog¢) sin(¢)
ro = .
—sin(¢) cog¢)
Mode rotation matrix folN=2
B sin 2¢ ) 7
cos ¢ —5 sir? ¢
—sin 2¢ sin 2¢
[rot(¢)]=| —5— €O —>—
. —sin 2¢
i sir? ¢ 5 cog ¢_

trary order ofN is, however, not easy to devise as higherof [(N+1)X(N+1)] matrices to describe the passage of
order geometries are required. This is not a difficulty for amodes of ordeiN, which may possess orbital angular mo-
matrix formulation. mentum, through a series of optical components such as
In this paper we show that just as there is a two elemeninode converters and beam rotators. For these matrices to
Jones column vector and a set 02 matrices for polarized apply, N must be conserved and the modes must have the
light, so there is anN + 1)-element column vector and a set same Rayleigh range and beam waist. Most imaging systems
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TABLE | (continued.

Mode rotation matrix folN=3

cos ¢ V3cog ¢psing  V3cosesirt ¢ sin® ¢
Cc0S¢p+3cos3p —sing+3sin3p

—v3cod ¢sing 7 2 V3 cosgsir? ¢
[rot(¢)]= G
V3 cosgsir? ¢ siné jsm&b COS¢+3 cos % V3cog ¢sing

—sir ¢ V3cosgsit ¢ —v3cod ¢sing cos ¢

satisfy this requirement, but those with optical components The optical component analogous to a polarizer is a mode
which may result in energy exchange between modes such fiter which selects one constituent mode from those in the
optical fibres, holograms apertures and nonlinear cryf@dls column vector. Such filters have been developed and em-
will not. ployed to preferentially transmit specific modgk3]. The
Any mode of orderN can be expanded as the sum of matrices for@/2 convertersgr converters, mode filters and
(N+1) Hermite Gaussian, or Laguerre Gaussian, modes ahode rotations are given in Table I.
the same ordef4,5]. It follows that such a mode may be  To show how the matrices may be used, consider again
represented by a column vector witN{ 1) elements the (2,0) Hermite Gaussian mode. The column vector repre-
senting such an input mode is that for mode orblern
+m=2. The vector, therefore, has three components. The
- - first term in the column vector indicates that the input mode

aaN‘O is indeed thg2,0) mode and the subsequent zeros show that
N-10 there is no admixture ofl1,1) or (0,2 modes. When the
R mode is oriented at 45° and passed througtfZconverter,
the column vector describing the output beam is given by
AIN-1
L Qon J

[C(m/2)]X[rot(45°) ] X[HG; o]

wherea,,  is the complex amplitude coefficient of tke, m
Hermite Gaussian mode. For example, a Hermite Gaussian 1
(2, 0) mode oriented at 45° to the laboratory frame is repre- >
sented by a three element column vector containing the com-
plex amplitude weightings of the2,0), (1,2), (0,2) Hermite
Gaussian modes, respectively. This rotated Hermite Gauss{ 0 —i 0 |x
ian mode is transformed to a Laguerre Gaussian, by passing
the beam through a/2 converter, which introduces phase
shifts between the constituent modes of n) 7/4.

The matrices were developed by consideration of the role
of each optical component. The way in whichm#2 con-
verter transforms an,m) Hermite Gaussian mode to(p,l)
Laguerre Gaussian mode is well underst¢df This con- From Beijersbergeret al. [5], we recognize the Hermite
verts a mode with no orbital angular momentum into oneGaussian coefficients of this output beam as a Laguerre
possessing it. The relative phases of the initial and final com&aussian mode with indicds=2 andp=0.
ponent modes are known and the nature of the required ma- The coefficients of the column vectors in the Jones matrix
trix follows easily enough. Likewise the matrix forracon-  formulation correspond, respectively, to vertically and hori-
verter, which converts a mode with orbital angularzontally polarized light. It would be possible to formulate an
momentuml to one with —1, follows readily. It is rather equivalent representation in which the coefficients were for
more difficult to determine the form of the matrix for the right and left handed circular polarizations. In the same way,
rotation of a mode. Each element of the matrix can be deeur beam description in terms of Hermite Gaussian modes
duced by considering the form of the decomposition of eacltould be replaced with a description in terms of Laguerre
of the individual modes as it is rotated through an angle Gaussian modes. Conceptually there is no difference be-
We may note that components of the higher orders of théween the two approaches, except that in our formulation the
rotation matrix follow from the transformation of angular matrices for optical components are simple and the rotation
momentum eigenfunctions under finite rotation, given by ex-matrix relatively complicated while for a column vector
pressiong4.1.15 or (4.1.23, in the book by Edmondgl2] based on Laguerre Gaussian modes, the inverse would be the
on angular momentum. case.
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TABLE II. [2(N+1)X2(N+1)] matrices for polarized modes of ordsr

/2 converter

1 o0 0 0 0 0 0 0 - -
0 1 o0 0O 0 0 0 0 0
O 0 -i 0 0 0 0 0 0 O
0O 0 0 -i 0 0 0 0 0 O
0O 0 0 0 -1 0 0 0 0 O
0O 0 0 0 0 -1 0 0 0 O
2= 6 0 0o 0o o i 0o o0 o
O 0 0 0 0 0 0 i 0 O
O 0 0 0 0 O 1 0
0O 0 0 0 0 O
7r converter
1 0 0 0 0 0 0 0 0 0 - -]
0 1 o0 0O 0 0 0 0 O
0o 0 -1 O 0 0 0 0 O
o 0 0 -1 0 0 0 0 0 O
o 0 0 0 1 0 0 0 0 O
o 0 0 0 0 1 0 0 0 O
[CmI=lg o 0 0 0o 0 -1 o 0
o 0 0 0 0 0 0 - 0
o 0 0 0 0 0 0 o0 1
O 0 0 0 0 0 0 O
N4 waveplate
"1 0 o 0 0 0 0 0 0 - -]
o i 0 0 0 0 0 0 0 O
0O 0 1 0 0 0 0 0 0 O
O 0 0 i 0 0 0 0 0 O
O 0 0 0 1 0 0 0 0 O
0O 0 0 0 0 i 0 0 0 0
MWNMHT=1 s 6 0 0 0 0o 1 0 0 o
0O 0 0 0 0 0 0 i 0 0
0O 0 0 0 0 0 0 O 0
0O 0 0 0 0 0 O i
_] ‘I

Light with a particular mode structure, and so a definedculations: one with the Jones matrices and the other with the
orbital angular momentum may also be polarized and have matrices developed for orbital angular momentum. However,
defined spin angular momentum. In many instances the twithis is not always the case; for example in the calculation of
attributes of the beam will remain totally uncoupled and thethe eigenmodes of beams within laser resonators “out-of-
resultant beam may be determined by two independent caplane” ring geometries and birefringent optical components
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TABLE Il (continued.

N2 waveplate

1 o o 0o 0o 0 O O 0 O 1
0o -1 0 0 0 0 0 0 0 O
o 0 1 0 0 0O O 0 0 O
0O 0 0 -1 0 0 0 0 0 O
o 0 0 0 1 0 0 O 0 O
o 0 0 0O O -1 0 0 0 O
WMDI=l g 6 6 0 0 0o 1 o0 o0 o
O 0 0 0 O O 0 -1 0 0
0O 0 0 0 O 0 0 O 0
o 0 0 0 0O O O O 0 -
Mode filter (e.g.,HG\_; )
"0 0 0 0 0 0 0 0 0 0 - -]
0O 0 0 0 0 0 0 0 0 O
O 0 0 0 0 0 0 0 0 O
o 0 0 0 0 0 0 0 0 O
o 0 0 0 1 0 0 0 0 O
o 0 0 0 0 1 0 0 0 O
FN=221=/ ' 6 0 0 0 0o 0 0 0 o0
0 0 0 0 00O 0 0 0 O
0 0 0 0 0O O 0O 0O 0 O
0 0 0 0 0O 0O 0 0 0 O
Polarizer; for vertical polarization
"o o0 o o0 0 0 0 O O O i
01 0 0 0 0 0 0 0 O
0O 0 0 0 0O 0O 0 0 0 O
0 0 0 1 0 0 0 0 0 O
0O 0 0 0 0 0 0 0 0 O
0 0 0 0 01 0 0 0 O
PDI= s 6 06 0 0 0 0 0 0 o
0 0 0 0 00 0 1 0 O
0 0 0 0 0 0 0 0 0 O
0O 0 0 0 0 0 0 0 0 1
. .

give rise to rotations of the mode profile and state of polarlow, is the recently studied rotational frequency shifo]
ization, respectively14]. The corresponding eigenvalues re- where the orbital and spin angular momentum interact in
late to the round trip loss and it is unclear how they could besuch a way that the total angular momentum is the important
determined from independent calculation of the orbital andbarameter, not the individual contributions.

spin eigenmodes. Another example, which we analyze be- More generally, the study of the orbital angular momen-



7502 L. ALLEN, J. COURTIAL, AND M. J. PADGETT PRE 60

TABLE Il (continued.

Mode rotation matrix foN=1

[ cog¢) 0 sing) 0

0 cos ) 0 sin¢)
—sin(¢) 0 cosp) 0

0 —sin(¢) 0 cose)

Mode rotation matrix folN=2

[rOtmoad #)]=

I sin 2¢ ) 1
cog ¢ 0 v 0 sirf ¢ 0
sin 2¢ .
0 cog ¢ 0 5 0 Sirf ¢
—sin 2¢ sin 2¢
[ . 7 0 Cos 2 0 7 0
rOtyoad @)1= .
—sin 2¢ sin 2¢
0 75 0 Cos 2p 0 75
. —sin 2¢
Sire ¢ 0 3 0 cog¢p O
. —sin 2¢
. 0 Sirf ¢ 0 5 0 cog ¢.
Polarization rotation matrix foN=1
[ cog¢) sin(¢) 0 0
—sin(¢) cog¢) 0 0
[Otwoad #)]=| 0 cosd) sind
0 0 —sin(¢) coge)
Polarization rotation matrix foN=2
[ cos¢ sing 0 0 0 0
—sing cos¢ 0 0 0 0
0 0 cosp sing 0 0
[FOlmosd £1=| 0 —sing cos¢ O 0
0 0 0 0 cosp sing
0 0 0 0 —sing cos¢
tum of light beams is a rapidly expanding field and it is not Fiotating elements
yet clear where it may lead. It is possible that there will be Input beam g Output beam

other applications where the interaction of polarization and
orbital angular momentum is best examined within a single - - - &&=
formalism. It is therefore of considerable interest to extend
the matrices describing the mode composition to include si-
multaneously the polarization behavior previously described
by Jones matrices. Such matrices would then be able to
model the propagation of both spin and orbital angular mo-
mentum, through an optical system comprising both polariz-
ing and mode transforming components.

Any combination of polarized modes of ordircan be
expressed as a R 1) element column vector containing
the complex weightings of orthogonally polarized Hermite
Gaussian modes of the same order, as with

uopeloI epoN — — — — — —
UONElO) UOEZUBI0] — — — — — —
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FIG. 2. Experimental configuration for the observation of the
rotational frequency shif{Arrows and shading on the mode distri-
butions indicate the polarization and the sense of the azimuthal
phase, respectively.
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ano(<—) 7 Table .
ano(]) To confirm the effectiveness of the matrix formulation,
aNiiO((_)) we modelled our rotational frequency shift experimgh]
’ for a circularly polarizedg= *=1, Laguerre Gaussian mode.
an-1d 1) This enables us to find the frequency shift which results from
the rotation of a beam containing both spin and orbital an-
gular momentum. In the experiment, beam rotation was in-
' troduced by simultaneously rotatingmaconverter and half-
wave plate; see Fig. 2. The matrix description of the output
ain_1(+) beam becomes
ain-1(1)
agn(<)
L aon(]) [rotyol ) I X [1Otmoad ) IX [W(N/2) ]X[C( )]

X [rotyogd — @) 1X[roty,of = @) IX[LG) (o==£1)].
where the arrows in brackets denote the orientation of the

polarization. The intensity is simply given by the square ofa change in the handedness of the circularly polarized light,
the modulus of the vector representing the beam. such that the spin angular momentum component is either
The [2(N+1)X2(N+1)] matrices for the mode con- aqditive or subtractive from the orbital angular momentum,
verters are based on those obtained previously, but each ter@i\/es a total angular momentum of the beam lof {)% per
r_nust be repeated along the diagonal so that bqth polariz%oton_ The frequency shift may be correctly deduced by
tions are rephased. TH&(N+1)x2(N+1)] matrices for  comparison with its nonrotated equivalent to e ()Q,
waveplates are based on the corresponding Jones matricgghere Q) is the angular frequency of the beam. This offers
but the whole of each matrix must be repeated along thgowerful evidence of the utility of the matrices.
diagonal to act on each mode independently. We have shown that there is a set of matrices equivalent
The rotation matrices are more complicated. The modgg the Jones matrices which can express the behavior of light
may be rotated with an image rotator and the polarizatioryossessing orbital angular momentum and have developed
independently rotated by the use of a waveplate. The modgem to account simultaneously for polarization. These ma-
rotation matrix includes the same terms as Bulependent  trices can be used in any optical system which conserves
matrix given in Table I, but they must be diagonally repeatedy,qode order. The equivalent of the Muellex4 matrices,
to rotate modes of both polarizations and interspaced withyhich depend upon the four Stokes parameters, for orbital

zeros to prevent their mixing. Similarly, the matrix for the gngular momentum is currently the basis of further investi-
rotation of the polarization is identical to that used within the gatjon.

Jones matrix formulation, but is diagonally repeated to rotate

the polarization state of each of the individual Hermite Itis a pleasure to acknowledge the contribution of Profes-
Gaussian modes. The matrices for mode converters, waveer S. M. Barnett who drew to our attention to the rotation
plates, mode filters, polarizers and rotations are given immatrix in Ref.[12].
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