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Stationary periodic and solitary waves induced by a strong short laser pulse
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The propagation of a relativistically intense short laser pulse into an isotropic plasma is described. A kinetic
equation for the spectral function of the electromagnetic waves is derived for an arbitrary amplitude pump
wave, where the fully relativistic case is considered. The resulting kinetic equation of the spectral function is
used along with the set of equations of the plasma to derive a general dispersion relation, where relativistic
effects play an important role. In the case of a superstrong short laser pulse, Langmuir waves, with phase
velocities larger than the speed of light, and waves of ion-sound type, which are damped only on ions, are
found. In addition, for the case when the plasma density along with the mass of the electrons satisfies the
‘‘frozen-in’’ condition, stationary nonlinear new type of ion-sound waves are investigated. The mechanism of
the emission of these waves is also discussed.@S1063-651X~99!01112-5#

PACS number~s!: 52.40.Nk, 52.60.1h, 52.35.Mw
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I. INTRODUCTION

The development of ultraintense short pulse lasers all
exploration of fundamentally new parameter regimes
nonlinear laser-plasma interaction. In fact, a number of
periments have been carried out in which plasmas are irr
ated by laser beams with intensities up to 1019 W/cm2. At
such intensities the electron quiver velocity rapidly a
proaches the speed of light, and a host of phenomena
been predicted such as the parametric resonance in an
tron plasma@1#, the relativistic wave breaking@2#, the for-
mation of types of solitons@3#, the relativistic self-focusing
@4,5#, the generation of ‘‘light wind’’@6#, the formation of
collisionless shock waves@7#, the relativistic modulationa
and filamentational instabilities@8#, and the generation o
large amplitude plasma waves~wake fields! @6,9#. Numerous
works @10–15# have been devoted to the investigation
relativistically intense EM wave propagation into plasm
with the radiation pressure being larger than the plasma p
sure. The above treatments were restricted to the cas
monochromatic EM waves. For ultrashort pulses the ba
width of coherent wave is increasingly broad. Even if t
bandwidth may be initially narrow, its spectrum may eve
tually broaden, either as a result of several kinds of insta
ity processes, or as the result of other nonlinear wave-w
interaction processes. In order to study the interaction
spectrally broad relativistically intense EM waves with
plasma, we adopt the EM spectral intensity@16#. This picture
of high-frequency EM processes in a plasma opens a wa
the formulation of conceptually new problems in plasm
electrodynamics.

In the present paper, we consider a class of proble
involving the interaction of relativistically intense nonmon

*Electronic address:levan@apr.jaeri.go.jp
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chromatic radiation bunches with a nonmagnetized plas
The paper is organized as follows. First in Sec. II, start
from Maxwell’s equations for the EM field in a relativisti
plasma, we derive a general equation for the EM spec
intensity. Then in Sec. III we derive the plasma wave disp
sion relation in the presence of the relativistic ponderomot
force and discuss a type of longitudinal plasma waves
duced by a strong short pulse laser. In the same section
shown that the ratio of the plasma density to the mass of
electrons is conserved, or there is a ‘‘frozen-in’’ condition
the case of stationary waves. The stationary nonlinear
sound waves are discussed in Sec. IV and the velocity of
waves and the maximum potential of the field are defin
Finally, a brief summary and discussion of our results
given in the last section.

II. DERIVATION OF THE KINETIC EQUATION
FOR THE PHOTON GAS

We start from Maxwell equations for momentum for
circularly polarized EM wave

¹2p2
]2p

]t2
5

n

g
p, ~1!

where the following dimensionless quantities have been
troduced:

p→ p

m0c
, t→vLet, r→kpr , kp5

vLe

c
,

n→ n

n0
, g5~11p2!1/2,

wherevLe is the electron plasma frequency, associated in
usual way with the mean plasma densityn0, andm0 is the
electron rest mass.
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We shall consider Eq.~1! at two distinct points and in-
stants of time. Following the procedure described in R
@16#, we can derive an equation for the correlation functi
^p(r1 ,t1)p(r2 ,t2)&5P(r1 ,t1 ,r2 ,t2), where ^•••& denotes
ensemble averaging

~¹1
22¹2

2!P~r1 ,r2 ,t1 ,t2!2S ]2

]t1
2

2
]2

]t2
2D P~r1 ,r2 ,t1 ,t2!

5~r12r2!P~r1 ,r2 ,t1 ,t2!, ~2!

wherer5n(r ,t)/g(r ,t).
Introducing new variables

R5
1

2
~r11r2!, r5r12r2 , t5

1

2
~ t11t2!, t5t12t2 ,

~3!

Eq. ~2! yields

S ¹R¹ r2
]2

]t ]t DP~R,r ,t,t!5
1

2
~r12r2!P~R,r ,t,t!,

~4!

where

r12r25r1S R1
r

2
,t1

t

2D2r2S R2
r

2
,t2

t

2D .

Performing a Fourier transformation ofP(R,r ,t,t) on the
variables (r ,t) we can introduce the power spectral functi
P(R,t,k,v) or Wigner representation

P~R,t,k,v!5E drE dt P~R,t,r ,t!expi ~kr 2vt!.

~5!

We can also write for the momentum autocorrelation fu
tion

P~R,t !5^p2~R,t !&5E dk

~2p!3E dv

2p
P~R,t,k,v!. ~6!

Taking the double Fourier transformation of Eq.~4!, we
obtain an evolution equation for the power spectral functi
in the form

S v
]

]t
1k•¹RDP~R,t,k,v!

5
1

2E drE dt~r12r2!P~R,t,r ,t!expi ~kr 2vt!. ~7!

Now expanding (r12r2) in Taylor series we can write

r12r25 (
m50

`
1

m! S 1

2
r•“R1

1

2
t

]

]t D
m

r@12~21!m#. ~8!

We can see from the above expansion that only the
terms inm are nonzero. So, we can choosem52l 11. Fi-
nally, we obtain after integration the following equation f
the spectral function
f.

-

,

d

S v
]

]t
1k•¹RDP~R,t,k,v!

5(
l 50

`
~21! l

~2l 11!! S 1

2

]2l 11r~R,t !

]R2l 11

]2l 11P~R,t,k,v!

]k2l 11

2
1

2

]2l 11r~R,t !

]t2l 11

]2l 11P~R,t,k,v!

]v2l 11 D . ~9!

III. LINEAR LONGITUDINAL PLASMA WAVES.
FROZEN-IN CONDITION

We now consider the propagation of small perturbatio
in such a plasma. To this end, we linearize Eq.~9! with
respect to the perturbations, which are represented as

r5r01dr expi ~q•R2Vt !,

P~R,t,k,v!5P0~k,v!1dPexpi ~q•R2Vt !. ~10!

The result is

~q•k2Vv!dP5dr(
l 50

`
1

~2l 11!!

1

22l 11

3S q“k1V
]

]v D 2l 11

P0~k,v! ~11!

or after summation we obtain the following relation:

~qk2Vv!dP5drH P0
1S k1

q

2
,v1

V

2 D
2P0

2S k2
q

2
,v2

V

2 D J . ~12!

Then from Eq.~6! we have for the perturbation ofP,

dP5E dk

~2p!3E dv

2p

P0
12P0

2

q•k2Vv
dr ~13!

and fordr we can write

dr5
dn

g0
2

1

2g0
3
dP. ~14!

From Eqs.~13! and ~14! follows the relation betweendP
anddn

H 11
1

2g0
3E dk

~2p!3E dv

2p

P0
12P0

2

q•k2VvJ dP

5
dn

g0
E dk

~2p!3E dv

2p

P0
12P0

2

q•k2Vv
. ~15!

In the absence of the density perturbationdn we get from
Eq. ~15! the dispersion relation due to relativistic se
modulation
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1

2g0
3E dk

~2p!3E dv

2p

P0
12P0

2

qk2Vv
50. ~16!

Equation ~16!, as well as the case withdnÞ0, has been
studied in Ref.@8# for monochromatic waves.

We now define the relativistic expression for the ponde
motive force

F52“g52“@11P~R,t !#1/2. ~17!
es
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or
m

o

ns

r-

n
d

-

After linearization of this equation with respect to the pe
turbation we have

F52
1

2g0
“dP expi ~q•R2Vt !, ~18!

or using Eq.~15! we obtain
F52
1

2g0
2

E dk/~2p!3E ~dv/2p!~P0
12P0

2!/~qk2Vv!

11~1/2g0
3!E dk/~2p!3E ~dv/2p!~P0

12P0
2!/~qk2Vv!

•“dn expi ~q•R2Vt !. ~19!
h a
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of
ld,

n
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Some interesting relativistic features follow from the expr
sion of the ponderomotive force~19!. First, in the case when
the dominator goes to zeroF increases, ordn→0. Second,
when the integral in the dominator becomes much gre
than unity, we have

F52g0“dn expi ~q •R2Vt !. ~20!

This expression of the ponderomotive force coincides f
mally with the gasdynamic force, only instead of the te
perature we havem0g0c2 in Eq. ~20!, and it exists only for
the relativistic motion of the electrons in a superstrong sh
pulse laser.

Now, if we write kinetic equations for electrons and io
with the ponderomotive force~17! and linearize them, taking
into account the relation~15!, we obtain the general dispe
sion relation in dimensional form. The result is

«S 11
vpe

2

2g0
2E dk

~2p!3E dv

2p

P0
12P0

2

qkc22Vv
D

1~11d« i !d«eq
2c2

1

2g0
2

3E dk

~2p!3E dv

2p

P0
12P0

2

q•kc22Vv
50, ~21!

where

«511d«e1d« i , d«a5
4pe2

q2 E ~q] f 0a /]p!

V2q•v
dp,

vpe
2 5

vLe
2

g0
.

Equation~21! has several complex solutions forV, resulting
in different types of instability. But here we focus our atte
tion on the case of the propagation of a stationary longitu
-

er

-
-

rt

-
i-

nal wave in a plasma due to a strong laser pulse. Suc
possibility exists, if the condition

vpe
2

2g0
2E dk

~2p!3E dv

2p

P0
12P0

2

qkc22Vv
@1 ~22!

is satisfied. In this case the dispersion relation~21! is reduced
to the form

~11d« i !S 11d«e

q2c2

vpe
2 D 1d«e50. ~23!

This dispersion relation describes the propagation of a
tionary longitudinal wave in the presence of relativistica
intense EM waves.

Let us now consider some special limits. First, in the ca
when only electrons participate in the oscillation, i.e.,d« i
50, for V@qv tre , wherev tre5(Te /m0)1/2, we obtain from
Eq. ~23!

V25vpe
2 1q2c2. ~24!

This is a Langmuir wave due to strong relativistic effec
The physical interpretation for Eq.~24! is that the strong
ponderomotive force not only leads to the separation
charge and creation of the longitudinal self-consistent fie
but also generates the dispersion termq2c2, which is due to
the strong coupling of EM waves with the electrons.

Next in the case, whendniÞ0, two frequency ranges ca
be considered forV. One iskv tr i !V!kv tre , and the other
is kv tre!V!vpe . For both cases we obtain from Eq.~23! a
type of ion-sound solution

V5S m0g0

mi
D 1/2 qc

~11q2c2/vpe
2 !1/2

5
qcs

~11q2c2/vpe
2 !1/2

.

~25!

It is clear that now the characteristic length of the inhom
geneity is comparable toc/vpe , but not to the electron De
bye length as we have for the ion-sound wave without a la
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pulse. As follows from Eq.~25! the maximum value of the
frequency isvpi , similar to the result obtained in Ref.@17#.
We specifically note here thatcs5c(m0g0 /mi)

1/2 now de-
pends not only on the mass of the particles, but also on
intensity of the laser pulse@g05(11P0)1/2#. Therefore,
these waves in an experiment exhibit frequencies depen
the intensity of the laser pulse and the sort of gas. The r
tivistic modes in particle-in-cell simulations were reported
Ref. @18#.

We now try to physically understand existence of the
lutions ~24! and ~25!. First note that for the stationary cas
when the laser pulse propagates with a constant velociv
5(kc2/v)@P(R,t,k,v)5P(k,v,R2vt)#, the result~20! for
the ponderomotive force can be obtained without the line
ization of Eq.~9!. In this case, the left-hand side of Eq.~9!
becomes zero and one of the solutions of Eq.~9! is

r5
n~R,t !

g~R,t !
5const, ~26!

or equivalently

n

me~g!
5const,

which shows that the plasma density and mass of the e
trons satisfy a ‘‘frozen-in’’ condition. This condition implie
a localization of the energy of the laser pulse in the region
high plasma density. The solution identical with Eq.~26! was
shown in Ref.@19#, considering the strong EM wave prop
gation in an electron-positron plasma. In the case when
pression~26! is valid, we obtain a simple expression for th
ponderomotive force from Eq.~17! for arbitrary variation of
the density

F52m0g0c2
“

n

n0
. ~27!

One can simply show that if the ‘‘frozen-in’’ condition
~26! is fulfilled, the hydrodynamic equations@16#, the equa-
tion of motion, and the equation of continuity for electro
become linear and for an arbitrary variation of the elect
density we have the following linear equation:

S ]2

]t2
1vpe

2 2c2
“

2D n2n0

n0
50. ~28!

This equation shows that for plane waves one can obtain
same dispersion relation as Eq.~24!. It is important to em-
phasize that Eq.~1! with condition ~26! becomes a linea
equation and EM wave momentum with arbitrary power w
spread out in a plasma.

IV. STATIONARY PERIODIC AND SOLITARY WAVES

In this section, we consider the propagation of station
nonlinear ion-sound waves, when the phase velocity o
type of ion-sound waves is large compared with the elect
thermal velocity and the plasma density along with the m
of the electrons satisfies the ‘‘frozen-in’’ condition~26!. To
describe the one-dimensional motion of the electrons
e

on
a-

-

r-

c-

f

x-

n

he

l

y
a
n
s

d

ions of such waves, we employ hydrodynamic equatio
with a self-consistent field:

]pe

]t
5e

]f

]x
2m0c2g0

]

]x

n

n0
, ~29!

mi S ]

]t
1ui

]

]xDui52e
]f

]x
, ~30!

]n

]t
1

]

]x
nue50, ~31!

]ni

]t
1

]

]x
niui50. ~32!

Hereui ,ni are the ion velocity and density, respectively, a
f is the electrostatic potential which is coupled with t
electron and ion densities through the Poisson equation

]2f

]x2
54pe~n2ni !. ~33!

Equations~29!–~33! are a closed set of equations describi
the propagation of one-dimensional waves including solit
waves we are interested. In this case we can let all quant
depend on coordinates and time asx2vt, wherev is con-
stant. From Eqs.~29!–~32! the following expressions for
electron and ion densities are obtained:

n

n0
511

ef

m0g0c2
, ~34!

ni

n0
5S 12

2ef

miv
2D 21/2

. ~35!

Substituting these expressions for the densities into the P
son equation, we get

]2f

]x2
54pen0F11

ef

m0g0c2
2S 12

2ef

miv
2D 21/2G . ~36!

Now we first consider the case whenef!miv
2/2, i.e.,

stationary waves with weak nonlinearity. In this case the l
term in Eq.~36! can be expanded in a power series and
obtain

]2f

]x2
5

vpi
2

v2 S v2

cs
2

21D f2
3

2

vpi
2

v2

ef2

miv
2

. ~37!

If we neglect the last term in Eq.~37!, there are two
possibilities in the linear approximation. The first is th
propagation of ion-sound waves with the velocity given
Eq. ~25!, whenmiv

2,m0g0c2. In the second case when th
opposite inequality is valid, we obtain a type of the Deb
potential with the characteristic scale length
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r D5
c

vpe~12cs
2/v2!1/2

. ~38!

This expression shows that the effect of the Coulomb fi
extends to a distance of the order ofr D , which plays a role
of the Debye screening distance.

Now let us consider the structure of a solitary wave,
this it is necessary thatmiv

2.m0g0c2. Then the solution of
Eq. ~37! is

ef5
miv

2~v2/cs
221!

ch2~vpi /v !~v2/cs
221!1/2~x2vt !

~39!

and

n

n0
511

v2

cs
2 S v2

cs
2

21D 1

ch2~vpi /v !~v2/cs
221!1/2~x2vt !

.

~40!

Since we have supposed thatef!miv
2/2, from Eq.~39! it is

clear thatuv2/cs
221u!1. The relation between the propag

tion velocity v and the maximum amplitudefmax of the
wave, can be obtained from Eq.~39!,

v25cs
21

efmax

mi
~41!

and now forf we have

f5
fmax

ch2~vpi /cs
2!~efmax/mi !

1/2~x2vt !
. ~42!

We see thatn.n0 andni.n0, sincef.0. A solitary wave
in a quasiequilibrium plasma is, therefore, always a comp
sional wave.

Turning now to the study of Eq.~36!, we integrate it once
to obtain

E2~f!5S ]f

]x D 2

54pen0H 2f1
ef2

m0g0c2

1
2

e
miv

2S 12
2ef

miv
2D 1/2J 1A. ~43!

Various periodic waves can now be found depending on
choice of the integration constantA. In the case whenf and
]f/]x→0 at ux2vtu→`, we haveA528pn0miv

2. This
case corresponds to a solitary wave. We find the equa
which determines the potentialf as a function of the coor
dinates and time

x2vt56E df

@E2~f!#1/2
. ~44!

The velocity of propagation of this wavev, as a function of
the maximum amplitude of the wavefmax, is found from
Eq. ~43! by writing ]f/]x50 at f5fmax, i.e.,
d

r

s-

e

n

2efmax1
e2fmax

2

m0g0c2
12miv

2H S 12
2efmax

miv
2 D 1/2

21J 50,

~45!

and from here we obtain

v25cs
2S 11

efmax

2m0g0c2D 2

. ~46!

We note here that Eq.~45! has a solution only whenfmax is
not too large. From Eq.~45! it follows that the maximum
possible value of the amplitude of the ion-sound wave can
determined from the relationmiv

2/25efmax, because ions
can no longer move across the potential barrier. Solving
equation together with Eq.~46! we obtain efmax
52m0g0c2 and for the velocity of the stationary ion-soun
solitary wavev52cs .

V. SUMMARY AND DISCUSSION

We have investigated the propagation of a relativistica
intense short laser pulse into an unmagnetized plasma. S
ing from the fully relativistic equations, we have derived
general kinetic equation for the photon gas. This is valid
waves with a large spectral width. The relativistic express
for the ponderomotive force is also derived and some in
esting relativistic features are discussed. The kinetic equa
was used to derive the plasma wave dispersion relation
the propagation of stationary longitudinal waves in the pr
ence of relativistically intense EM waves is studied. Due
strong relativistic effects a novel Langmuir wave with pha
velocities larger than the speed of light and waves of
ion-sound type, which are damped only on ions, are fou
In addition, for the case when the plasma density along w
the mass of the electrons satisfies the ‘‘frozen-in’’ conditio
stationary periodic and solitary waves are studied. The r
tion between the wave amplitude and its propagation ve
ity is derived. The possible mechanism of the emission o
new type of ion-sound waves may be attributed to the la
pulse acceleration due to the plasma inhomogeneity@20#. In
this case one can find an explicit form of the density dis
bution in emission of ion sound, as has been shown in R
@20#. These dynamics of the plasma under the relativistica
intense electromagnetic waves may be relevant in the s
of the contemporary problems of laser-matter interact
such as the fast ignitor concept@21#. In this scheme, shor
pulse laser energy deposition efficiency and spacetime c
acteristics are essentially important, since the deposited l
energy has to be efficiently transferred to dense plasmas
this context, it is necessary to understand how a relativi
cally intense short pulse laser propagates into overde
plasmas through long scale underdense plasma. As inv
gated in this work, in the case of a superstrong short pu
laser a type of ion-sound waves can be generated. Which
be of great importance for the heating of plasma. This wa
is intensity dependent, therefore it can be observed in exp
ments and possibly be used as a diagnostic of ultrainte
short pulse laser propagation. Langmuir waves with ph
velocities larger than the phase velocity of the laser pulse
also exist due to strong relativistic effects, as is found in t
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paper. We specifically note that these waves are pote
candidates for ultrahigh gradient electron acceleration.
development and study of feasibility of the laser-induc
electron acceleration phenomenon based on the above
closed Langmuir waves will be discussed in a separate pa
Finally, the theory developed in this paper should also be
case for relativistic astrophysical objects such as pulser
mosphere.
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