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Theory of beam-plasma instability in a periodic plasma-filled waveguide
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The beam-plasma wave interaction in a periodic plasma-filled waveguide is treated in a mathematically
correct manner on the basis of the integral equatiBhmethod. It has been shown that the relevant boundary-
value problem could be reduced to an |IE with a singular kernel for the longitudinal component of the electric
field on the waveguide axis. The regularization of the |IE was performed by extracting the static part of the
kernel. The resulting IE of the second kind with a regular kernel, being rather convenient for a numerical
analysis, is treated in a quasistatic approximation as a spectral problem. First-order expressions for eigenfunc-
tions, and an infinite set of dispersion relations linking a wave number and frequency of plasma oscillations
which separate radial branches of plasma oscillations from axial ones, have been obtained in the closed
analytical form, thus enabling us to avoid the problem with the so-called “dense” spectrum. The solutions of
the relevant “cold” dispersion relations establish a periodical dependence of the frequency on the wave
number over several periods within the accuracy of order of the neglected terms. In the presence of an electron
beam they turn out to be unstable near frequencies providing the resonances of the beam with spatial plasma
harmonics. Evaluations of the instability saturation level predict a more efficient beam-plasma wave energy
transfer compared with those following from a conventional theoretical analysis based on the formulation of a
dispersion relation in terms of an infinite determinant, with following truncation of the latter to the finite sized
relation.[S1063-651X%99)10011-4

PACS numbdps): 52.40—w, 52.25-b

I. INTRODUCTION [12-14 in many papers; the plasma medium can support
many of its own propagating waves in the range ().,

To date vacuum microwave tubes with intense relativistiowhere(, is the plasma frequency, angis the frequency of
electron beam&REB’s) remain the most attractive means for wave, which can efficiently interact with the beadb,16].
producing high power microwaves in centimeter and milli-  Unfortunately, dispersion properties of plasma waves in
meter wave range§l,2]. However, increasing the output periodical waveguides have been studied much less than
power by using more intense REB’s is possible if the beanthose of electromagnetic ones, in spite of experimental ob-
currents are well below the space-charge-limit curf@jt  servations of the lattdd7]. In order to interpret the results of
When the beam current becomes comparable with the spacexperiment of Ref[5], the beam excitation of plasma waves
charge-limit current, the beam-wave energy transfer esserin a corrugated waveguide at a low plasma density was stud-
tially decreases. Therefore a further increase of output poweed in Ref.[18] on the basis of a spatial harmonic expansion.
can be achieved in the presence of background plasma in &he dispersion relation was obtained in the form of an infi-
interaction chamber, which provides space-charge field newite determinant, and was solved by its truncation to the
tralization[4]. A notable enhancement of the output powerfinite size determinant, accounting for a finite number of spa-
due to the presence of a plasma was recently realized expetial harmonics. Values obtained for the spatial growth rate of
mentally for several types of microwave tudés-9]. It has  plasma waves turned out to be significantly less than that for
been thoroughly demonstrated that introducing a plasma witthe electromagnetic wave instability. Trying to explain the
a proper density and radial profile results in an increase ofesults of experiments with plasma-filled backward wave os-
the operation efficiency and frequency bandwidth, and proeillators [6], the authors of Ref[19] revealed that plasma
vides the possibility to operate with significantly lower guid- waves originate in the so-called “dense” spectrum when an
ing magnetic fields and to control the output power and opinfinite number of radially and axially shifted branches are
eration frequency smoothly. However, the presence ofocated in a finite frequency band, and separation of one
plasma in the slow wave structure can lead to crucial changdsranch from others is practically impossible. Moreover, nu-
of its electrodynamic properties which are not fully studiedmerical analysis performed for a large number of spatial har-
and realized so far. Plasma influences such as a dielectrinonics showed that the solution of the dispersion relation
medium on the electrodynamic properties of the microwavdoses the property of periodicity with respect to wave number
tubes, were studied experimenta]ly0,11] and theoretically required by the Floquet theoref0]. On the basis of these

results in Ref[20], it was concluded that it is impossible to
obtain a reasonable dispersion relation in such a way. Thus,
*Present address: Department of Communication Engineeringhe problems of beam-plasma instability in the periodical
Osaka University, Japan, on leave of absence from Kharkov Statewaveguides, and its influence on plasma-filled microwave
University, Ukraine. device operation, are still open.
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In this paper an approach to the analysis of the beam- perfect conductor ==X,
plasma instability is suggested. It is based on the integral ~ A X=X @
equation(IE) method[21,22, which seems to be the most S
feasible one for an analysis of multiwave and multimodal
regimes. Therefore, it can be expected that it also will be
fruitful for the treatment of systems with “dense” spectra to
which, in principle, all plasma-filled periodical structures
should refer.

It is shown that the dispersion relation obtained previ-
ously in the form of an infinite determinapt6-18 can be
represented in terms of a homogeneous singular IE for the
unknown total longitudinal electric field on the waveguide ihe highest spatial harmonics of the plasma wave field. Con-
axis. It is well known from the general theory of the IE that ¢|;sions and remarks are contained in Sec. VII.
the formulation of spectral problems in such a manner is
quite reasonable. Moreover this formulation is frequently
used in the theory and computations of various elements of
microwave technique such as thin-film periodic structures Normally the model of an infinitely long periodic axisym-
[23], groove waveguidel24], microstrip lineg25], etc. Due  metric waveguide is used for a consideration of wave pro-
to the ability to take the multimodal content of the fields cesses in high-power plasma-filled devices such as BWO's,
accurately into account, in our case such a formulation alTWT'’s and some others. Since this paper is devoted, first, to
lows us to obtain not only more precise results, but gives ugxploring the general qualitative issues concerning the be-
the opportunity to obtain more insight about the dispersiorhavior of systems with a “dense” spectrum, we restrict our-
properties of the plasma waves in periodical waveguides. I§€lves to the case of a planar geometry, which gives us a fine
particular it gives us the unique chance to avoid the problenfh@nce to obtain a number of results in an analytical form
of the “dense” spectrum, allowing us to separate the radialVhich greatly promotes the development of a correct quali-
plasma modes from the axial ones. Our approach also prd@tive analysis of such an intricate question.

motes an understanding of numerical troubles mentioned in Thus e, cqn5|der a.ple-mar symmetnca} metal!!c Wé,ve'
Ref. [20], and finding a way to overcome them guide with arbitrary periodic walls filled with the “cold

The initial singular IE after regularization was treated collisionless homogeneous plasisae Fig. 1and driven by

i . o A . an infinitesimally thin sheet electron beam located symmetri-
analytically in a quasistatic approximation. From the require-

S ) e cally at distancex= £Xx, from the waveguide axis. An in-
ment of periodicity of the general solution, an infinite set Off'nitely large magnetic field is applied along taeaxis. Al
dispersion relations was obtained. Each of these correspongis, o perturbations assumed to be of TM polarization and
to the certain axially shifted branch of radial plasma modes;;. symmetrical with respect to the axis [E,(x)=E,
Any of the dispersion relations obtained can be considereg_ x)], allowing one to consider only the regior0.
independently, providing complete information about the Following the Floquet theorem, we can represent the

dispersion properties of plasma waves, the distribution Ofje|4s in the waveguide as a superposition of spatial harmon-
fields within the waveguide, and the growth rate of the beam;.g

plasma instability. The results of our analysis indicate that
the instability of plasma waves in the case of a low density o
plasma(no beam resonance with the lowest spatial plasma A(X,z,t)= 2 A (x)expih,z—iwt), (1)
harmonig can be more efficient than that predicted in the n=-—o
framework of the conventional analy$is8]. It can lead to a
more effective beam-plasma wave energy transfer and to Where A={E, ,Hy ,E;}, and h,=k,+nk;, k;,0 are the
widening of the region of unstable frequencies and wavevave number and frequency of perturbations, akg
numbers. =2m/d, dis the period of the structure. Substituting E).

The remainder of the paper is organized as follows. Innto the Maxwell equations and applying the boundary con-
Sec. Il our theoretical model is described with an example oflition on the ideal walE (X,z)[x-x =0, whereE, is the
a planar periodic waveguide filled with a longitudinally mag- tangential component of the electric field, ane Xy(2) is
netized plasma and driven by a thin sheet electron beam. It ihe equation of the waveguide boundary, after some math-
shown that the initial IE for a longitudinal electric field on ematical manipulations described in many papeese, for
the waveguide axis has a singular kernel, and the simplesgixample, Ref[26]) we obtain the equation
method of its regularization is proposed. The resulting IE of
the second kind is treated in the quasistatic approximation in * _ ih.e d
Sec. lll. The first-order closed form solution and the general 2 ane'“nz( 1- "2 d_>

. . . L B . . . . n=—o K z

dispersion relation in the quasistatic approximation is de- n
rived in Sec. IV. The infinite set of “cold” dispersion rela-
tions and their solutions, as well as a procedure of avoiding X
the “dense” spectrum, are described in Sec. V. Instabilities
of Cherenkov type are found and analyzed in Sec. VI. They
can be interpreted as resonant interactions of the beam with X o9 kpXo(2))sin(kn,(Xo(Z) —Xp))

electron beam

FIG. 1. Geometry of the problem.

Il. THEORETICAL MODEL

2mc?(k2—h2)p
COS(KnXo(Z))+(w—

- th)ZKn
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where Equations(5b), and (5¢) allow us to explore in detail the
analytical properties of the kerneb(z,z'). Evaluating
jd’z E.(02)e~Midz Ge(z,2') at largen as
&7d) g ’ .
" — ’ ik, X(2) pinko(z+X(2) -2’
Vo), e=1-0%0?  v= 218y, Genl2,2)= L1+ X! (et DemoEraT=)
()

+ (1_ X' (Z))e—ikZX(z)e—inko(z—x(z)—z')]7
(6)

whereX(z) =|e|Y?X4(z), we can conclude that the sum for
G(z,2") diverges at the points' =z=* X(z). At these points
Ge(z,2") cannot be approximated by the partial finite sums
Gen(z,2')=2N__\Gen(z,2'), regardless on the numbsk
Thus the truncation of the infinite determina#dy, which is
equivalent to approximating the singular kernel of(88) by
finite sums having regular values in the vicinity of the sin-
gular points mentioned above seems not to be correct, and

Ia=mc®e, k=wlc, y=(1-v?c?) 12

E,(0,2) is thez component of the electric field on the wave-
guide axis,ly, is the beam current per unit length in the
transverse directiorl,, is the Alfven currenty is the speed
of the beam,c is the speed of light, ané and m are the
charge and mass of in electron, respectively.
The traditional approach to the analysis of E2). [18—

20] provides the expansions dasXy(z)) and
sin(kn(Xo(2) —Xp)) into the Fourier series, resulting in the

equation according to the theory of singular IE’s can lead to rough
o0 % mistakes in the final results. Meanwhile it should be pointed
> emkoz ' D (wk,)a,=0, out that the beam part of the kerr@}(z,z’) is regular about
m= —e n=-e both variables.

In order to circumvent these difficulties, we separate the
static part of the kernel, which just contains all singularities
inherent to the general kernel,

from which the dispersion relation in the form of the infinite
determinant

de“Dmn(w:kz)” 0, (4) Ge(Z,Z’)ZGZ[(Z,Z')-FGr(Z,Z’), (78
linking » and k,, follows. However, attempts to analyze
such a relation numerically by truncating the infinite matrix where
to some reasonable size for the frequency within the region
of plasma wave existencew&(),) was not successful _ , i d
[19,20,, since the solution obtained did not satisfy the re- Gg'(z.z')= _2 glMko(z-2 )<1_h_d_z) cogh,X(2)),
quirement of periodicity with respect to wave number ac- e . (7b)
cording to the Floquet theoren27].

Below we offer an alternative formulation of the disper-
sion relation which provides the passage from unknown Fou-

[}

Gi(z,2')= 2 €™ ) cog k,Xo(2)) —cogh,X(z))

rier coefficientsa,, to the unknown periodical functio¥ (z), n=—o

linked with the total longitudinal electric field on the wave-

guide axis by the simple relatioW (z)=E,(0,z)e” '*# and ~d [eh, 1

the derivation of the IE for it. Substituting E¢3) into Eq. iy COS(KnXo(Z))+ COE(h X(2))

(2), and changing the order of summation and integration, we K“

obtain the following IE over the structure period: (70

a2 , N It can be shown thag,(z,z') is regular about both variables.

J_dlzG(Z,Z W(z')dz'=0, ze(-d2d/2), (59 Representing cdb,X(z)) and sirth,X(z)) in terms of

exponents, and using relation
whereG(z,z')=G¢(z,2") + Gp(z,2):

- E S(x+nd)=— E enkox,
Ce(z.2)= 2 Gel22). (51
e d we can take the integrals associated with the static part of the
ih,e i i .
Gey(2,2') = ekolz—2 )< 1M d_) cos(k,Xo(2)) kernel in a closed analytical form:
n

a2 st ’ ’ ’

L 2”: ZWCZ(kz—hﬁ)V f—d/zGe(Z'Z )‘I’(Z )dZ

Gb(Z,Z )_n=—oo (w_th)ZKn .
T aikX(2) )

X eMkoz2 ) cog ik, Xo( 2))SIN K (Xo(2) — Xp)]. 2[6 V(z+X(2))(1+X'(2)

(5¢) +e *X@W (z— X(2))(1-X'(2))]. 8)
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Such a transformation is fully correct if the functions
f.(2)=z=X(z) are monotonous, i.e|X'(z)|<1.

Thus, finally, we have an IE of the second kind with the
regular kernel, and shifts in the arguments of the unknow
function:

%[eikzx(z)\lf(ZJr X(2))(L+X'(2))+e *XDW¥ (z—X(2))

dr2

X(1=X"(2))]+ j /Z[Gr(Z,Z’)

+Gp(z,2") W (z')dZ' =0. 9

Thus, the obtained IEEq. (9)] is mathematically rigorous if
the condition|X’(z)|<1 holds(also see Ref{27]). It con-

HKOV, AND J.-Y. RAGUIN PRE 60
F(x)= LAY PN 12
(X)—ko—vz Kov 73 (A,X), (12a
Where
exgiA(kox—msgnx)]
f(AX)=— 7 . . (12n
w—Kkyv 1, x>0
v SII=1 g oo

Note thatF(x) has a jump of the first kind at=0. The
accurate method of integration accounting this has been
shown in the Appendix. Making us€l2a and (12b) the
integral term in Eq(9) can be transformed to thdetails can

tains all information about spectral properties of the systenbe found in the Appendix

considered. Also, having solved it, we will be able to calcu-
late the field distribution over the entire waveguide.

Ill. QUASISTATIC APPROXIMATION

In the general case the I®) should be analyzed by nu-

merical methods. However, in order to obtain more insight
into the properties of its solutions, here we consider the qua-

sistatic approximation, allowing us to greatly simplify its
kernel.

The relevant quasistatic equation can be easily obtained

from Eqg.(9), when the speed of light tends into infinity, and
assuming that the beam is nonrelativistic. This yields

|

G,(z,z2')—0,

B

2mwcch,v

(w_th)2|8|12

[

Gy(z,2')—Gizz)=— 2,

n=—=

i d
“h

% einko(zfz’)

% cog hi| e ) sin hy| e[ Y2(Xo(2) = xp)]-
(10)
The static part of the beam fraction of the ker@f(z,z")
can be calculated in a closed analytical form. For simplicity,
assumingx,=0 and representing gin,X(z)) in Eq. (10) in
terms of exponents, we rewri;(z,z') in the form
st iWCZV ik, X
Gb(z,z')zm[e' XOF(z+X(2)—2" )1+ X' (2))

+e KXOF z-X(2)-2)(1-X'(2))], (11)

where

[

Foo= 2

n=—ow

h,

einkox
2
(w—hpv)

The expression foF (x) can be reduced to a combination
of the table sumgsee the Appendix and over the interval
xe (—d,d) can be represented as

dr2
f Gi(z,2')W¥(z')dz
—d/2

miv 1 o 9\ etk
B?le|Y? kov dA ) sinA

X {cosmA[C,(1+X'(z2))e/(@VX®@
—C_(1-X'(2))e " MX@]+isinmAl ¢, (2)
X (1+X'(2))e©@VXD_ ¢ (2)

X (1=X'(z))e («MX@7}, (13)
where

dr2=s

Ci: f
—di2+s

di2+s
exp —iAz")¥(z')dZ

z+X(2)

exp—iAz)¥(z)dz,

¢p+(2)=

fZiX(Z)
—d/i2xs

=X(d/2).

exp —iAz")¥(z')dZ s

Thus the static part of the beam fraction of the kernel
Gﬁt(z,z’) is reduced to a degenerated Volterra-type kernel,
allowing us, in principle, to transform the relevant IE into an
ordinary differential one.

Here we proceed more simply, assuming that the beam
weakly modifies the temporal and spatial dependencies of
plasma perturbations compared to the “cold” case, resulting
in only slow changes of their amplitudes and phases. The
most efficient interaction between the beam and plasma
waves in such a case should be expected whem, i.e.,
k,+mky=w/v, that corresponds to the resonance of the
beam with themth spatial harmonic of the plasma wave
field. Following this argument we can neglect the term which
is proportional to sinrA in figure brackets in the right-hand
side of Eq.(13). Taking into account that for plasma-filled
devices the unequalitw/kgv<<1 normally holds, we can
leave only the largest terrfproportional to sin?wA), after
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taking the partial derivation with respectAoin Eq.(13). As  some insight about the properties of the solution, which can

a result we obtain the equation be very useful for developing a more rigorous analysis.
e* XA 1+ X' (2))W (z+ X(2))+e **B(1-X'(2)) IV. FIRST-ORDER CLOSED FORM SOLUTION
XW(z—X(2)) Obviously the Trivelpiece-Gould waves in the smooth
) waveguide become electrostatic at frequencies feari.e.,
lv w 7 when|e|<1. In this region the conditiohX’(z)|<1 is sat-
= 2| TEOLTAT LT — isfied f tively | ipples. Shifts in th
B¢l KoV siremrA isfied even for comparatively large ripples. Shifts in the ar-

, H(wh)X(2) guments of the unknown functio#i(z) on the left-hand side
X[C (14X (2))et ™ of Eq. (14) can be much less than its periddThis gives us
—C_(1—X'(z))e (@vX@], (14)  the opportunity to expan® (z+X(2)) into the Taylor series,

thereby eliminating the shifts in its argument. So, after ex-

Equation(14) hardly can be solved without further simplifi- Pansion in the first-order approximation, we have the first-

cations, even without the beamr<£0), since the unknown order inhomogeneous differential equation

function W(z) has shifts in the argument. In Sec. IV one P (2)—if W(z)=f 1

partial case will be considered when the approximate analyti- (2)=ifo(2)¥(2)=14(2), (19

cal solution can be obtained. This will enable us to obtainwhere

B cosk,X(z) +iX'(z)sink,X(z)
fo(2) = S D (sink,X(2) =X’ (Z)cosk,X(2)) ’

iy ) 772 eiAkOZ[C+(1+X/(Z))ei(w/v)z_C_(l_xl(z))efi(w/V)Z]
fp(2)= ———| mcotmA ——— = — y
82|e|12 Kov sirfrA X(2)(i sink,X(z)+ X' (z)cok,X(z))
|
The general solution of Eq15) looks like V. “COLD"” SOLUTION AND ITS PROPERTIES

The first-order “cold” dispersion relation can be obtained
from Eq. (17) assuming thaf(z) =0, which yields the set

. z . ’
V(z)=¢'%? C1+f fo(z')e ' ¢#)dz |, (16)  of relations
0

d
where ¢(z) = [§fo(z')dZ',C, is an arbitrary constant. fo fo(z)dz=—2mm, m=0x1=2.... (18

Further, by calculation of,(z), we can use the “cold”
solution W(z)~C,e'# that allows us to express the un-  Thys, instead of the infinite determina®), which speci-
known constant€ .. in terms ofC;. Requiring a periodicity  fies radial and axially shifted modes simultaneously, we now
of ¥(2): ¥(z+d)=¥(2), yields the dispersion relation  have the infinite set of dispersion relations. Every dispersion
relation is connected with a certain axially shifted branch. As
q q a matter of fact, lek,(w) be the solution of Eq(18) atm
ex;{ _if fo(z)dz) _ 1:f foo(2)e 1*Adz,  (17) =0. Then it can easily be shown tHa{{ ) =k,(w) + nky is
0 0 the solution of Eq(18) for m=n, with an accuracy of the
order of |¢|<1 for not very largeln|. The deviation from
exact periodicity is due to the approximate equati{@5)
being used instead the exact ofid). It can easily be seen
that if k,(w) andW¥(z) are the eigenvalue and eigenfunction
vd P . . of Eq. (14), respectively(without the beam then k, ()
foo(2)= =2 7 kv SiPaA —wcotwA)l(A)e'Akoz"‘f’(Z) =k, (w)+mk, is also an eigenvalue oft4) but with the
Blel ™ kov sin’m other eigenfunctionV’ ,,(z) = ¥ (z)e ™% Sincek,(w) con-
® ® tains, in turn, an infinite set of curves corresponding to the
sin—X(z)—iX'(z)cos—X(z) different radial modesk,(w)={k,((®)}, 9=1,2,..., we
v Y% " " .
% : i , have a so-called “dense” spectrufd7] when each point
X(2)(sink,X(z) —iX"(z)cosk,X(2)) within the rangew<Q,, —®<k,<w inthe (w,k,) plane
lies either on the curves given by the functidng(w), g
1 ra =0,1,2... or on thecurves given by the func_tio_ns
I(A)= _J e~ 1%kony (7)dz. k;qm(w)zkzq(w)erko, m=0,1,2_ ..., or approach infi-
dJ-ap nitely closely to them. However, it should be especially em-

where
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phasized that for a full definition of the total field on the 1 (dr
waveguide axi€,(0,2) = exp(k,2)¥(2) (and consequently in  1(A)= d
the whole waveguide as wellit is sufficient to exploit any

single axially shifted set of eigenvaluésontaining only ra- o
dial modes and relative eigenfunctions. One of the main distinctions of Eq20) from that ob-

Turning to the approximate solution, we note that we carfained earlier is that the right-hand side of E20) contains
consider only branch fan=0 in Eq.(18), for example, with  the resonant denominators starA and sin twA which take

the corresponding expressions for the periodical functioriMt@ account the interaction of the beam with all plasma har-
W (2)=C, expli $(z)) which contain all spatial harmonics. MONics simultaneously, and we can analyze the contribution
The dispersion relatiorfgfo(z)dz:o defines only radial of each of them. They can lead to a widening at the region of
modes enabling us to avoid the problem of the “dense”unStable frequencies and wave numbers. The term propor-

. . 71
spectrum[17]. In the limit when the height of ripples tends tllonal to sin zA causes an qsryl/mmetry betwbeen fal_st and
to zero(X(z)— | &|Y%,), this dispersion relation passes to aS'OW SPace charge waves with respect to beam liaes

dispersion relation for a smooth planar waveguide filled with= Kz + Mko, which will be especially remarkable at low fre-

homogeneous plasma, ckg|*?x,)=0, having solutions quencies. It sh.ould be nqted tha; in the limit mf—>Q and

like ordinary electrostatic Trivelpiece-Gould waves. Mean-2 <1, the obtained equatici20) coincides exactly with that

while ¥ (z) tends toC, andE,(0,2) tends toC,e’k2Z, which  for the smooth planar waveguide. ,

is also inherent for a smooth wall waveguide. It should be At_ frequenCI_es Whemw_m, we certainly have unsta_lble

noted that such a limit for the branch with+0 in Eq. (18) 50'”“‘_)”5' In_th|s case the mtegrle(IA)_ has a clear physmal

gives ¥ (z)—C e~ ™ ? but the corresponding value for Mmeaning. It is not dlffICU|.t to recognize that E) is pro-

E,(02) =V, (2)e*= again tends t€, e, portlonal_ to themth Fourier 'coefflt':lent of the longitudinal
Thus, the solutions associated with differents in Eq.  €/ectric field on the waveguide axis:

(18) are equivalent, and we can restrict ourselves to a con-

sideration of just one of thenffor example withm=0), 1 a2 1 a2

avoiding the problem of the “dense” spectrum since it con- -~ imkeztidb(z imkaz

tains only radial modes. Finally, note that since '(A”A:m‘af_d,ze o )dZ~—f_d/28 ¥ (2)dz

J3Im{f,(2)}dz=0, Eq.(18) is equivalent to

, k
e—lAkoZex;{ —ia—= sinkyz+ a cosk,z |dz.

—di2 Ko

=a,. (21

d
jo Refo(z)}dz=2mm, m=0,x1%2,.... Consequently the instability near~m can be conditionally

interpreted as the Cherenkov instability of theth spatial

plasma harmonic. The spatial growth rates for them can be
VI. CHERENKOV INSTABILITIES OF PLASMA SPATIAL estimated as

HARMONICS

Turning to the dispersion relation with the beam, note that

since fpo(z) ~v<<1, from Eq.(17) we can drive the more _ \F
mn—

2

VXo [ @Wmn 2 d 2 ak(omp)
simple relation 2 8 kv | | Xoe(@mm ™2 I Ky
mk, )2}1/3k
Ko(@mn) o

1+ (22

d d )
J fo(z)dz=i f fro(z)e ' ¢@dz, (19 X
0 0

which coincides with Eq(18) in leading order with respect where J,(x) is the Bessel function of thenth order, and
to v, and corresponds to the branch which tends to that dek,(wm,) = (wma/v) +mky, oy, are the synchronous fre-
scribed by Eq(18) with m=0 atf,y(z)—0. quencies at which the shifted beam lines k,v +mk, cross
In the general case, the integrals in E§i8) can be cal-  with the curve for thenth radial modesee Fig. 2 They can
culated by numerical methods. In order to obtain analyticabe approximately determined from the relation
expressions for the increments of the instabilities, consider
the sinusoidally rippled waveguide Xy(z)=Xo(1
+ a coskyz), and expand y(z) andf,y(z) in @ powers up to
the first order. The resulting dispersion relation can be writ-
ten in the form

§+ka) l6(w)| Y2 = m(n+1/2),

2 vd D) w?
cog k Xole| ):,82|s|1’2\k0_v SEA —m cotmwA m=0,+1,+2,..., n=0,12...
><|I(A)|Zsin(2x0|s|1’2), (20) IF is interest_ing to compare the incr.ement for the 1" spa-
v tial harmonic(lowest radial modegiven by Eq.(22) for m

=—1 andn=0 with that following from the traditional ap-
where proach[18]:
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instability saturation, we can write the estimation for the

o o=k,V owe=kV-k, o=k\V-2k
Qb z z 0 z 0 H H i i .
o /, 7 L seradial pesma made trapping amplitude of plasma oscillatiof4]:
@, - == : 2-nd radial plasma mode
Oy gr /( ...... ﬂy ————————— }: E 3-rd radial plasma mode
Py ' b , € E,v
o m(vph—v) = (24)
% : i k,
K, 2k, > Vph=o/(w/v+6)=v(1l-dv/w), and § is a linear incre-

ment. Thus Eq(24) shows that, in the saturation reginte,
O scales with a linear increment liké?.
K, (Omn) = =% + kg The energy density of plasma oscillations in the saturation
o . , being proportional|E,|? scales with the increment liké*.

FIG. 2 Qualitative picture of the Cherenkov m_teractlon betweenance the enhancement in the energy transfer predicted by
the spatial plasma and beam harmonitsr clarity, only three - agtimations is rather considerable. The energy density of
curves Tor radial plasma modes and three curves for spatial bea%e plasma oscillations in the saturation regime is higher than
harmonics are shown . . . .

that following from conventional estimations by a factor of
(d/xo|e| Y231
3
0" 10 \[5
Introducing the plasma into periodical structures leads to
_ crucial changes in their electrodynamic properties, regardless
It can be easily seen that of the type of structure and plasma configuration. In the low
frequency regiorw<()., an interesting sort of spectral be-
havior such as a “dense” spectrum certainly appdas.
2d 13 ) ) Conventional techniques can hardly be used to analyze such
5—102(m2) 6" 1076 10 spectral behavior, therefore, its effect on the operation of
various experimentally realized plasma-filled devices such as
BWOQO's [5-7], TWT’s [8], pasotron’s, and some others has
since @d/xq|e|*?)>1 is provided in our approximation. not yet been studied.
Thus, the obtained value for the spatial growth rate turns out In this paper a constructive approach allowing a consid-
to be remarkably larger than that following from the previouseration of beam interaction with low frequency plasma
considerations based on the analysis of the truncated detesaves in a periodical plasma-filled waveguide has been sug-
minant[Eq. (4)]. gested. It provides a possibility to obtain a greater under-

The obtained enhancement in the increment can be physstanding of the numerical difficulties associated with the
cally interpreted by the following way. Within our approach analysis of such systems. It is shown that the relative bound-
we are able to find a periodic functioki(z) which contains ary value problem is equivalent to a singular IE. The singu-
all spatial harmonics of the plasma wave field. We also takdarity in the kernel of the IE seems to be the main reason why
into account all beam harmonics which form the beam parthe conventional analysis in this case is hardly possible in
of the IE kernelsee Eq(11)] also being periodical. Thus the principle, yielding the nonconvergence of the numerical re-
frequency providing the synchronization of the lowest beansults [18]. The simplest method of regularization is pro-
harmonic with, for example, the-1 spatial plasma har- posed, which provides a passage from the initial singular IE
monic, simultaneously provides the synchronization betweei6) to the second type of IE with the regular kerfjélq.
the 1 spatial beam harmonic and the lowest spatial plasmé0)]. As we can easily see from E(L0), the singularity in
harmonic, the-1 beam spatial harmonic and the? spatial  the kernel of the initial IE contributes to shifts of the un-
plasma harmonic, and so on, i.e., tim spatial beam har- known function argument, leading to significant distinctions
monic with the (— 1)th spatial plasma harmonic. Each spa-in the final results. In turn, the IEL0), with a regular kernel,
tial beam harmonic amplifies the corresponding synchronouslso hardly permits direct numerical analysis, since its eigen-
spatial harmonic of the plasma wave field. Hence the resultvalues k,qn=K,q(@)+mky(q=0,1,2... and m=0,+1,
ing value for incremen(22) takes into account all these el- =2,...), with corresponding eigenfunctionsV,(z)
ementary interactions and characterizes the growth of thec\Ifq(z)e*'kaZ, where integerq numerates the radial
total field at this frequency. modes, cause the “dense” spectrum. However, it should be

Meanwhile the value for incremer{23) takes into ac- pointed out that any single axially shifted branch containing
count only the interaction between the lowest spatial beanonly radial modes with corresponding eigenfunctions is
harmonic and the-1 spatial harmonic of the plasma wave enough to fully specify the total field distribution within the
field. The contribution from resonant interactions betweenwaveguide, and others do not give us any new information
the highest spatial beam and plasma harmonics tends to lsencerning this matter. Thus to avoid the “dense” spectrum
lost; hence the behavior of the total field is changed. we must select only one branch from all axially shifted ones.

The obtained estimations also predict a more efficient The obtained approximate solution demonstrates the ana-
beam-plasma wave energy transfer in the nonlinear regiméytical method of such a separation, thereby providing pas-
Considering trapping as a basic mechanism of the Cherenkasage from a “dense” spectrum to a normal type of spectrum,

VX [ ®_ 10\ % KA @_10)] 1B
0 10 z 10 22k 23) VII. CONCLUSION
BZ koV ko 0
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with a further analysis of the latter. The obtained concretevhereA = (w—k,v)/kov. After that it is enough to calculate
expressions for the eigenvalues and eigenfunctions can like sum
used in a numerical analysis of more general cases which can .
be carried out on the basis of some iterative procedure. The
second type of IEEq. (10)] is certainly very suitable for this f(A’X):n;w n—A"
aim.

Turning to the approximate solution, we note that it canUsing the equalities
also have an independent meaning, providing a possibility to
understand in detail the peculiarities of beam-plasma inter-
action in periodical systems, and visually demonstrating a 1 n A
method of overcoming the problem of the “dense” spec- n—A n?—A=? +n2—A2’
trum. Concerning the concrete results, it should be stressed
that the static part of the field formed by the highest spatial
plasma and beam harmonics can be of principal importance. * penkox “ nsinnkox
The obtained values for the spatial growth rates turn out to E TAZT =2i 2 7 AZ (A4)
be remarkably larger than that obtained by the conventional n==o M n=1 "=
approach, providing a truncation of the infinite mafr8].

It should also be noted that the first-order approximation

einkox

(A2)

(A3)

considered cannot provide the full information about the fea- 2 gintox E cosnkox 1 (A5)
tures of the plasma wave spectrum. In particular, it does not n= . n2—AZ" n?—AZ A%’

split the dispersion curves near the poikks=(m/2)kg,

where a solution like Eq(1) loses the property of linear and expressions for table sums on the right-hand side of Egs.
independence. Thus the obtained values for the spatial incréA4) and(A5) [28], f(A,x) can be represented in the form
ments (22) are valid if the synchronous points

(wmn, Kk;mn are rather far from these points. It can be

shown that the effects of splitting of the dispersion curves FAX) = — eXF[—IA((Zm+ 1) m—Kox)]
and formation of the forbidden bands can already be treated ' sin7A

in the second approximation, when we will have a second-

order differential equation instead of a first-order Ji).

(15)]. Analysis of this issue can comprise the subject of the mdsx=<(m+1/2)d. (AB)
separate paper.

However, for practical calculations it is more convenient to
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APPENDIX ;
+ _
( kov dA

dr2
f [(1+X"(2)
a2

For a calculation of the function B |8|l/2[32

Xf(A,z+X(z)—2')e**B—(1-X'(2))
(A1) X f(A,z—X(z)—2')e kXD (z")dZ . (A8)

* hneinkox
" n;m (@=hyv)?’
Note that wherze (—d/2,d/2), the argument that function
we use the representation f(A,y) belongs to the first term under integration on the
right-hand side of Eq.(A8) changes in the range
=y, (z,2)=z+X(2)—2' e(—d+s,d+59), where s
( 1 ) =X(d/2). However, we can use E¢L2b) for f(A,y) when
' its argument is over the intervglle (—d,d). To achieve this

hn
(w—hyv)?  kov?

o J
J’___
koV JA
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we merely shift the limits of integration on the equal value.the second term on the right-hand side of E&B) are iden-
Due to the periodicity of the integrand with periat] the tical. As a result we have
value of the integral does not change. Thus,

d/2
dr2 ’ ,
fﬁdlzf(A,y+(z,z’))\lf(z’)dz' fﬁdlzf(A,y_(z,z NW¥(z')dz
d/i2+s d/i2—s / ,
:fﬁdmsf(A,h(Z.Z’))\If(z’)dz. (A9) —f_dlz_sf(A,y—(z,z NV (z')dz, (A10)

Now, whenze (—d/2,d/2), the argument of (A,y) on the wherey_(z,z')=z—X(z)—2z'. Substituting Eq.12b) into
right-hand side of Eq.(A9) changes in the ranggy  Egs.(A9) and (A10), and then transforming the right-hand
=y.(z2,2')=z+X(2)—2z' (—d,d); consequently we can side of Eq.(A8) with the help of Eqs(A9) and(A10), after
use the representati@2b) for f(A,y). Manipulations with ~ simple algebraic manipulations we obtain E#3).
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