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Scaling and percolation in the small-world network model
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In this paper we study the small-world network model of Watts and Strogatz, which mimics some aspects of
the structure of networks of social interactions. We argue that there is one nontrivial length-scale in the model,
analogous to the correlation length in other systems, which is well-defined in the limit of infinite system size
and which diverges continuously as the randomness in the network tends to zero, giving a normal critical point
in this limit. This length-scale governs the crossover from large- to small-world behavior in the model, as well
as the number of vertices in a neighborhood of given radius on the network. We derive the value of the single
critical exponent controlling behavior in the critical region and the finite size scaling form for the average
vertex-vertex distance on the network, and, using series expansion andgpadeimants, find an approximate
analytic form for the scaling function. We calculate the effective dimension of small-world graphs and show
that this dimension varies as a function of the length-scale on which it is measured, in a manner reminiscent of
multifractals. We also study the problem of site percolation on small-world networks as a simple model of
disease propagation, and derive an approximate expression for the percolation probability at which a giant
component of connected vertices first for(imsepidemiological terms, the point at which an epidemic odcurs
The typical cluster radius satisfies the expected finite size scaling form with a cluster size exponent close to that
for a random graph. All our analytic results are confirmed by extensive numerical simulations of the model.
[S1063-651%9912412-1

PACS numbses): 87.23.Ge, 05.46-a, 05.70.Jk, 64.60.Fr

[. INTRODUCTION pairs of vertice§4]. Watts and Strogatz showed that graphs
of this type can indeed possess well-defined locales in the
Networks of social interactions between individuals,sense described above while at the same time possessing
groups, or organizations have some unusual topologicaélverage vertex-vertex distances which are comparable with
properties which set them apart from most of the networkghose found on true random graphs, even for quite small
with which physics deals. They appear to display simulta-values ofé.
neously properties typical both of regular lattices and of ran- In this paper we study in detail the behavior of the small-
dom graphs. For instance, social networks have well-defineworld model, concentrating particularly on its scaling prop-
locales in the sense that if individuAl knows individualB  erties. The outline of the paper is as follows. In Sec. Il we
and individualB knows individualC, then it is likely thatA ~ define the model. In Sec. Ill we study the typical length
also knowsC—much more likely than if we were to pick scales present in the model and argue that the model under-
two individuals at random from the population and askgoes a continuous phase transition as the density of random
whether they are acquainted. In this respect social networkgonnections tends to zero. We also examine the crossover
are similar to regular lattices, which also have well-definedoetween large- and small-world behavior in the model, and
locales, but very different from random graphs, in which thethe structure of “neighborhoods” of adjacent vertices. In
probability of connection is the same for any pair of verticesSec. IV we derive a scaling form for the average vertex-
on the graph. On the other hand, it is widely believed thatertex distance on a small-world graph and demonstrate nu-
one can get from almost any member of a social network tgnerically that this form is followed over a wide range of the
any other via only a small number of intermediate acquainfarameters of the model. In Sec. V we calculate the effective
tances, the exact number typically scaling as the logarithm offimension of small-world graphs and show that this dimen-
the total number of individuals comprising the network. Sion depends on the length scale on which we examine the
Within the population of the world, for example, it has beengraph. In Sec. VI we consider the properties of site percola-
suggested that there are only about “six degrees of separéon on these systems, as a model of the spread of informa-
tion” between any human being and any oth#}. This be-  tion or disease through social networks. Finally, in Sec. VI
havior is not seen in regular lattices but is a well-knownWe give our conclusions.
property of random graphs, where the average shortest path

between_two randomly chosen ver_tices_ scales adlliog Z, Il. SMALL-WORLD MODEL
whereN is the total number of vertices in the graph anid
the average coordination numdex]. The original small-world model of Watts and Strogatz, in

Recently, Watts and Strogaf3] have proposed a model its simplest incarnation, is defined as follows. We take a
which attempts to mimic the properties of social networks.one-dimensional lattice of vertices with connections or
This “small-world” model consists of a network of vertices bonds between nearest neighbors and periodic boundary con-
whose topology is that of a regular lattice, with the additionditions (the lattice is a riny Then we go through each of the
of a low density¢ of connections between randomly chosenbonds in turn and independently with some probability
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@ (b

FIG. 2. (8 An example of ak=1 small-world graph with an
underlying lattice of dimensiom=2. (b) The pattern of bonds
around a vertex on thé=2 lattice fork=3.

FIG. 1. (8 An example of a small-world graph with=24, k
=1 and, in this case, four shortcute) An example withk=3.

“rewire” it. Rewiring in this context means shifting one end numbersz significantly higher than 2, and we can arrange
of the bond to a new vertex chosen uniformly at randomfor higher z in our model in a number of ways. Watts and
from the whole lattice, with the exception that no two verti- StrogatZ 3] proposed adding bonds to next-nearest or further
ces can have more than one bond running between them, angighbors on the underlying one-dimensional lattice up to
no vertex can be connected by a bond to itself. In this modesome fixed range which we will cali[5]. In our variation on
the average coordination numheremains constantzE& 2) the model we can also start with such a lattice and then add
during the rewiring process, but the coordination number okhortcuts to it. The mean number of shortcuts is il
any particular vertex may change. The total number of reand the average coordination numberis2k(1+ ¢). Fig-
wired bonds, which we will refer to as “shortcuts,” 6L on  ure 1(b) shows a realization of this model fér=3.
average. Another way of increasing the coordination number, sug-

For the purposes of analytic treatment the Watts-Strogatgested first by Wattgs,7], is to use an underlying lattice for
model has a number of problems. One problem is that thehe model with dimension greater than one. In this paper we
distribution of shortcuts is not completely uniform; not all will consider networks based on square g@hgpepcubic lat-
choices of the positions of the rewired bonds are equallytices ind dimensions. We take a lattice of linear dimension
probable. For example, configurations with more than one, with LY vertices, nearest-neighbor bonds and periodic
bond between a particular pair of vertices are explicitly for-poundary conditions, and add shortcuts between randomly
bidden. This nonuniformity of the distribution makes an av-chosen pairs of vertices. Such a graph kat_¢ shortcuts
erage over different realizations of the randomness hard tand an average coordination numizer2d(1+ ¢). An ex-
perform. ample is shown in Fig.(@) for d=2. We can also add bonds

A more serious problem is that one of the crucial quanti-between next-nearest or further neighbors to such a lattice.
ties of interest in the model, the average distance betweenhe most straightforward generalization of the one-
pairs of vertices on the graph, is poorly defined. The reasodimensional case is to add bonds along the principal axes of
is that there is a finite probability of a portion of the lattice the lattice up to some fixed rangeas shown in Fig. @) for
becoming detached from the rest in this model. Formally, wex=3. Graphs of this type havétkdL? shortcuts on average
can represent this by saying that the distance from such gnd a mean coordination numberof 2kd(1+ ¢).
portion to a vertex elsewhere on the lattice is infinite. How-  Qur main interest in this paper is with the properties of
ever, this means that the average vertex-vertex distance qQRe small-world model for small values of the shortcut prob-
the lattice is then itself infinite, and hence that the vertexapility ¢. Watts and Strogat3] found that the model dis-
vertex distance averaged over all realizations is also infiniteplays many of the characteristics of true random graphs even
For numerical studies such as those of Watts and Strogatgr <1, and it seems to be in this regime that the model's

this does not present any substantial difficulties, but for anaproperties are most similar to those of real-world social net-
lytic work it results in a number of quantities and expres-yorks.

sions being poorly defined.

Both of these problems can be circumvented by a slight
modification of the model. In our version of the small-world
model we again start with a regular one-dimensional lattice, A fundamental observable property of interest on small-
but now instead of rewiring each bond with probabiliy =~ world lattices is the shortest path between two vertices—the
we add shortcuts between pairs of vertices chosen uniformlgumber of degrees of separation—measured as the number
at random but we do not remove any bonds from the regulaof bonds traversed to get from one vertex to another, aver-
lattice. We also explicitly allow there to be more than oneaged over all pairs of vertices and over all realizations of the
bond between any two vertices, or a bond which connects eandomness in the model. We denote this quartitfOn
vertex to itself. In order to preserve compatibility with the ordinary regular lattice scales linearly with the lattice size
results of Watts and Strogatz and others, we add with probt. On the underlying lattices used in the models described
ability ¢ one shortcut for each bond on the original lattice,here for instance, it is equal tddL/k. On true random
so that there are agaiplL shortcuts on average. The averagegraphs, in which the probability of connection between any
coordination number ig=2(1+ ¢). This model is equiva- two vertices is the samd, is proportional to lod\N/logz,
lent to the Watts-Strogatz model for small whilst being  where N is the number of vertices on the graph|. The
better behaved whegp becomes comparable to 1. Figure small-world model interpolates between these extremes,
1(a) shows one realization of our model for=24. showing linear scaling~L for small ¢, or on systems small

Real social networks usually have average coordinatioenough that there are very few shortcuts, and logarith-

Ill. LENGTH-SCALES IN SMALL-WORLD GRAPHS
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mic scalingl ~logN=dlogL when ¢ or L is large enough. critical exponent for the system, similar to the correlation
In this section and the following one we study the nature oflength exponent for a thermal phase transition.

the crossover between these two regimes, which we refer to De Menezeet al.[13] have argued that the length scgle
as “large-world” and “small-world” regimes, respectively. canonly be defined in terms of the crossover point between

For simplicity we will work mostly with the cask=1, al- large- and small-world behavior, that there is no definition of
though we will quote results fok>1 where they are of & which can be made consistent in the limit of large system
interest. size. For this reason they argue that the transitiogat0

Whenk=1 the small-world model has only one indepen-should be regarded as first-order rather than continuous. In
dent parameter—the probabilitp—and hence can have fact, however, the arguments of de Menegeal. show only
only one nontrivial length scale other than the lattice conthat one particular definition of is inconsistent; they show
stant of the underlying lattice. This length scale, which wethat £ cannot be consistently defined in terms of the mean
will denote ¢, can be defined in a number of different ways, vertex-vertex distance between vertices in finite regions of
all definitions being necessarily proportional to one anotherinfinite small-world graphs. This does not prove that no defi-
One simple way is to definé to be the typical distance hition of £ is consistent in thé.— o limit and, as we have
between the ends of shortcuts on the lattice. In a onedemonstrated here, consistent definitions do exist. Thus it
dimensional system wittk=1, for example, there are on Seems appropriate to consider the transitio@at0 to be a
averagesL shortcuts and thereforeg?. ends of shortcuts. continuqu's one.

Since the lattice haks vertices, the average distance between Barthdemy and Amara[10] have conjectured on the ba-
ends of shortcuts i&/(2¢L)=1/(2¢). In fact, it is more Sis of numerical simulations that= for d=1. As we have
convenient for our purposes to defiiavithout the factor of ~ shown herey is in fact equal to I, and specificallyr=1 in

2 in the denominator, so thgt1/¢, or for generald one dimension. We have also demonstrated this result previ-
ously using a renormalization groufRG) argument[12],
1 and it has been confirmed by extensive numerical simula-
f=———n. (1)  tions[11-13.
(¢d) The length scal€ governs a number of other properties

of small-world graphs. First, as mentioned above, it defines
the point at which the average vertex-vertex distahce
crosses over from linear to logarithmic scaling with system

For k>1 the appropriate generalization[B8]

= 1 _ 2 sizeL. This statement is necessarily true, sigcis the only
(pkd)*d nontrivial length scale in the model, but we can demonstrate
it explicitly by noting that the linear scaling regime is the one
As we see¢ diverges asp— 0 according td9] in which the average number of shortcuts on the lattice is
small compared with unity and the logarithmic regime is the
E~o77, (3) one in which it is large[6]. The crossover occurs in the
region where the average number of shortcuts is about one,
where the exponent is or in other words whenpkdLY=1. Rearranging fot., the
crossover length is
1
=3 (4) 1
- ¢ ®
A number of authors have previously considered a diver- (pkd)

gence of the kind described by E®) with ¢ defined not as
the typical distance between the ends of shortcuts, but as the The length scalg also governs the average numbgr )
system size_ at which the crossover from large- to small- of neighbors of a given vertex within a neighborhood of
world scaling occur§10—-13. We will shortly argue that in  radiusr. The number of vertices in such a neighborhood
fact the length-scalé defined here is precisely equal to this increases as’ for r< ¢ while for r> ¢ the graph behaves as
crossover length, and hence that these two divergences agerandom graph and the size of the neighborhood must in-
the same. crease exponentially with some powerrét. To derive the
The quantityé plays a role similar to that of the correla- specific functional form of/(r) we consider a small-world
tion length in an interacting system in standard statisticagraph in the limit of infiniteL. Let a(r) be the surface area
physics. Its divergence leaves the system with no lengtlof a “sphere” of radiusr on the underlying lattice of the
scale other than the lattice spacing, so that at long distancesodel, i.e., it is the number of points which are exaatly
we expect all spatial distributions to be scale-free. This issteps away from any vertex.[For k=1, a(r)
precisely the behavior one sees in an interacting system un=2%9~%/T"(d) whenr>1.] The volumeV(r) has two con-
dergoing a continuous phase transition, and it is reasonableibutions: the first comes from sites on the underlying lat-
to regard the small-world model as having a continuoudice, whose number is given by the sumagir) overr; the
phase transition at this point. Note that the transition is aecond comes from the sites which can be reached via short-
one-sided one sincg is a probability and cannot take values cuts. These latter contribute a volunr —r’) for every
less than zero. In this respect the transition is similar to thashortcut encountered at a distanée of which there are on
seen in the one-dimensional Ising model, or in percolation omverage Z Ya(r’). ThusV(r) is in general the solution of
a one-dimensional lattice. The exponerplays the part of a the equation
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FIG. 3. The mean surface areqr) of a neighborhood of
radius r on a d=1 small-world graph with$=0.01 for L FIG. 4. The mean surface ar84r) of a neighborhood of radius
=128 --131072 (solid lineg. The measurements are averagedr on a d=1 small-world graph with L=100000 for ¢
over 1000 realizations of the system each. The dotted line is the=10"%... 1072, The measurements are averaged over 1000 real-
theoretical result fot. =, Eq. (9). izations of the system each. Inset: the valug ektracted from the
curves in the main figure, as a function ¢f The gradient of the
line gives the value of the exponent which is found by a least

;
V(r)= 2 a(r[1+ 2§’dV(r —r]. (6) squares fifthe dotted ling to be 0.99-0.01.
r'=0

IV. SCALING IN SMALL-WORLD GRAPHS

In one dimension wittkk=1, for examplea(r)=2 for all r

o . ! . Given the existence of the single nontrivial length scale
anq, approximating the sum with an integral and then dlffer'l‘or the small-world model, we can also say how the mean
entiating with respect to, we get '

vertex-vertex distancé should scale with system size and

other parameters near the phase transition. In this regime the

d_V_ dimensionless quantity/L can be a function only of the
=2[1+2V(r)/&], (7) . . . . . )

dr dimensionless quantity./¢, since no other dimensionless

combinations of variables exist. Thus we can write

which has the solution
I=Lf(L/E), (10
V(r)=3&(ete-1). 8)

wheref(x) is an unknown but universal scaling function. A
Note that forr < this scales as, independent of, and for ~ scaling form similar to this was suggested previously by Bar-
r>¢ it grows exponentially, as expected. Equati@ also  theemy and Amara[10] on empirical grounds. Substituting
implies that the surface area of a sphere of radias the from Eq. (1), we then get for th&=1 case
graph, which is the derivative &f(r), should be

I=Lf(apML). (11)
A(r)=2e""¢, 9)

[We have absorbed a factor @t into the definition off (x)
These results are easily checked numerically and give us zere to make it consistent with the definition we used in Ref.
simple independent measurementéofvhich we can use to [12].] The usefulness of this equation derives from the fact
confirm our earlier arguments. In Fig. 3 we show curves ofthat the functionf(x) contains no dependence ah or L
A(r) from computer simulations of systems with=0.01  other than the explicit dependence introduced through its ar-
for values ofL equal to powers of two from 128 up to gument. Its functional form can, however, change with di-
131 072(solid lineg. The dotted line is Eq(9) with ¢ taken ~ mensiond and indeed it does. In order to obey the known
from Eq. (1). The convergence of the simulation results toasymptotic forms of for large and small systems, the scal-
the predicted exponential form as the system size grows conag functionf(x) must satisfy
firms our contention that is well defined in the limit of
large L. Figure 4 showsA(r) for L=100000 for various logx
values of¢. Equation(9) implies that the slope of the lines f(x)~ Ty asX—e (12
in the limit of smallr is 4/. In the inset we show the values
of ¢ extracted from fits to the slope as a function @fon
logarithmic scales, and a straight-line fit to these points giveglnd
us an estimate of=0.99+ 0.01 for the exponent governing .
the transition atp=0 [Eq. (3)]. This is in good agreement
with our theoretical prediction that=1. Fo0— Zd asx—0. (13
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03 TABLE |. Average vertex-vertex distances per vertgdL on
r ; 1 d=1 small-world graphs with exactlyn shortcuts ank=1. Val-
N ] ues up tom=2 are the exact results of Strang and Eriksgb#.
4L %%% i Values form=3- -5 are our numerical results.
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Letl,, be the mean vertex-vertex distance on a graph mith
FIG. 5. Data collapse for numerical measurements of the meaghortcuts in the limit of large., averaged over all such
vertex-vertex distance on small-world graphs witk-1. Circles  graphs. Then the mean vertex-vertex distance averaged over

and squares are results for=1 andk=5, respectively, for values all graphs regardless of the number of shortcuts is

of L between 128 and 32 768 and valuestdbetween x 108 and

3% 10 2. Each point is averaged over 1000 realizations of the ran-
domness. In all cases the errors on the points are smaller than the I = Z Pmlm- (16)
points themselves. The dashed line is the second-order series ap- m=0

proximation with exact coefficients given in E¢L8), while the . m
dot-dashed line is the fifth-order approximation using numericalNOte that in order to calculateup to orders™ we only need

results for the last three coefficients. The solid line is the third-ordeF[0 know the behavior of the model when it hasor fewer

Padeapproximant, Eqs(21) and(23). Inset: data collapse for two- shortcuts. For thd_: 1 case the values _Of the, have been
dimensional systems witk= 1 for values ofl. from 64 to 1024 and Cglculgted up tam=2 b_y Strang a”‘}‘ Erikssofi4] and are
& from 3x 10~ up to 1x 10~2, given in Table I. Substituting these into E4.6) and collect-

ing terms ing, we then find that

drd

Whenk>1, | tends to}dL/k for small values ot and &

o ; o I 1 1 11 11
is given by Eq.(2), so the appropriate generalization of the —=—— — L+ —— L%~ —— L+ O(¢>).
scaling form is L 4 24 1440¢ 1440(ZS ¢
17
L
= Ef((qsk)l/dL), (14) The term ing°L can be dropped whehnis large or¢ small,

since it is negligible by comparison with at least one of the

terms before it. Thus the scaling function is
with f(x) taking the same limiting formél2) and(13). Pre- g

viously we derived this scaling form in a more rigorous way 1 1 11
using an RG argumeii.2]. fO)=7—52%+F MXZJF O(x%). (18)

We can again test these results numerically by measuring
| on small-world graphs for various values #f k, andL.  Thjs form is shown as the dotted line in Fig. 5 and agrees
Eq. (14) implies that if we plot the results on a graphlefL  \ve|l with the numerical calculations for small values of the
against ¢k)*L, they should collapse onto a single curve scaling variablex, but deviates badly for large values.
for any given dimensionl. In Fig. 5 we have done this for  Calculating the exact values of the quantitigdor higher
systems based on underlying lattices witix 1 for a range  orders is an arduous task and probably does not justify the
of values of¢ andL, for k=1 and 5. As the figure shows, effort involved. However, we have calculated the values of
the collapse is excellent. In the inset we show resultsdfor the |,, numerically up tom=5 by evaluating the average
=2 with k=1, which also collapse nicely onto a single vertex-vertex distance on graphs which are constrained to
curve. The lower limits of the scaling functions in each Ccasénhave exacﬂy 3, 4, or 5 shortcuts. Performing a Tay]or expan-
are in good agreement with our theoretical predictiong of sjon of /L aboutL =, we get
ford=1 and3 for d=2.

We are not able to solve exactly for the form of the scal- [
ing functionf(x), but we can express it as a series expansion L~ L
in powers of¢ as follows. Since the scaling function is uni-
versal and has no implicit dependenceloiit is adequate to  wherec,, is a constant. Thus we can estimatgL from the
calculate it for the cas&=1; its form is the same for all vertical-axis intercept of a plot dfL againstL ! for large
other values ok. Fork=1 the probability of having exactly L. The results are shown in Table I. Calculating higher or-
m shortcuts on the graph is ders still would be straightforward.

§ Using these values we have evaluated the scaling function
p :( )¢>m(1—¢)d"d_m (15 f(x) up to fifth order inx; the result is shown as the dot-
m m ' dashed line in Fig. 5. As we can see the range over which it

Cm
1+T+O(L‘2) , (19
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matches the numerical results is greater than before, but not
by much, indicating that the series expansion converges only
slowly as extra terms are added. It appears therefore that
series expansion would be a poor way of calculatig)

over the entire range of interest.

A much better result can be obtained by using our series
expansion coefficients to define a Paxmoroximant tof (x)
[15,16. Since we know thaf(x) tends to a constarft(0)
=3d for smallx and falls off approximately as 2for large
x, the appropriate Padapproximants to use are odd-order
approximants where the approximant of order2L (n in-
tege) has the form

effective dimension D

L bodd 1) n AL 111 2 Lo brar I 1 el 0
1 i0 100 1000 10000

(20 radius

An(X)
0=105 5

FIG. 6. Effective dimensionD of small-world graphs. The
where A,(x) and B,(x) are polynomials inx of degreen  circles are results foD from numerical calculations on ah
with constant term equal to 1. For example, to third order we=1 000 000 system witd=1, k=1, and¢=10"2 using Eq.(24).

should use the approximant The errors on the points are in all cases smaller than the points
themselves. The solid line is E(5). The squares are calculated
1+a5x from Eq.(27) by numerical differentiation of simulation results for
f(x)= f(o)m- (21)  the scaling functiorf(x) of one-dimensional systems. The dotted

line is Eq.(27) evaluated using the third-order Paalgproximant to
the scaling function derived in Sec. IV. Inset: effective dimension

Expanding abouk=0 this gives
P g 9 from Eq. (27) plotted as a function of the scaling variableThe

£(x) dotted lines represent the asymptotic forms for large and small
o) =1+ (a;—by)x+(b?—ab;—b,y)x? discussed in the text.
+[(a3=by) (b3~ by) +bybE+00Y). (22 _ dlogV'_ rA(r)
1 , (24)
dlogr  V(r)
Equating coefficients order by order xmand solving for the ) )
a’s andb’s, we find that whereA(r) is the surface area of the neighborhood, as pre-
viously. We can use the same expression to calculate the
a;=1.825+0.075, effective dimension of our small-world graphs. Thus in the
case of an underlying lattice of dimensids=1, the effec-
b,=1.991+0.075, (23)  tive dimension of the graph is
arié
b,=0.301-0.012. pdr_ & (25)
£ eMlt_q’

Substituting these back into E(R1) and using the known
value off(0) then gives us our approximation t¢x). This  where we have made use of E¢8) and(9). Forr<¢ this
approximation is plotted as the solid line in Fig. 5 and, as théends to one, as we would expect, and fef¢ it tends to
figure shows, is an excellent guide to the valud ©f) over  4r/&, increasing linearly with the radius of the neighbor-
a large range of. In theory it should be possible to calculate hood. Thus the effective dimension of a small-world graph
the fifth-order Pad@approximant using the numerical results depends on the length scale on which we look at it, in a way
in Table I, although we have not done this here. Substitutingeminiscent of the behavior of multifractdl$8,19. This re-
f(x) back into the scaling form, E14), we can also use the sult will become important in Sec. VI when we consider site
Padeapproximant to predict the value of the mean vertex-percolation on small-world graphs.
vertex distance for any values @f, k, and L within the In Fig. 6 we show the effective dimension of neighbor-
scaling regime. We will make use of this result in the nexthoods on a large graph measured in numerical simulations
section to calculate the effective dimension of small-world(circles, along with the analytic result, E25) (solid line).
graphs. As we can see from the figure, the numerical and analytic
results are in good agreement for small ragibut the nu-
merical results fall off sharply for largar. The reason for
this is that Eq.(24) breaks down a%/(r) approaches the
The calculation of the volumes and surface areas ofolume of the entire system/(r) must tend toL¢ in this
neighborhoods of vertices on small-world graphs in Sec. Illlimit and hence the derivative in ER4) tends to zero. The
leads us naturally to the consideration of the dimension osame effect is also seen if one tries to use @4) on ordi-
these systems. On a regular lattice of dimendiorthe vol-  nary regular lattices of finite size. To characterize the dimen-
umeV(r) of a neighborhood of radiusincreases in propor- sion of an entire system therefore, we use another measure of
tion tor®, and hence one can calculddefrom [17] D as follows.

V. EFFECTIVE DIMENSION
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On a regular lattice of finite linear side the number of number of simple dynamical systems defined on small-world
verticesN scales ag® and hence we can calculate the di- graphs, such as networks of coupled oscillators and cellular

mension from automata. Barrat and Weif20] have looked at the proper-
ties of the Ising model on small-world graphs and derived a

_ dlogN (26  Solution for its partition function using the replica trick. Mo-
dlogl - nassorj21] looked at the spectral properties of the Laplacian

operator on small-world graphs, which tells us about the time

We can apply the same formula to the calcul_atlon Sf theayolution of a diffusive field on the graph. There is also a
effective dimension of small-world graphs puttidg=L"  noderate body of work in the mathematical and social sci-
although, since we don't have an analytic solutionlfowe  gnces which, “although not directly addressing the small-
cannot derive an analytic solution forin this case. On the ;o114 model, deals with general issues of information propa-
other hand, if we are in the scaling regime described in SeGyation in networks, such as the adoption of innovati@®s-
IV, then Eq.(14) apphe;, al_ong with the Iw_nmng forms, Egs. 25], human epidemiology26—28, and the flow of data on
(12) and (13). Substituting into Eq(26), this gives us the Internef29,30.
In this section we discuss the modeling of information or
27) disease propagation specifically on small-world graphs. Sup-
pose for example that the vertices of a small-world graph
represent individuals and the bonds between them represent
where x=(¢k)¥LxL/&. In other wordsD is a universal physical contact by which a disease can be spread. The
function of the scaling variablg. We know thatf(x) tends spread of ideas can be similarly modeled; the bonds then
to a constant for smak (i.e., £&>L), so thatD=d in this represent information connections between individuals
limit, as we would expect. For large(i.e., é&<L), Eqg.(12)  which could include letters, telephone calls, or email, as well
applies. Substituting into Eq27) this gives usD =d logx. as physical contacts. The simplest model for the spread of
In the inset of Fig. 6 we sho® from numerical calculations disease is to have the disease spread between neighbors on
as a function ok in one-dimensional systems of a variety of the graph at a uniform rate, starting from some initial carrier
sizes, along with the expected asymptotic forms, which itndividual. From the results of Sec. IV we already know
follows reasonably closely. In the main figure we also showwhat this will look like. If, for example, we wish to know
this second measure Bf (squares with error barss a func- how many people in total have contracted a disease, that
tion of the system radiub (with which it should scale lin- number is just equal to the numb¥(r) within some radius
early for largel, sincel~logx for large x). As the figure r of the initial carrier, where increases linearly with time.
shows, the two measures of effective dimension agree reaWe assume that no individual can catch the disease twice,
sonably well. The numerical errors on the first measure, Eqwhich is the case with most common diseas€bus, Eq.(8)
(24) are much smaller than those on the second, (E6) tells us that, for ad=1 small-world graph, the number of
(which is quite hard to calculate numericallyput the second individuals who have had a particular disease increases ex-
measure is clearly preferable as a measure of the dimensig®nentially, with a time-constant governed by the typical
of the entire system, since the first fails badly wheap- length scale of the graph. Since all real-world social net-
proaches. We also show the value of our second measure oWworks have a finite number of verticdg this exponential
dimension calculated using the Padpproximant tof(x)  growth is expected to saturate wh¥ffr) reachesN=L%
derived in Sec. IV(dotted line in the main figuse This  This is not a particularly startling result; the usual model for
agrees well with the numerical evaluation for radii up tothe spread of epidemics is the logistic growth model, which
about 1000 and has significantly smaller statistical error, bushows initial exponential spread followed by saturation.
overestimate® somewhat beyond this point because of in-  For a disease such as influenza, which spreads fast but is
accuracies in the approximation; the Padpproximant self-limiting, the number of people who are ill at any one
scales as ¥/for large values ok rather than (log)/x, which  time should be roughly proportional to the akér) of the
means thaD will scale asx rather than log for largex. neighborhood surrounding the initial carrier, withagain
increasing linearly in time. This implies that the epidemic
should have a single humped form with time, similar to the
curves ofA(r) plotted in Fig. 4. Note that the vertical axis in
In the previous sections of this paper we have examinethis figure is logarithmic; on linear axes the curves are bell
statistical properties of small-world graphs such as typicakhaped rather than quadratic. In the context of the spread of
length scales, vertex-vertex distances, scaling of volumemformation or ideas, similar behavior might be seen in the
and areas, and effective dimension of graphs. These are edevelopment of fads. By a fad we mean an idea which is
sentially static properties of the networks; to the extent thatatchy and therefore spreads fast, but which people tire of
small-world graphs mimic social networks, these propertiegjuickly. Fashions, jokes, toys, or buzzwords might be ex-
tell us about the static structure of those networks. Howevepected to show popularity profiles over time similar to the
social science also deals with dynamic processes going ocurves in Fig. 4.
within social networks, such as the spread of ideas, informa- However, for most real diseas@s fadsg this is not a very
tion, or diseases. This leads us to the consideration of dygood model of how they spread. For real diseases it is com-
namical models defined on small-world graphs. A smallmonly the case that only a certain fractiprof the popula-
amount of research has already been conducted in this are#n is susceptible to the disease. This can be mimicked in
Watts[6,7], for instance, has considered the properties of aur model by placing a two-state variable on each vertex

dlogl 1

dlogL? d

dlogf(x)
dlogx

1
D

VI. PERCOLATION
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which denotes whether the individual at that vertex is sus- [T T T T
ceptible. The disease then spreads only within the local
“cluster” of connected susceptible vertices surrounding the
initial carrier. One question which we can answer with such
a model is how high the densityof susceptible individuals
can be before the largest connected cluster covers a signifi-
cant fraction of the entire network and an epidemic ensues
[31].

Mathematically, this is precisely the problem of site per-
colation on a social network, at least in the case where the
susceptible individuals are randomly distributed over the ver- i
tices. To the extent that small-world graphs mimic social 00 Lol vl vl il i
networks, therefore, it is interesting to look at the percolation 0 100 10* 100 107 107 10°
problem. The transition corresponds to the point on a regular
lattice at which a percolating cluster forms whose size in-
creases with the size of the lattice for arbitrarily large. FIG. 7. Numerical results for the percolation threshold lon
[32]. On random graphs there is a similar transition, marked=10 000 small-world graphs witk=1 (circles, 2 (squarey and 5
by the formation of a so-called “giant component” of con- (triangles as a function of the shortcut densiy. The solid lines
nected verticeg33]. On small-world graphs we can calculate are the analytic approximation to the same quantity, (8@).
approximately the percolation probabilipy= p. at which the
transition takes place as follows. (1—po)¥

Consider al=1 small-world graph of the kind pictured in = kp.

Fig. 1. For the moment let us ignore the shortcut bonds and Pe
consider the percolation properties just of the underlying

regular lattice. If we color in a fractiop of the sites on this We have checked this result against numerical calcula-
underlying lattice, the occupied sites will form a number oftjons. In order to find the value @f, numerically, we employ
connected clusters. In order for two adjacent parts of the tree-based invasion algorithm similar to the invaded cluster
lattice not to be connected, we must have a series of at leagfgorithm used to find the percolation point in Ising systems
k consecutive unoccupied sites between them. The probabif34,35. This algorithm can calculate the entire curve of av-
|ty that we have such a series Starting at a partiCUlar Sit%rage cluster size Versmsin time which scales at |og|_
followed by an occupied site {(1—p)*, and the numben  [36]. We definep, to be the point at which the average

percolation threshold p,

shortcut density ¢

(30

of such series in the whole system is cluster size divided by. rises above a certain threshold. For
. systems of infinite size the transition is instantaneous and
n=Lp(1-p)“ (28)  hence the choice of threshold makes no differencetp

except thap. can never take a value lower than the thresh-
For this one-dimensional system, the percolation transitiomid itself, since even in a fully connected graph the average
occurs when we have just one break in the chain, i.e., whepluster size per vertex can be no greater than the fragtion
n=1. This gives us &th order equation fop, which isin  of occupied vertices. Thus it makes sense to choose the
general not exactly soluble, but we can find its roots numerithreshold as low as possible. In real calculations, however,
cally if we wish. we cannot use an infinitesimal threshold because of finite
Now consider what happens when we introduce shortcutsize effects. For the systems studied here we have found that
into the graph. The number of breaksEq. (28), is also the g threshold of 0.2 works well.
number of connected clusters of occupied sites on the under- Figure 7 shows the critical probability, for systems of
lying lattice. Let us for the moment suppose that the size okjzel =10 000 for a range of values @f for k=1, 2, and 5.
each cluster can be approximated by the average cluster sizehe points are the numerical results and the solid lines are
A number ¢kL of shortcuts are now added to the graphgq. (30). As the figure shows the agreement between simu-
between pairs of vertices chosen uniformly at random. Ajation and theory is good although there are some differ-
fraction p? of these will connect two occupied sites and ences. As¢ approaches one and the valuemfdrops, the
therefore can connect together two clusters of occupied sitegwo fail to agree because, as mentioned abgecannot
The problem of when the percolation transition occurs istake a value lower than the threshold used in its calculation,
then precisely that of the formation of a giant component onyhich was 0.2 in this case. The results also fail to agree for
an Ordinary random graph with vertices. It is known that very low values Of¢) where Pe becomes |arge' This is be-
such a component forms when the mean coordination nuntause Eq(29) is not a correct expression for the number of
ber of the random graph is ori83], or alternatively when cjysters on the underlying lattice when<1. This is clear
the number of bonds on the graph is half the number okjnce when there are no breaks in the sequence of connected
vertices. In other words, the transition probability must  vertices around the ring it is not also true that there are no
satisfy connected clusters. In fact there is still one cluster; the equal-
ity between number of breaks and number of clusters breaks
PapkL=3Lpc(1—po)* (29 down atn=1. The value op at which this happens is given
by puttingn=1 in Eq. (28). Sincep is close to one at this
or point its value is well approximated by
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p:l—l__llk, (31) 80 i T T T

and this is the value at which the curves in Fig. 7 should roll
off at low ¢. Fork=5 for example, for which the roll-off is
most pronounced, this expression gives a valu@=+f0.8,
which agrees reasonably well with what we see in the figure.
There is also an overall tendency in Fig. 7 for our analytic
expression to overestimate the valuepgfslightly. This we
put down to the approximation we made in the derivation of
Eq. (30) that all clusters of vertices on the underlying lattice
can be assumed to have the size of the average cluster. In
actual fact, some clusters will be smaller than the average

60 -

ol

average cluster radius p
n
(=]
T

20

and some larger. Since the shortcuts will connect to clusters 0 N

: - i . 0 0.2 0.4 0. 0.8 1
with probability proportional to the cluster size, we can ex- . -
pect percolation to set in within the subset of larger-than- percolation probability p

average clusters before it would set in if all clusters had the
average size. This makes the true valuggslightly lower

than that given b_y Eq30). In gengral however, the equation =1, $=0.1, and_ equal to a power from 512 up to 16 38drcles,
gives a good guide to the behaV|or. of the system. . squares, diamonds, upward-pointing triangles, left-pointing tri-
We have also examined numerically the behavior of theyngles, and downward-pointing triangles, respectiveiach set of

mean C“.JSter radiug for p?r00|§ti0” on small-world graphs. points is averaged over 100 realizations of the corresponding graph.
The radius of a cluster is defined as the average distanqg@set: the same data collapsed according to B3P with v

between vertices within the cluster, along the edges of the-0.59, y=1.3, andp.=0.74.

graph within the cluster. This quantity is small for small

values of the percolation probabiliyand increases with  scaling variabley=(p—p.)I**. Calling this valuey, and

as the clusters grow larger. When we reach percolation andtde corresponding percolation probabilipy, we can re-

giant component forms it reaches a maximum value and thearrange forp, as a function of to get

drops asp increases further. The drop happens because the

percolating cluster is most filamentary when percolation has Po=Pc+ Yol . (33

only just set in and so paths between vertices are at their

longest. With further increases jinthe cluster becomes more Thus if we plot the measured positiopg as a function of

highly connected and the average shortest path between two*”, the vertical-axis intercept should give us the corre-

vertices decreases. sponding value op.. We have done this for a single value
By analogy with percolation on regular lattices we mightof v in the inset to Fig. 9, and in the main figure we show the

expect the average cluster radius for a given valuepdd  resulting values op. as a function of I/. If we now per-

FIG. 8. Average cluster radiysas a function of the percolation
probability p for site percolation on small-world graphs with

satisfy the scaling forni32] form our scaling collapse, with the restriction that the values
_ of v andp, fall on this line, then the best coincidence of the
p=1""p((p—p)I*™), (32 curves for p is obtained when p,=0.74 and

_ r=0.59+ 0.05—see the inset to Fig. 8. The valueywftan
wherep(x) is a universal scaling function,is the radius of be found separately by requiring the heights of the peaks to
the entire system, angl and v are critical exponents. In fact match up, which givey=1.3+0.1. The collapse is notice-
this scaling form is not precisely obeyed by the current sysably poorer when we include systems of size smaller than
tem because the exponentsind y depend in general on the
dimension of the lattice. As we showed in Sec. V, the dimen- 0.8
sionD of a small-world graph depends on the length scale on I
which you look at it. Thus the value & “felt” by a cluster L
of radiusp will vary with p, implying thatv andy will vary 0.6 —
both with the percolation probability and with the system i
size. If we restrict ourselves to a region sufficiently close to L
the percolation threshold, and to a sufficiently small range of « 04
values ofl, then Eq.(32) should be approximately correct. I

In Fig. 8 we show numerical data fer for small-world L
graphs withk=1, ¢=0.1, andL equal to a power of two 02
from 512 up to 16 384. As we can see, the data show the I
expected peaked form, with the peak in the regionpof s
=0.8, close to the expected position of the percolation tran- 0.0
sition. In order to perform a scaling collapse of these data we
need first to extract a suitable valuemf. We can do this by v

performing a fit to the positions of the peaksri37]. Since FIG. 9. Best fit values op. as a function of /. Inset: the

the scaling functiorp(x) is (approximately universal, the values are calculated from the vertical-axis intercept of a plot of the
positions of these peaks all occur at the same value of thgosition p, of the peak ofp againstl ~Y” [see Eq(33)].
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L=512, and we attribute this not merely to finite size cor-measures of the effective dimensibrof small-world graphs
rections to the scaling form, but also to variation in the val-and find that the value dd depends on the scale on which
ues of the exponentg and v with the effective dimension of you look at the graph in a manner reminiscent of the behav-
the percolating cluster. ior of multifractals. Specifically, at length scales shorter than
We note thatv is expected to tend t in the limit of an ¢ the dimension of the graph is simply that of the underlying
infinite-dimensional system. The value=0.59 found here lattice on which it is built, and for length scales larger tigan
therefore confirms our contention that small-world graphst increases linearly, with a characteristic constant propor-
have a high effective dimension even for quite moderate valtional to ¢. The value oD increases logarithmically with the
ues of ¢, and thus are in some sense close to being randomumber of vertices in the graph. We have checked all of

graphs.(On a two-dimensional lattice by contrast 5.) these results by extensive numerical simulation of the model
and in all cases we find good agreement between the analytic
VII. CONCLUSIONS predictions and the simulation results.

_ ) In the last part of the paper we have looked at site perco-
In this paper we have studied the small-world networkation on small-world graphs as a model of the spread of
model of Watts and Strogatz, which mimics the behavior ofinformation or disease in social networks. We have derived
networks of SOC|a| interactions. In the VerSion of the modelan approximate ana'ytic expression for the perco|ati0n prob_
gsed here, graphs consist of a set of vertices joined togethgb“ity p. at which a “giant component” of connected ver-
in a regular lattice, plus a low density of “shortcuts” which tices forms on the graph and shown that this agrees well with
link together pairs of vertices chosen at random. We haveyymerical simulations. We have also performed extensive
looked at the scaling properties of small-world graphs anyymerical measurements of the typical radius of connected
argued that there is only one typical length scale presemd|ysters on the graph as a function of the percolation prob-
Other than the fundamental |att|ce Constant, Wh|Ch we denotgb”'ty and Shown by performing a Sca”ng COnapse that these
& and which is roughly the typical distance between the endgpey, to a reasonable approximation, the expected scaling
of shortcuts. We have shown that this length scale governgym in the vicinity of the percolation transition. The char-
the transition of the average vertex-vertex distance on @cteristic exponent takes a value close th, indicating that,

graph from linear to logarithmic scaling with increasing sys-as far as percolation is concerned, the graph’s properties are
tem size, as well as the rate of growth of the number ofose to those of a random graph.

vertices in a neighborhood of fixed radius about a given
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