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Scaling and percolation in the small-world network model

M. E. J. Newman and D. J. Watts
Santa Fe Institute, 1399 Hyde Park Road, Santa Fe, New Mexico 87501

~Received 7 May 1999!

In this paper we study the small-world network model of Watts and Strogatz, which mimics some aspects of
the structure of networks of social interactions. We argue that there is one nontrivial length-scale in the model,
analogous to the correlation length in other systems, which is well-defined in the limit of infinite system size
and which diverges continuously as the randomness in the network tends to zero, giving a normal critical point
in this limit. This length-scale governs the crossover from large- to small-world behavior in the model, as well
as the number of vertices in a neighborhood of given radius on the network. We derive the value of the single
critical exponent controlling behavior in the critical region and the finite size scaling form for the average
vertex-vertex distance on the network, and, using series expansion and Pade´ approximants, find an approximate
analytic form for the scaling function. We calculate the effective dimension of small-world graphs and show
that this dimension varies as a function of the length-scale on which it is measured, in a manner reminiscent of
multifractals. We also study the problem of site percolation on small-world networks as a simple model of
disease propagation, and derive an approximate expression for the percolation probability at which a giant
component of connected vertices first forms~in epidemiological terms, the point at which an epidemic occurs!.
The typical cluster radius satisfies the expected finite size scaling form with a cluster size exponent close to that
for a random graph. All our analytic results are confirmed by extensive numerical simulations of the model.
@S1063-651X~99!12412-7#

PACS number~s!: 87.23.Ge, 05.40.2a, 05.70.Jk, 64.60.Fr
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I. INTRODUCTION

Networks of social interactions between individua
groups, or organizations have some unusual topolog
properties which set them apart from most of the netwo
with which physics deals. They appear to display simu
neously properties typical both of regular lattices and of r
dom graphs. For instance, social networks have well-defi
locales in the sense that if individualA knows individualB
and individualB knows individualC, then it is likely thatA
also knowsC—much more likely than if we were to pick
two individuals at random from the population and a
whether they are acquainted. In this respect social netw
are similar to regular lattices, which also have well-defin
locales, but very different from random graphs, in which t
probability of connection is the same for any pair of vertic
on the graph. On the other hand, it is widely believed t
one can get from almost any member of a social network
any other via only a small number of intermediate acqua
tances, the exact number typically scaling as the logarithm
the total number of individuals comprising the networ
Within the population of the world, for example, it has be
suggested that there are only about ‘‘six degrees of sep
tion’’ between any human being and any other@1#. This be-
havior is not seen in regular lattices but is a well-know
property of random graphs, where the average shortest
between two randomly chosen vertices scales as logN/logz,
whereN is the total number of vertices in the graph andz is
the average coordination number@2#.

Recently, Watts and Strogatz@3# have proposed a mode
which attempts to mimic the properties of social networ
This ‘‘small-world’’ model consists of a network of vertice
whose topology is that of a regular lattice, with the additi
of a low densityf of connections between randomly chos
PRE 601063-651X/99/60~6!/7332~11!/$15.00
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pairs of vertices@4#. Watts and Strogatz showed that grap
of this type can indeed possess well-defined locales in
sense described above while at the same time posse
average vertex-vertex distances which are comparable
those found on true random graphs, even for quite sm
values off.

In this paper we study in detail the behavior of the sma
world model, concentrating particularly on its scaling pro
erties. The outline of the paper is as follows. In Sec. II w
define the model. In Sec. III we study the typical leng
scales present in the model and argue that the model un
goes a continuous phase transition as the density of ran
connections tends to zero. We also examine the cross
between large- and small-world behavior in the model, a
the structure of ‘‘neighborhoods’’ of adjacent vertices.
Sec. IV we derive a scaling form for the average verte
vertex distance on a small-world graph and demonstrate
merically that this form is followed over a wide range of th
parameters of the model. In Sec. V we calculate the effec
dimension of small-world graphs and show that this dime
sion depends on the length scale on which we examine
graph. In Sec. VI we consider the properties of site perco
tion on these systems, as a model of the spread of infor
tion or disease through social networks. Finally, in Sec. V
we give our conclusions.

II. SMALL-WORLD MODEL

The original small-world model of Watts and Strogatz,
its simplest incarnation, is defined as follows. We take
one-dimensional lattice ofL vertices with connections o
bonds between nearest neighbors and periodic boundary
ditions ~the lattice is a ring!. Then we go through each of th
bonds in turn and independently with some probabilityf
7332 © 1999 The American Physical Society
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PRE 60 7333SCALING AND PERCOLATION IN THE SMALL-WORLD . . .
‘‘rewire’’ it. Rewiring in this context means shifting one en
of the bond to a new vertex chosen uniformly at rand
from the whole lattice, with the exception that no two ver
ces can have more than one bond running between them
no vertex can be connected by a bond to itself. In this mo
the average coordination numberz remains constant (z52)
during the rewiring process, but the coordination number
any particular vertex may change. The total number of
wired bonds, which we will refer to as ‘‘shortcuts,’’ isfL on
average.

For the purposes of analytic treatment the Watts-Strog
model has a number of problems. One problem is that
distribution of shortcuts is not completely uniform; not a
choices of the positions of the rewired bonds are equ
probable. For example, configurations with more than o
bond between a particular pair of vertices are explicitly f
bidden. This nonuniformity of the distribution makes an a
erage over different realizations of the randomness har
perform.

A more serious problem is that one of the crucial quan
ties of interest in the model, the average distance betw
pairs of vertices on the graph, is poorly defined. The rea
is that there is a finite probability of a portion of the lattic
becoming detached from the rest in this model. Formally,
can represent this by saying that the distance from suc
portion to a vertex elsewhere on the lattice is infinite. Ho
ever, this means that the average vertex-vertex distanc
the lattice is then itself infinite, and hence that the vert
vertex distance averaged over all realizations is also infin
For numerical studies such as those of Watts and Stro
this does not present any substantial difficulties, but for a
lytic work it results in a number of quantities and expre
sions being poorly defined.

Both of these problems can be circumvented by a sli
modification of the model. In our version of the small-wor
model we again start with a regular one-dimensional latt
but now instead of rewiring each bond with probabilityf,
we add shortcuts between pairs of vertices chosen unifor
at random but we do not remove any bonds from the reg
lattice. We also explicitly allow there to be more than o
bond between any two vertices, or a bond which connec
vertex to itself. In order to preserve compatibility with th
results of Watts and Strogatz and others, we add with pr
ability f one shortcut for each bond on the original lattic
so that there are againfL shortcuts on average. The avera
coordination number isz52(11f). This model is equiva-
lent to the Watts-Strogatz model for smallf, whilst being
better behaved whenf becomes comparable to 1. Figu
1~a! shows one realization of our model forL524.

Real social networks usually have average coordina

FIG. 1. ~a! An example of a small-world graph withL524, k
51 and, in this case, four shortcuts.~b! An example withk53.
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numbersz significantly higher than 2, and we can arran
for higher z in our model in a number of ways. Watts an
Strogatz@3# proposed adding bonds to next-nearest or furt
neighbors on the underlying one-dimensional lattice up
some fixed range which we will callk @5#. In our variation on
the model we can also start with such a lattice and then
shortcuts to it. The mean number of shortcuts is thenfkL
and the average coordination number isz52k(11f). Fig-
ure 1~b! shows a realization of this model fork53.

Another way of increasing the coordination number, su
gested first by Watts@6,7#, is to use an underlying lattice fo
the model with dimension greater than one. In this paper
will consider networks based on square and~hyper!cubic lat-
tices ind dimensions. We take a lattice of linear dimensi
L, with Ld vertices, nearest-neighbor bonds and perio
boundary conditions, and add shortcuts between rando
chosen pairs of vertices. Such a graph hasfdLd shortcuts
and an average coordination numberz52d(11f). An ex-
ample is shown in Fig. 2~a! for d52. We can also add bond
between next-nearest or further neighbors to such a lat
The most straightforward generalization of the on
dimensional case is to add bonds along the principal axe
the lattice up to some fixed rangek, as shown in Fig. 2~b! for
k53. Graphs of this type havefkdLd shortcuts on average
and a mean coordination number ofz52kd(11f).

Our main interest in this paper is with the properties
the small-world model for small values of the shortcut pro
ability f. Watts and Strogatz@3# found that the model dis-
plays many of the characteristics of true random graphs e
for f!1, and it seems to be in this regime that the mode
properties are most similar to those of real-world social n
works.

III. LENGTH-SCALES IN SMALL-WORLD GRAPHS

A fundamental observable property of interest on sm
world lattices is the shortest path between two vertices—
number of degrees of separation—measured as the num
of bonds traversed to get from one vertex to another, av
aged over all pairs of vertices and over all realizations of
randomness in the model. We denote this quantityl . On
ordinary regular latticesl scales linearly with the lattice siz
L. On the underlying lattices used in the models describ
here for instance, it is equal to14 dL/k. On true random
graphs, in which the probability of connection between a
two vertices is the same,l is proportional to logN/logz,
where N is the number of vertices on the graph@2#. The
small-world model interpolates between these extrem
showing linear scalingl;L for smallf, or on systems smal
enough that there are very few shortcuts, and logar

FIG. 2. ~a! An example of ak51 small-world graph with an
underlying lattice of dimensiond52. ~b! The pattern of bonds
around a vertex on thed52 lattice fork53.
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7334 PRE 60M. E. J. NEWMAN AND D. J. WATTS
mic scalingl; logN5d logL whenf or L is large enough.
In this section and the following one we study the nature
the crossover between these two regimes, which we refe
as ‘‘large-world’’ and ‘‘small-world’’ regimes, respectively
For simplicity we will work mostly with the casek51, al-
though we will quote results fork.1 where they are of
interest.

Whenk51 the small-world model has only one indepe
dent parameter—the probabilityf—and hence can hav
only one nontrivial length scale other than the lattice co
stant of the underlying lattice. This length scale, which
will denotej, can be defined in a number of different way
all definitions being necessarily proportional to one anoth
One simple way is to definej to be the typical distance
between the ends of shortcuts on the lattice. In a o
dimensional system withk51, for example, there are o
averagefL shortcuts and therefore 2fL ends of shortcuts
Since the lattice hasL vertices, the average distance betwe
ends of shortcuts isL/(2fL)51/(2f). In fact, it is more
convenient for our purposes to definej without the factor of
2 in the denominator, so thatj51/f, or for generald

j5
1

~fd!1/d
. ~1!

For k.1 the appropriate generalization is@8#

j5
1

~fkd!1/d
. ~2!

As we see,j diverges asf→0 according to@9#

j;f2t, ~3!

where the exponentt is

t5
1

d
. ~4!

A number of authors have previously considered a div
gence of the kind described by Eq.~3! with j defined not as
the typical distance between the ends of shortcuts, but as
system sizeL at which the crossover from large- to sma
world scaling occurs@10–13#. We will shortly argue that in
fact the length-scalej defined here is precisely equal to th
crossover length, and hence that these two divergences
the same.

The quantityj plays a role similar to that of the correla
tion length in an interacting system in standard statist
physics. Its divergence leaves the system with no len
scale other than the lattice spacing, so that at long dista
we expect all spatial distributions to be scale-free. This
precisely the behavior one sees in an interacting system
dergoing a continuous phase transition, and it is reason
to regard the small-world model as having a continuo
phase transition at this point. Note that the transition i
one-sided one sincef is a probability and cannot take value
less than zero. In this respect the transition is similar to t
seen in the one-dimensional Ising model, or in percolation
a one-dimensional lattice. The exponentt plays the part of a
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critical exponent for the system, similar to the correlati
length exponentn for a thermal phase transition.

De Menezeset al. @13# have argued that the length scalej
canonly be defined in terms of the crossover point betwe
large- and small-world behavior, that there is no definition
j which can be made consistent in the limit of large syst
size. For this reason they argue that the transition atf50
should be regarded as first-order rather than continuous
fact, however, the arguments of de Menezeset al. show only
that one particular definition ofj is inconsistent; they show
that j cannot be consistently defined in terms of the me
vertex-vertex distance between vertices in finite regions
infinite small-world graphs. This does not prove that no de
nition of j is consistent in theL→` limit and, as we have
demonstrated here, consistent definitions do exist. Thu
seems appropriate to consider the transition atf50 to be a
continuous one.

Barthélémy and Amaral@10# have conjectured on the ba
sis of numerical simulations thatt5 2

3 for d51. As we have
shown here,t is in fact equal to 1/d, and specificallyt51 in
one dimension. We have also demonstrated this result pr
ously using a renormalization group~RG! argument@12#,
and it has been confirmed by extensive numerical simu
tions @11–13#.

The length scalej governs a number of other propertie
of small-world graphs. First, as mentioned above, it defin
the point at which the average vertex-vertex distancel
crosses over from linear to logarithmic scaling with syste
sizeL. This statement is necessarily true, sincej is the only
nontrivial length scale in the model, but we can demonstr
it explicitly by noting that the linear scaling regime is the o
in which the average number of shortcuts on the lattice
small compared with unity and the logarithmic regime is t
one in which it is large@6#. The crossover occurs in th
region where the average number of shortcuts is about
or in other words whenfkdLd51. Rearranging forL, the
crossover length is

L5
1

~fkd!1/d
5j. ~5!

The length scalej also governs the average numberV(r )
of neighbors of a given vertex within a neighborhood
radius r. The number of vertices in such a neighborho
increases asr d for r !j while for r @j the graph behaves a
a random graph and the size of the neighborhood must
crease exponentially with some power ofr /j. To derive the
specific functional form ofV(r ) we consider a small-world
graph in the limit of infiniteL. Let a(r ) be the surface area
of a ‘‘sphere’’ of radiusr on the underlying lattice of the
model, i.e., it is the number of points which are exactlyr
steps away from any vertex. @For k51, a(r )
52dr d21/G(d) whenr @1.# The volumeV(r ) has two con-
tributions: the first comes from sites on the underlying l
tice, whose number is given by the sum ofa(r ) over r; the
second comes from the sites which can be reached via s
cuts. These latter contribute a volumeV(r 2r 8) for every
shortcut encountered at a distancer 8, of which there are on
average 2j2da(r 8). ThusV(r ) is in general the solution o
the equation
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V~r !5 (
r 850

r

a~r 8!@112j2dV~r 2r 8!#. ~6!

In one dimension withk51, for example,a(r )52 for all r
and, approximating the sum with an integral and then diff
entiating with respect tor, we get

dV

dr
52@112V~r !/j#, ~7!

which has the solution

V~r !5 1
2 j~e4r /j21!. ~8!

Note that forr !j this scales asr, independent ofj, and for
r @j it grows exponentially, as expected. Equation~8! also
implies that the surface area of a sphere of radiusr on the
graph, which is the derivative ofV(r ), should be

A~r !52e4r /j. ~9!

These results are easily checked numerically and give
simple independent measurement ofj which we can use to
confirm our earlier arguments. In Fig. 3 we show curves
A(r ) from computer simulations of systems withf50.01
for values of L equal to powers of two from 128 up t
131 072~solid lines!. The dotted line is Eq.~9! with j taken
from Eq. ~1!. The convergence of the simulation results
the predicted exponential form as the system size grows
firms our contention thatj is well defined in the limit of
large L. Figure 4 showsA(r ) for L5100 000 for various
values off. Equation~9! implies that the slope of the line
in the limit of smallr is 4/j. In the inset we show the value
of j extracted from fits to the slope as a function off on
logarithmic scales, and a straight-line fit to these points gi
us an estimate oft50.9960.01 for the exponent governin
the transition atf50 @Eq. ~3!#. This is in good agreemen
with our theoretical prediction thatt51.

FIG. 3. The mean surface areaA(r ) of a neighborhood of
radius r on a d51 small-world graph withf50.01 for L
5128•••131 072 ~solid lines!. The measurements are averag
over 1000 realizations of the system each. The dotted line is
theoretical result forL5`, Eq. ~9!.
-

a

f

n-

s

IV. SCALING IN SMALL-WORLD GRAPHS

Given the existence of the single nontrivial length scalej
for the small-world model, we can also say how the me
vertex-vertex distancel should scale with system size an
other parameters near the phase transition. In this regime
dimensionless quantityl /L can be a function only of the
dimensionless quantityL/j, since no other dimensionles
combinations of variables exist. Thus we can write

l 5L f ~L/j!, ~10!

where f (x) is an unknown but universal scaling function.
scaling form similar to this was suggested previously by B
thélémy and Amaral@10# on empirical grounds. Substitutin
from Eq. ~1!, we then get for thek51 case

l 5L f ~f1/dL !. ~11!

@We have absorbed a factor ofd1/d into the definition off (x)
here to make it consistent with the definition we used in R
@12#.# The usefulness of this equation derives from the f
that the functionf (x) contains no dependence onf or L
other than the explicit dependence introduced through its
gument. Its functional form can, however, change with
mensiond and indeed it does. In order to obey the know
asymptotic forms ofl for large and small systems, the sca
ing function f (x) must satisfy

f ~x!;
logx

x
asx→` ~12!

and

f ~x!→ 1

4
d asx→0. ~13!

e

FIG. 4. The mean surface areaA(r ) of a neighborhood of radius
r on a d51 small-world graph with L5100 000 for f
51024 . . . 1022. The measurements are averaged over 1000 r
izations of the system each. Inset: the value ofj extracted from the
curves in the main figure, as a function off. The gradient of the
line gives the value of the exponentt, which is found by a least
squares fit~the dotted line! to be 0.9960.01.
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7336 PRE 60M. E. J. NEWMAN AND D. J. WATTS
Whenk.1, l tends to1
4 dL/k for small values ofL andj

is given by Eq.~2!, so the appropriate generalization of th
scaling form is

l 5
L

k
f „~fk!1/dL…, ~14!

with f (x) taking the same limiting forms~12! and~13!. Pre-
viously we derived this scaling form in a more rigorous w
using an RG argument@12#.

We can again test these results numerically by measu
l on small-world graphs for various values off, k, andL.
Eq. ~14! implies that if we plot the results on a graph oflk/L
against (fk)1/dL, they should collapse onto a single cur
for any given dimensiond. In Fig. 5 we have done this fo
systems based on underlying lattices withd51 for a range
of values off andL, for k51 and 5. As the figure shows
the collapse is excellent. In the inset we show results fod
52 with k51, which also collapse nicely onto a sing
curve. The lower limits of the scaling functions in each ca
are in good agreement with our theoretical predictions o1

4

for d51 and 1
2 for d52.

We are not able to solve exactly for the form of the sc
ing function f (x), but we can express it as a series expans
in powers off as follows. Since the scaling function is un
versal and has no implicit dependence onk, it is adequate to
calculate it for the casek51; its form is the same for al
other values ofk. For k51 the probability of having exactly
m shortcuts on the graph is

Pm5S dLd

m Dfm~12f!dLd2m. ~15!

FIG. 5. Data collapse for numerical measurements of the m
vertex-vertex distance on small-world graphs withd51. Circles
and squares are results fork51 andk55, respectively, for values
of L between 128 and 32 768 and values off between 131026 and
331022. Each point is averaged over 1000 realizations of the r
domness. In all cases the errors on the points are smaller tha
points themselves. The dashed line is the second-order serie
proximation with exact coefficients given in Eq.~18!, while the
dot-dashed line is the fifth-order approximation using numer
results for the last three coefficients. The solid line is the third-or
Padéapproximant, Eqs.~21! and~23!. Inset: data collapse for two
dimensional systems withk51 for values ofL from 64 to 1024 and
f from 331026 up to 131023.
g

e

-
n

Let l m be the mean vertex-vertex distance on a graph withm
shortcuts in the limit of largeL, averaged over all such
graphs. Then the mean vertex-vertex distance averaged
all graphs regardless of the number of shortcuts is

l 5 (
m50

dLd

Pml m . ~16!

Note that in order to calculatel up to orderfm we only need
to know the behavior of the model when it hasm or fewer
shortcuts. For thed51 case the values of thel m have been
calculated up tom52 by Strang and Eriksson@14# and are
given in Table I. Substituting these into Eq.~16! and collect-
ing terms inf, we then find that

l

L
5

1

4
2

1

24
fL1

11

1440
f2L22

11

1440
f2L1O~f3!.

~17!

The term inf2L can be dropped whenL is large orf small,
since it is negligible by comparison with at least one of t
terms before it. Thus the scaling function is

f ~x!5
1

4
2

1

24
x1

11

1440
x21O~x3!. ~18!

This form is shown as the dotted line in Fig. 5 and agre
well with the numerical calculations for small values of th
scaling variablex, but deviates badly for large values.

Calculating the exact values of the quantitiesl m for higher
orders is an arduous task and probably does not justify
effort involved. However, we have calculated the values
the l m numerically up tom55 by evaluating the averag
vertex-vertex distancel on graphs which are constrained
have exactly 3, 4, or 5 shortcuts. Performing a Taylor exp
sion of l /L aboutL5`, we get

l

L
5

l m

L F11
cm

L
1O~L22!G , ~19!

wherecm is a constant. Thus we can estimatel m /L from the
vertical-axis intercept of a plot ofl /L againstL21 for large
L. The results are shown in Table I. Calculating higher
ders still would be straightforward.

Using these values we have evaluated the scaling func
f (x) up to fifth order inx; the result is shown as the do
dashed line in Fig. 5. As we can see the range over whic

n

-
the
ap-

l
r

TABLE I. Average vertex-vertex distances per vertexl m /L on
d51 small-world graphs with exactlym shortcuts andk51. Val-
ues up tom52 are the exact results of Strang and Eriksson@14#.
Values form53•••5 are our numerical results.

m lm /L

0 1/4
1 5/24
2 131/720
3 0.154960.0003
4 0.136560.0003
5 0.123260.0003
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PRE 60 7337SCALING AND PERCOLATION IN THE SMALL-WORLD . . .
matches the numerical results is greater than before, bu
by much, indicating that the series expansion converges
slowly as extra terms are added. It appears therefore
series expansion would be a poor way of calculatingf (x)
over the entire range of interest.

A much better result can be obtained by using our se
expansion coefficients to define a Pade´ approximant tof (x)
@15,16#. Since we know thatf (x) tends to a constantf (0)
5 1

4 d for smallx and falls off approximately as 1/x for large
x, the appropriate Pade´ approximants to use are odd-ord
approximants where the approximant of order 2n11 (n in-
teger! has the form

f ~x!5 f ~0!
An~x!

Bn11~x!
, ~20!

where An(x) and Bn(x) are polynomials inx of degreen
with constant term equal to 1. For example, to third order
should use the approximant

f ~x!5 f ~0!
11a1x

11b1x1b2x2 . ~21!

Expanding aboutx50 this gives

f ~x!

f ~0!
511~a12b1!x1~b1

22a1b12b2!x2

1@~a12b1!~b1
22b2!1b1b2#x31O~x4!. ~22!

Equating coefficients order by order inx and solving for the
a’s andb’s, we find that

a151.82560.075,

b151.99160.075, ~23!

b250.30160.012.

Substituting these back into Eq.~21! and using the known
value of f (0) then gives us our approximation tof (x). This
approximation is plotted as the solid line in Fig. 5 and, as
figure shows, is an excellent guide to the value off (x) over
a large range ofx. In theory it should be possible to calcula
the fifth-order Pade´ approximant using the numerical resu
in Table I, although we have not done this here. Substitu
f (x) back into the scaling form, Eq.~14!, we can also use the
Padéapproximant to predict the value of the mean verte
vertex distance for any values off, k, and L within the
scaling regime. We will make use of this result in the ne
section to calculate the effective dimension of small-wo
graphs.

V. EFFECTIVE DIMENSION

The calculation of the volumes and surface areas
neighborhoods of vertices on small-world graphs in Sec.
leads us naturally to the consideration of the dimension
these systems. On a regular lattice of dimensionD, the vol-
umeV(r ) of a neighborhood of radiusr increases in propor
tion to r D, and hence one can calculateD from @17#
ot
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f

D5
d logV

d log r
5

rA~r !

V~r !
, ~24!

whereA(r ) is the surface area of the neighborhood, as p
viously. We can use the same expression to calculate
effective dimension of our small-world graphs. Thus in t
case of an underlying lattice of dimensiond51, the effec-
tive dimension of the graph is

D5
4r

j

e4r /j

e4r /j21
, ~25!

where we have made use of Eqs.~8! and ~9!. For r !j this
tends to one, as we would expect, and forr @j it tends to
4r /j, increasing linearly with the radius of the neighbo
hood. Thus the effective dimension of a small-world gra
depends on the length scale on which we look at it, in a w
reminiscent of the behavior of multifractals@18,19#. This re-
sult will become important in Sec. VI when we consider s
percolation on small-world graphs.

In Fig. 6 we show the effective dimension of neighbo
hoods on a large graph measured in numerical simulat
~circles!, along with the analytic result, Eq.~25! ~solid line!.
As we can see from the figure, the numerical and anal
results are in good agreement for small radiir, but the nu-
merical results fall off sharply for largerr. The reason for
this is that Eq.~24! breaks down asV(r ) approaches the
volume of the entire system;V(r ) must tend toLd in this
limit and hence the derivative in Eq.~24! tends to zero. The
same effect is also seen if one tries to use Eq.~24! on ordi-
nary regular lattices of finite size. To characterize the dim
sion of an entire system therefore, we use another measu
D as follows.

FIG. 6. Effective dimensionD of small-world graphs. The
circles are results forD from numerical calculations on anL
51 000 000 system withd51, k51, andf51023 using Eq.~24!.
The errors on the points are in all cases smaller than the po
themselves. The solid line is Eq.~25!. The squares are calculate
from Eq. ~27! by numerical differentiation of simulation results fo
the scaling functionf (x) of one-dimensional systems. The dotte
line is Eq.~27! evaluated using the third-order Pade´ approximant to
the scaling function derived in Sec. IV. Inset: effective dimens
from Eq. ~27! plotted as a function of the scaling variablex. The
dotted lines represent the asymptotic forms for large and smax
discussed in the text.
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On a regular lattice of finite linear sizel , the number of
verticesN scales asl D and hence we can calculate the d
mension from

D5
d logN

d log l
. ~26!

We can apply the same formula to the calculation of
effective dimension of small-world graphs puttingN5Ld,
although, since we don’t have an analytic solution forl , we
cannot derive an analytic solution forD in this case. On the
other hand, if we are in the scaling regime described in S
IV, then Eq.~14! applies, along with the limiting forms, Eqs
~12! and ~13!. Substituting into Eq.~26!, this gives us

1

D
5

d log l

d logLd
5

1

d F11
d log f ~x!

d logx G , ~27!

where x5(fk)1/dL}L/j. In other wordsD is a universal
function of the scaling variablex. We know thatf (x) tends
to a constant for smallx ~i.e., j@L), so thatD5d in this
limit, as we would expect. For largex ~i.e., j!L), Eq. ~12!
applies. Substituting into Eq.~27! this gives usD5d logx.
In the inset of Fig. 6 we showD from numerical calculations
as a function ofx in one-dimensional systems of a variety
sizes, along with the expected asymptotic forms, which
follows reasonably closely. In the main figure we also sh
this second measure ofD ~squares with error bars! as a func-
tion of the system radiusl ~with which it should scale lin-
early for largel , since l; logx for large x). As the figure
shows, the two measures of effective dimension agree
sonably well. The numerical errors on the first measure,
~24! are much smaller than those on the second, Eq.~26!
~which is quite hard to calculate numerically!, but the second
measure is clearly preferable as a measure of the dimen
of the entire system, since the first fails badly whenr ap-
proachesl . We also show the value of our second measure
dimension calculated using the Pade´ approximant tof (x)
derived in Sec. IV~dotted line in the main figure!. This
agrees well with the numerical evaluation for radii up
about 1000 and has significantly smaller statistical error,
overestimatesD somewhat beyond this point because of
accuracies in the approximation; the Pade´ approximant
scales as 1/x for large values ofx rather than (logx)/x, which
means thatD will scale asx rather than logx for largex.

VI. PERCOLATION

In the previous sections of this paper we have exami
statistical properties of small-world graphs such as typ
length scales, vertex-vertex distances, scaling of volum
and areas, and effective dimension of graphs. These are
sentially static properties of the networks; to the extent t
small-world graphs mimic social networks, these proper
tell us about the static structure of those networks. Howe
social science also deals with dynamic processes going
within social networks, such as the spread of ideas, infor
tion, or diseases. This leads us to the consideration of
namical models defined on small-world graphs. A sm
amount of research has already been conducted in this
Watts @6,7#, for instance, has considered the properties o
e

c.

it

a-
q.

ion

f

ut
-

d
l
s

es-
t
s
r,
on
a-
y-
ll
ea.
a

number of simple dynamical systems defined on small-wo
graphs, such as networks of coupled oscillators and cell
automata. Barrat and Weigt@20# have looked at the proper
ties of the Ising model on small-world graphs and derive
solution for its partition function using the replica trick. Mo
nasson@21# looked at the spectral properties of the Laplaci
operator on small-world graphs, which tells us about the ti
evolution of a diffusive field on the graph. There is also
moderate body of work in the mathematical and social s
ences which, although not directly addressing the sm
world model, deals with general issues of information prop
gation in networks, such as the adoption of innovations@22–
25#, human epidemiology@26–28#, and the flow of data on
the Internet@29,30#.

In this section we discuss the modeling of information
disease propagation specifically on small-world graphs. S
pose for example that the vertices of a small-world gra
represent individuals and the bonds between them repre
physical contact by which a disease can be spread.
spread of ideas can be similarly modeled; the bonds t
represent information connections between individu
which could include letters, telephone calls, or email, as w
as physical contacts. The simplest model for the spread
disease is to have the disease spread between neighbo
the graph at a uniform rate, starting from some initial carr
individual. From the results of Sec. IV we already kno
what this will look like. If, for example, we wish to know
how many people in total have contracted a disease,
number is just equal to the numberV(r ) within some radius
r of the initial carrier, wherer increases linearly with time
~We assume that no individual can catch the disease tw
which is the case with most common diseases.! Thus, Eq.~8!
tells us that, for ad51 small-world graph, the number o
individuals who have had a particular disease increases
ponentially, with a time-constant governed by the typic
length scalej of the graph. Since all real-world social ne
works have a finite number of verticesN, this exponential
growth is expected to saturate whenV(r ) reachesN5Ld.
This is not a particularly startling result; the usual model
the spread of epidemics is the logistic growth model, wh
shows initial exponential spread followed by saturation.

For a disease such as influenza, which spreads fast b
self-limiting, the number of people who are ill at any on
time should be roughly proportional to the areaA(r ) of the
neighborhood surrounding the initial carrier, withr again
increasing linearly in time. This implies that the epidem
should have a single humped form with time, similar to t
curves ofA(r ) plotted in Fig. 4. Note that the vertical axis i
this figure is logarithmic; on linear axes the curves are b
shaped rather than quadratic. In the context of the sprea
information or ideas, similar behavior might be seen in t
development of fads. By a fad we mean an idea which
catchy and therefore spreads fast, but which people tire
quickly. Fashions, jokes, toys, or buzzwords might be
pected to show popularity profiles over time similar to t
curves in Fig. 4.

However, for most real diseases~or fads! this is not a very
good model of how they spread. For real diseases it is c
monly the case that only a certain fractionp of the popula-
tion is susceptible to the disease. This can be mimicked
our model by placing a two-state variable on each ver
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which denotes whether the individual at that vertex is s
ceptible. The disease then spreads only within the lo
‘‘cluster’’ of connected susceptible vertices surrounding
initial carrier. One question which we can answer with su
a model is how high the densityp of susceptible individuals
can be before the largest connected cluster covers a sig
cant fraction of the entire network and an epidemic ens
@31#.

Mathematically, this is precisely the problem of site pe
colation on a social network, at least in the case where
susceptible individuals are randomly distributed over the v
tices. To the extent that small-world graphs mimic soc
networks, therefore, it is interesting to look at the percolat
problem. The transition corresponds to the point on a reg
lattice at which a percolating cluster forms whose size
creases with the sizeL of the lattice for arbitrarily largeL
@32#. On random graphs there is a similar transition, mark
by the formation of a so-called ‘‘giant component’’ of con
nected vertices@33#. On small-world graphs we can calcula
approximately the percolation probabilityp5pc at which the
transition takes place as follows.

Consider ad51 small-world graph of the kind pictured i
Fig. 1. For the moment let us ignore the shortcut bonds
consider the percolation properties just of the underly
regular lattice. If we color in a fractionp of the sites on this
underlying lattice, the occupied sites will form a number
connected clusters. In order for two adjacent parts of
lattice not to be connected, we must have a series of at l
k consecutive unoccupied sites between them. The prob
ity that we have such a series starting at a particular s
followed by an occupied site isp(12p)k, and the numbern
of such series in the whole system is

n5Lp~12p!k. ~28!

For this one-dimensional system, the percolation transi
occurs when we have just one break in the chain, i.e., w
n51. This gives us akth order equation forpc which is in
general not exactly soluble, but we can find its roots num
cally if we wish.

Now consider what happens when we introduce shortc
into the graph. The number of breaksn, Eq. ~28!, is also the
number of connected clusters of occupied sites on the un
lying lattice. Let us for the moment suppose that the size
each cluster can be approximated by the average cluster
A number fkL of shortcuts are now added to the gra
between pairs of vertices chosen uniformly at random
fraction p2 of these will connect two occupied sites an
therefore can connect together two clusters of occupied s
The problem of when the percolation transition occurs
then precisely that of the formation of a giant component
an ordinary random graph withn vertices. It is known that
such a component forms when the mean coordination n
ber of the random graph is one@33#, or alternatively when
the number of bonds on the graph is half the number
vertices. In other words, the transition probabilitypc must
satisfy

pc
2fkL5 1

2 Lpc~12pc!
k ~29!
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f5
~12pc!

k

2kpc
. ~30!

We have checked this result against numerical calcu
tions. In order to find the value ofpc numerically, we employ
a tree-based invasion algorithm similar to the invaded clu
algorithm used to find the percolation point in Ising syste
@34,35#. This algorithm can calculate the entire curve of a
erage cluster size versusp in time which scales asL logL
@36#. We definepc to be the point at which the averag
cluster size divided byL rises above a certain threshold. F
systems of infinite size the transition is instantaneous
hence the choice of threshold makes no difference topc ,
except thatpc can never take a value lower than the thres
old itself, since even in a fully connected graph the avera
cluster size per vertex can be no greater than the fractionpc
of occupied vertices. Thus it makes sense to choose
threshold as low as possible. In real calculations, howe
we cannot use an infinitesimal threshold because of fi
size effects. For the systems studied here we have found
a threshold of 0.2 works well.

Figure 7 shows the critical probabilitypc for systems of
sizeL510 000 for a range of values off for k51, 2, and 5.
The points are the numerical results and the solid lines
Eq. ~30!. As the figure shows the agreement between sim
lation and theory is good although there are some diff
ences. Asf approaches one and the value ofpc drops, the
two fail to agree because, as mentioned above,pc cannot
take a value lower than the threshold used in its calculat
which was 0.2 in this case. The results also fail to agree
very low values off wherepc becomes large. This is be
cause Eq.~28! is not a correct expression for the number
clusters on the underlying lattice whenn,1. This is clear
since when there are no breaks in the sequence of conne
vertices around the ring it is not also true that there are
connected clusters. In fact there is still one cluster; the eq
ity between number of breaks and number of clusters bre
down atn51. The value ofp at which this happens is give
by putting n51 in Eq. ~28!. Sincep is close to one at this
point its value is well approximated by

FIG. 7. Numerical results for the percolation threshold onL
510 000 small-world graphs withk51 ~circles!, 2 ~squares!, and 5
~triangles! as a function of the shortcut densityf. The solid lines
are the analytic approximation to the same quantity, Eq.~30!.
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p.12L21/k, ~31!

and this is the value at which the curves in Fig. 7 should
off at low f. For k55 for example, for which the roll-off is
most pronounced, this expression gives a value ofp.0.8,
which agrees reasonably well with what we see in the figu

There is also an overall tendency in Fig. 7 for our analy
expression to overestimate the value ofpc slightly. This we
put down to the approximation we made in the derivation
Eq. ~30! that all clusters of vertices on the underlying latti
can be assumed to have the size of the average cluste
actual fact, some clusters will be smaller than the aver
and some larger. Since the shortcuts will connect to clus
with probability proportional to the cluster size, we can e
pect percolation to set in within the subset of larger-th
average clusters before it would set in if all clusters had
average size. This makes the true value ofpc slightly lower
than that given by Eq.~30!. In general however, the equatio
gives a good guide to the behavior of the system.

We have also examined numerically the behavior of
mean cluster radiusr for percolation on small-world graphs
The radius of a cluster is defined as the average dista
between vertices within the cluster, along the edges of
graph within the cluster. This quantity is small for sma
values of the percolation probabilityp and increases withp
as the clusters grow larger. When we reach percolation a
giant component forms it reaches a maximum value and t
drops asp increases further. The drop happens because
percolating cluster is most filamentary when percolation
only just set in and so paths between vertices are at t
longest. With further increases inp the cluster becomes mor
highly connected and the average shortest path between
vertices decreases.

By analogy with percolation on regular lattices we mig
expect the average cluster radius for a given value off to
satisfy the scaling form@32#

r5 l g/nr̃„~p2pc!l
1/n
…, ~32!

wherer̃(x) is a universal scaling function,l is the radius of
the entire system, andg andn are critical exponents. In fac
this scaling form is not precisely obeyed by the current s
tem because the exponentsn andg depend in general on th
dimension of the lattice. As we showed in Sec. V, the dim
sionD of a small-world graph depends on the length scale
which you look at it. Thus the value ofD ‘‘felt’’ by a cluster
of radiusr will vary with r, implying thatn andg will vary
both with the percolation probability and with the syste
size. If we restrict ourselves to a region sufficiently close
the percolation threshold, and to a sufficiently small range
values ofl , then Eq.~32! should be approximately correct

In Fig. 8 we show numerical data forr for small-world
graphs withk51, f50.1, andL equal to a power of two
from 512 up to 16 384. As we can see, the data show
expected peaked form, with the peak in the region ofp
50.8, close to the expected position of the percolation tr
sition. In order to perform a scaling collapse of these data
need first to extract a suitable value ofpc . We can do this by
performing a fit to the positions of the peaks inr @37#. Since
the scaling functionr̃(x) is ~approximately! universal, the
positions of these peaks all occur at the same value of
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scaling variabley5(p2pc) l
1/n. Calling this valuey0 and

the corresponding percolation probabilityp0, we can re-
arrange forp0 as a function ofl to get

p05pc1y0l 21/n. ~33!

Thus if we plot the measured positionsp0 as a function of
l 21/n, the vertical-axis intercept should give us the cor
sponding value ofpc . We have done this for a single valu
of n in the inset to Fig. 9, and in the main figure we show t
resulting values ofpc as a function of 1/n. If we now per-
form our scaling collapse, with the restriction that the valu
of n andpc fall on this line, then the best coincidence of th
curves for r is obtained when pc50.74 and
n50.5960.05—see the inset to Fig. 8. The value ofg can
be found separately by requiring the heights of the peak
match up, which givesg51.360.1. The collapse is notice
ably poorer when we include systems of size smaller th

FIG. 8. Average cluster radiusr as a function of the percolation
probability p for site percolation on small-world graphs withk
51, f50.1, andL equal to a power from 512 up to 16 384~circles,
squares, diamonds, upward-pointing triangles, left-pointing
angles, and downward-pointing triangles, respectively!. Each set of
points is averaged over 100 realizations of the corresponding gr
Inset: the same data collapsed according to Eq.~32! with n
50.59, g51.3, andpc50.74.

FIG. 9. Best fit values ofpc as a function of 1/n. Inset: the
values are calculated from the vertical-axis intercept of a plot of
positionp0 of the peak ofr againstl 21/n @see Eq.~33!#.
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L5512, and we attribute this not merely to finite size co
rections to the scaling form, but also to variation in the v
ues of the exponentsg andn with the effective dimension o
the percolating cluster.

We note thatn is expected to tend to12 in the limit of an
infinite-dimensional system. The valuen50.59 found here
therefore confirms our contention that small-world grap
have a high effective dimension even for quite moderate
ues off, and thus are in some sense close to being rand
graphs.~On a two-dimensional lattice by contrastn5 4

3 .!

VII. CONCLUSIONS

In this paper we have studied the small-world netwo
model of Watts and Strogatz, which mimics the behavior
networks of social interactions. In the version of the mo
used here, graphs consist of a set of vertices joined toge
in a regular lattice, plus a low density of ‘‘shortcuts’’ whic
link together pairs of vertices chosen at random. We h
looked at the scaling properties of small-world graphs a
argued that there is only one typical length scale pres
other than the fundamental lattice constant, which we den
j and which is roughly the typical distance between the e
of shortcuts. We have shown that this length scale gove
the transition of the average vertex-vertex distance o
graph from linear to logarithmic scaling with increasing sy
tem size, as well as the rate of growth of the number
vertices in a neighborhood of fixed radius about a giv
point. We have also shown that the value ofj diverges on an
infinite lattice as the density of shortcuts tends to zero,
therefore that the system possesses a continuous phase
sition in this limit. Close to the phase transition, wherej is
large, we have shown that the average vertex-vertex dista
on a finite graph obeys a simple scaling form and in a
given dimension is a universal function of a single scal
variable which depends on the density of shortcuts, the
tem size and the average coordination number of the gr
We have calculated the form of the scaling function to fi
order in the shortcut density using a series expansion an
third order using a Pade´ approximant. We have defined tw
,
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measures of the effective dimensionD of small-world graphs
and find that the value ofD depends on the scale on whic
you look at the graph in a manner reminiscent of the beh
ior of multifractals. Specifically, at length scales shorter th
j the dimension of the graph is simply that of the underlyi
lattice on which it is built, and for length scales larger thanj
it increases linearly, with a characteristic constant prop
tional toj. The value ofD increases logarithmically with the
number of vertices in the graph. We have checked all
these results by extensive numerical simulation of the mo
and in all cases we find good agreement between the ana
predictions and the simulation results.

In the last part of the paper we have looked at site per
lation on small-world graphs as a model of the spread
information or disease in social networks. We have deriv
an approximate analytic expression for the percolation pr
ability pc at which a ‘‘giant component’’ of connected ve
tices forms on the graph and shown that this agrees well w
numerical simulations. We have also performed extens
numerical measurements of the typical radius of connec
clusters on the graph as a function of the percolation pr
ability and shown by performing a scaling collapse that th
obey, to a reasonable approximation, the expected sca
form in the vicinity of the percolation transition. The cha
acteristic exponentn takes a value close to12 , indicating that,
as far as percolation is concerned, the graph’s properties
close to those of a random graph.
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