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Categorization in fully connected multistate neural network models

R. Erichsen, Jr. and W. K. Theumann
Instituto de Fsica, Universidade Federal do Rio Grande do Sul, Caixa Postal 15051, CEP 91501-970, Porto Alegre, RS, Brazil

D. R. C. Dominguez
ESCET, Universidad Rey Juan Carlos, E 28933 Mostoles, Madrid, Spain
and CAB (Associate NASA Astrobiology) INTA, 28850 Torrejon, Madrid, Spain
(Received 22 June 1999

The categorization ability of fully connected neural network models, with either discrete or continuous
Q-state units, is studied in this work in replica symmetric mean-field theory. Hierarchically correlated multi-
state patterns in a two level structure of ancestors and descerideaisples are embedded in the network
and the categorization task consists in recognizing the ancestors when the network is trained exclusively with
their descendents. Explicit results for the dependence of the equilibrium properti€3-o8astate model and
a Q=o-state model are obtained in the form of phase diagrams and categorization curves. A strong improve-
ment of the categorization ability is found when the network is trained with examples of low activity. The
categorization ability is found to be robust to finite threshold and synaptic noise. The Almeida-Thouless lines
that limit the validity of the replica-symmetric results, are also obtaif®@l063-651X%99)09212-(

PACS numbdrs): 87.10+e, 64.60-i, 05.20~y

[. INTRODUCTION level hierarchy of ancestors and descendents trained only
with the latter according to a specific learning rule. The hi-

Multistate attractor neural networks in which the units erarchical patterns that are generated through a stochastic
(neuron$ can be in more than two states are, in generalprocedurg32] lead to correlations between patterns in dif-
more flexible and efficient biological or artificial devices ferent levels as well as correlations between patterns in the
than networks of binary units. Much work has been donesame leve[33]. As a consequence, there is a complex struc-
over some time on the retrieval problem in multistate netture of attractors in a network with hierarchical patterns in
works of various architectures, with either simple or hierar-which the attractors may neither coincide with the training
chical patterns in more than two states. The retrieval problerpatterns nor with the ancestors, and it is of interest to study
consists in the recognition of patterns that have been storaghder what conditions the latter become stable attractors.
in a network by means of a learnirigr training rule, when Patterns in more than two states, which represent a
the network is set in an appropriate initial state to start itsgradual coding, may have a low activity which is biologi-
operating stag¢l]. Thus, the retrieval problem deals with cally appealing. Moreover, “small” patterns, in which a
the memorization ability of a network. The networks thatnumber of bits have been turned off, are patterns of low
have been considered are the dilute, the layered feed-forwaattivity that can infer patterns of full size and thereby en-
and the fully connected networkg-16). hance the performance of a multistate network, as demon-

More recently, some work has been done on the categastrated explicitly in works on both the retrieval problé3]
rization problem in multistate attractor networks7—-21], and the categorization problem. The dynamics of the latter
following extensive studies of the problem in binary net-has been studied in an extremely dilute asymmetric three-
works [22-31]. The categorization problem consists in the state network with a monotonic neuron firing function and a
spontaneous recognition of a level of hierarchical patterngeneralized Hebbian learning rUl&8]. The extremely dilute
other than those stored in the training process of a networketwork requires a vanishingly small connectivity between
[22,23. The problem deals with the ability to create a rep-neurons in order to allow for an exact solution of the network
resentation for concepts when the network is only exposed tdynamic§34], and one may ask what the behavior would be
examples in the training stage. for a network with full connectivity.

Some of the questions that one may ask are the following. The purpose of the present paper is to answer some of the
First, one is interested in the minimal structure of the trainingquestions raised above investigating the equilibrium, statisti-
patterns, and their number, in order to achieve a satisfactorgal mechanics behavior for the categorization problem in a
recognition of a macroscopic number of hierarchically re-fully connected multistate network with hierarchical patterns
lated ancestors. Second, one would like to know the recogef low activity in a two-level hierarchy of ancestors and de-
nition rate(number of patterns per neurnoof these ancestors scendents. Our aim is to obtain the phase diagrams that de-
and how stable they are as attractors of the network dynanscribe the various regimes of performance of the network in
ics. The recognition quality is of primary interest and oneterms of the relevant parameters: the activity of the training
may also want to check on the robustness of the recognitiopatterns, the dynamical activity of the firing units, the corre-
process to various kinds of noise. lation between ancestors and descendents, the number of de-

The simplest, and most studied case of the categorizatioscendents, the multistate threshold and the synaptic noise
problem, consists in the recognition of ancestors of a twoievel, assuming a fixed activity of the ancestors. The quality
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of the performance of the network is described by so-calledvith b?><a<1. The symbol§ represents the Kronecker
categorization curves that express the dependence of the caelta. In consequence, we have the following relations:
egorization error on some of the parameters of the model.
Since it is known from the results on the retrieval problem (E1PE)=(NPELE)=DAS; 6, (5
in a Q-state network that the relevant phase diagrams be-
come increasingly complex as one goes from the three to th@"
four-state mode]8], we consider @ =3 state model and a vo VO el e\ [ D 2
Q= state(graded respongenodel. We make use of a gen- (176]7) = (NIN[7E0E]) =07+ (a=b%) 8,618 9y,

eralized Hebbian learning rule that has been used before ©)

[18,19). The outline of the paper is the following. In Sec. Il The mean activity of the examples becomes

we present the gener@l Ising-state model for the categori-

zation problem. The mean-field theory for that model is sum- 1 N

marized in Sec. lll. In Sec. IV we present and discuss the N E (&MP)2=aA, 7)
I

results forQ=3, in the absence or presence of synaptic
noise and in Sec. V we present the results for@e« state
model. We conclude in Sec. VI with a summary of the re-
sults.

for every u and p. According to Eqs(2) and (3), b is the
correlation between an example and the concept to which it
belongs. The pure multistate mod@] can be obtained by
taking the number of exampless=1, the activitya=1 and
Il. MODEL the correlationb=1. Sincea<1, the activity of the ex-
amples is not greater than the activity of the concepts. In this
sense, we refer to “small” examples, with the effective
“size” of the patterns beingN.=aN. In this model, the
view point is that the small examples are samples of the
2(k—1) full—acti\_/ity concepts to_ be inferreq. .
(1) In this work we are interested in the capacity of the net-
Q-1 work to infer only large concepts of full activity from the set
of examples and restrict ourselves, therefore, to binary con-
in the interval[—1,1], for k=1,... Q. The task to be per- cepts,&#=+1 with equal probability, that is to say, to the
formed by the network is the recognition of a macroscopiccaseA=1. This task is considered to be successful if the
set of p concepts{¢f;u=1,...p;i=1,...N}, with p  categorizationoverlap
= aN, wherea is finite. During the learning stage, only a set
of s “small” examples {&";u=1,...p;p=1,...S; i 1
=1,... N} of each concept is presented to the network. By M.=N ;1 &S ®
“small” examples we mean that a macroscopic number of

bits in each example are turned off. The concepts are agsetween the concedté”} and the network statéS;} ap-
sumed to be independent identically distributed random Variproaches unity after the network has reached the equilibrium
ables with zero mean and variande The examples{” of  giate. To quantify the performance of the network, we define
the concept{{* are generated through a stochastic procesgne categorization error for the conceptas

based on an appropriate probability distributi®{\/"),
given below, such that

Consider a network oN nodes,i=1,... N. At the time
stept, the state of the nodeis described by the variable
Si(t), that can be in any one of th@ Ising states

O'k:_1+

u 1
8C=§(1—mﬂ). (9)

G =EN 2
Thus, &% should be small in the categorization phase and 0.5
The properties of the distributioR(\/“?) will be chosen in the disordered phase.

in accordance with the states of the neurons, @g. For Next we discuss the dynamics of the model, following the
finite Q=3, say,\*” assumes the values1, 0 or —1  Stepsof Ref[8], and references therein. For a given configu-
depending, respectively, on the examp} being either in ration{S;} of the network, the local fielth; on sitei is
agreement with the conceglt , being turned off, or opposite
to the concept at the siteln the case of continuous neurons, hi({S}) = 2 JiiS;, (10
i.e., Q—o0, we assume that{*” is a continuous variable in 17
The mtterval[—tl,fl ] (Ijn elth(;er c;ase, dwe assume m"#p bf_' i where the synapse; are constructed from the examples,
v\?irt]r?smga?] set of independent random microscopic activitiey ., ing to the modified Hebb rule

1 P2
(\*P)=Db 3 Jj=w X X &Efori#), J;=0. (11
N =1 5=1

and variance The state of each site is updated asynchronously according to

o 5 5 a Glauber(single spin-flip dynamics in which the transition
(MPN[7) =[b%+(a—=b%) 5,518 6, (4 probabilities are given by
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exf Be;j(o h({Si(1)})] =m, for p=1,... s, with all the examples of a given con-
PLSj(t+At) =a [{Si(1)}]= ] , ceptu, becomes a minimum. This state characterizes the
lz eXF[BEJ(U||h {S(HH)] categorization phase, and it yields a finite, macroscopic,

overlapm,, with conceptu. Since we are interested mainly
(12 in the categorization ability of the network, we restrict our-
. . . .. selves, in what follows, to the study of configurations that
where 8=1/T |s.the. inverse temperature and the single S'tehave a macroscopic overlap of ord@{l) with agmixture of
energy,ej(s|h), is given by a finite numbess of examples of a given concept. Noting that
€/(s|h)=—hs+ 92 (13) the concepts are uncorrelated, one may concentrate on the
overlap with anyone of them, say; for u=1.
Here, 6 is a non-negative constant that favors local states of
small dynamical activity. In the absence of stochastic noise, ll. MEAN-FIELD THEORY

the deterministic evolution of the system is ruled by .
The free-energy per site follows as

where 4,,(x) is the nondecreasing step function, for finite f(B)= —’\|Ilm BN«In Z(B) ) prmey) (ery » (19
Q with the averages over examples and concepts in that order,
O gyn(X) = > ol O(O( st o) —X) as indicated, where&( ) is the canonical partition function
k=1
=0 (0ot oy 1)—X)] (15 Z(B)=2, exp(—BH). (20)
{si}

with og=— and o0g.;=+, in which O(x)=1, if x

=0 and 0 otherwise. The spin on sjtassumes the statg,  In order to average over the quenched disorder, we employ
given by Eq.(1) if the local fieldh; is bound byoy+o_;  the replica method, in which

<h;/0<oy+ oy 1. The width of the intermediate states

with constanto, for 1<k<<Q (that is, excluding the limiting e & n _

values ofoy == 1), is given by 4/(Q—1). Thus, the width (N 2B pum) e = M (LB oy ey = 1)

of the zero state for the three-state network studied below is (22)
26. In the limit Q—o, the input-output function, Eq15),
becomes the piecewise linear function Using the generalized Hebb learning rule, Etl), and in-
troducing a fieldhy, in order to generate an equation for the
O gy X)= sgr(x)mm( 2X¢9 1) (16) overlapm,, the Hamiltonian Eq(17), for the replicaa, be-
comes

where mink,y) means the minimum betweenandy. The
slope of the linear part in here is B2which is the gain T E D eSS+ 62 (S)2—h, >, s
parameter of the continuous network. The equilibrium ther- 1#) me !

modynamic properties of the fully connected infinite network (22)

that follows from the above dynamics is described by theIntroducing this expression in E¢20), separating the first

Hamiltonian concept, we linearize the quadratic terms and obtain the rep-
licated partition function
-2 JSS+6> S, (17)
(1) ! ((In Z(ﬁ)){xun}){gu}
where the first sum is over all distinct pairg ). \/_dm N
The relevant order parameters, when the network is in the H A ;{ => (mi‘p)z}
ordered sub-space of the phase space, arecthieval over- N2m ap
laps
N x> ((exp(BPG ) sy (ery
_i E “p 18 {s7}
mMp_N i gi S ( )
AP
ex m3

between the actual state of the network and each one of the < < p{,BE [2 NS 2N

examples of each concept. The underlying idea in study-

ing the categorization performance of the network is that

when the number of correlated examples is higher than a X (\PES)2—0(SP) 2+ hlgiIS?H> ,
critical value, for a given correlation strength, single ex- P (1) e
amples are no longer local minima of the free-energy, but a

mixed state having macroscopic symmetric overtap, (23
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where

1 ° o )/1C
_ 2 @ _
f(B)=5 p; mi,+ 55| A= %0+ 7= =
B
expnBpG)=[] <expm > >SS 7,C
w1 7 = +(s=1)In(1— y,C) +(s—1)
1- ’)/ZC
x> A#er9§#§r> . (24 a| ~iaC 754C
P (\BP) R e Rl St b
P (e (1-70) (1-19,C)
1
involves the uncondensed examples. - E<< DZ'”% GBH6“> > , (30
In the thermodynamic limitN— o we obtain following R ey
Ref.[35],

where Dz=dzexp(—Z%/2)/\/27 is a Gaussian measure. The
effective HamiltoniarH; is given by

1 .1 R
nBG=— ztrin(1-By,Q)— 5z (s—LtrIn(1— By,Q)
2 ' 2 ’ Heﬁ:s(E my A7E - 9" S+hy £ - Mz), (31)

1 ~ 1 “
~5BNnUQ-5A(s= 1)y, rQ, (25 where
ayi ayr
where 0=0- (s 1) 32
2170 Va0
yi=a+(s—1)b% and y,=a—b? (26)  is an effective width of the intermediate states, as will be

seen belowsee Eq(50)]. Eventually, depending on the state

of the network specified by the dynamical activity and the

spin-glass order parametgr 6’ may become negative, fa-

voring an order with large absolute values farAlthough

Egs. (30—(32) follow from the assumption of replica sym-

1 b _ metry, we believe that such an order will exist, in general,

Qap= N Z S'S'=dap, If a#b, (27 albeit in a small region of the phase space. H&e B(ap
—q)=B2i((S)—(S)?/N represents the susceptibility of
the network. The parametar is given by the algebraic
saddle-point equation

Here,Q is a matrix in the space of replicas with elements
given by

and

2 2
Qaa=Qa- (28 r:7—1q+(s_1)7;q- (33)
(1-7,C)? (1-7,C)?
Thus, g, is the spin-glass order parameter aQq is the
dynamical activity of the network. Whereas for the binary The remaining saddle-point equations determining the order
network in the replica-symmetric theofy,=1, in the case Pparameters are

of multistate networks one has, in general, tlhgt<Q,

=1 . . my,= <x“’§1f Dz<S<z)>> . (39
Introducing, as usual, the overlap parametgy associ- 1o} ey
ated to the correlation between the overlaps of the examples
and concepts that do not condense, and restricting our study )
to the replica-symmetric solution, in which q= f Dz(S(2)) : (35
A ey
mi p=Mup and
1
Jap=0, (29 C=— J DzZS(2)) . (36)
Var N ey
Qa=ap, In the above equations,
rab: r, E SneﬁHeﬁ
{s}
. _ _ _ (SN(2)=——"". (37)
we obtain that the replica-symmetric free-energy per site can 2 eBHeft

be rewritten as S
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The susceptibilityC remains finite, so that at zero tempera- metric mixture states. The latter, in whig,=a—b? [see
ture, that isp—», g—ap, while at finite temperature we Eq. (26)], is reduced in the case of examples of low activity
have in generaj<ap. The overlap with the first concept, a<1. One should expect, thus, an enhancement of the cat-

which measures the categorization ability, is given by

f
mlij:<<§1f Dz(S(z)>> > . (39
! N ey

egorization ability of the network in that case. The above
equations are obtained under the assumption that the number
of examplessis large, so that the average over examples is
given by a Gaussian distributioii9,23. In the following
sections we discuss the results based on the solutions of the

Performing the configurational average in the saddle-poinsaddle-point equations for both, the three-state and the con-

equations, we obtain

_ bmy 39
M= 1— ,yzc ( )
for the symmetric overlap,
q=J DzS5(hs,0"), (40)
and
C ! J’ D (hg,0") (41)
= ZZ il H
o) Presthe
as well as the overlap with the concept
m1=f DzS4(hs,0"). (42
The effective transfer functioBs(hg,6") is given by
sinh(Bh
Sp(hs,6') CAh) (43)

" (1/2eP 1 cosh ghy)

in the case of the three-state network, and

he 1
sﬁ(hs,e')=2—y+ oo
Xexq—¢i<hs,e'>]—exr{—¢%<hs,e'>]
erf[—¢.(hs,0)]—erf[—¢_(hs,6)]
(44)

where

¢+(hs,60")=VBo’ (49)

h
1+ —
20’

for Q—o. Thus, 1/2’ is the effective gain parameter for

tinuous network.

The limit of stability of the replica-symmetric solution
comes from the study of quadratic fluctuations of the free-
energy in the vicinity of the symmetric saddle point. Follow-
ing the Almeida and Thouleg#\T) analysis[36], we obtain

Y1 Y2
R, s_1>—)
((1— y:C)? ( (1—,C)?

><6V,32<<fDZ[<52(Z)>_<S(Z)>2]2> > <1
oY ey
(48)

as the stability condition for the replica-symmetric solution.

IV. THREE-STATE NETWORK

A. Categorization properties at zero temperature

We begin by discussing the results for the categorization
performance in three-state networks in the absence of re-
trieval noise. The probability distribution in this case is given

by

a+b
POM?)=——8(\* = 1)+(1-a) (\{*)
a—b
+T¢S()\i“”+ 1), (49

satisfying the condition§3) and(4). Thus, the examplé!”
has a probability 4+ b)/2 to be aligned with the concept,
while it has a probability +a to be turned off and a prob-
ability (a—b)/2 to be opposed to the concept.

The effective transfer function, E¢43), at zero tempera-
ture becomes

S.(hs,0")= lim Sg(hs,0")=sgrhg) O(|hg[—6").
ﬁﬁmc
(50)

the continuous network. The effective field for the symmetric

solutionhg is given by

From Eq.(32), we see that’ may become negative. Since

_ S..(hg,6'<0) is algebraically the same &s(hg, 6’ =0) the
hs SmeJrZ\/V’ (46) network acts, in this case, as a binary networR at0. Ac-
where cordingly, Eq.(39) remains unchanged, while Eqg.0) and
(41) become
v=ar+snty,. (47)
The first term in Eq(46) is a signal term, while the sec-  q—1 Eerf smb+6'0(6") + Eerf smb-070(6")
ond term is the Gaussian noise due to the macroscopic num- 2 \/E 2 \/E

ber of uncondensed examples and the presence of the sym- (51
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FIG. 2. Categorization error as a function of the actiatyfor

FIG. 1. Phase diagram for the ratioof recognized concepts as
a function of the threshold, for the three-state network. The num- the three-state network @t=0, whena=0.02,5s=20,b=0.2, and
ber of examples is=20, the activitya=0.2=b (the correlation  6=0.0-0.3(as indicateyl
parameter Here,C, SG andP are the categorization, spin-glass,
and paramagnetic phases, respectively. Below the heavy solid Iin%,a"y stable, while the spin-glas€SG phase is globally
the categorization phase is the absolute minimum of the free'stable, between the heavy solid and the light solid line,
energy. Soliddash-dottefllines indicate a discontinuoysontinu- where the system always jumps discontinuously to the spin-
ous transition. The dashed line indicates the optimal valué.oht lass phase. This is in distinction with known results for the
the left of the dotted line, the network behaves as a binary networlgategorization phase diagram in the dilute netwpie]

where the transition to the spin glass phase is partly continu-

ous and partly discontinuous. Above the light solid line, and
at the left of the dash-dotted line, where it disappears con-
tinuously, the spin-glass phase, with;=0 and q+#0, is
stable. At the right of the dash-dotted line the paramagnetic

1 r{ [smb+ a'(e')]j
(P), or zerophase, withm;=0 andg=0, is stable. Note

with statesS;==*1.

and

2wV 2v
be 0'®( 972 that, for large threshold, there is a direct transition from
1 ex;{— [smb—0'0(6")] } (5  the categorization phase to the fully disordefeghase, at
2v low «. There exists also a retrieval phase of examples, with-
out categorization, not shown in the figure. Since we are
dealing with a large number of examplékus favoring the
categorizatiop that phase is present in the phase diagram
only at very small values af andé. To the left of the dotted
line, the effective width9’ is negative. Here, every nonzero

C=

J’_
2mv

The overlap with the concept, E12), is given by
smb—-0'0(6")

|

|

1 smb+60'0(6") 1
my=> er N + Eerf 2
(53  Vvalue of the local field is sufficient to access the neural states
S==1 and, in consequence, the network behaves in this

We show in Fig. 1 the categorization phase diagram fofregion as a binary network. The dashed line signals the op-
the case whers=20, a=0.2=b. With the choice that  timal ¢, i.e., the value of the width parameter for which the
=b, we are looking in a way for an optimal phase diagramcategorization overlap,; reaches its maximum value. It is
in the sense that the training examples either coincide witlnteresting to note that the present phase diagram is similar
the corresponding concepts, that &*=&*, for p  to that of Ref[8], for the retrieval problem, with the catego-
=1,...s, or are zero, but they are never opposed to theization phase taking the role of the retrieval phase in that
concept. For other values of the parameters, similar diagranmsroblem.
are obtained, although with lower capacity The categori- An important question addressed in this paper refers to

zation phase ), characterized byn,#0 andg#0 is glo- the role played by the activity of the examples,on the
bally stable below the heavy solid line. It becomes only lo-categorization ability of the network. In Fig. 2 the categori-
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FIG. 3. Categorization error as a function of the number of FIG. 4. Categorization error as a function of the temperafijre
exampless, for the three-state network at=0, whena=0.05,b for the three-state network, when=0.01, s=20, b=0.2= 4, and
=0.4. Solid(dotted lines correspond t®#=0.0 (#=1.0) and the a=0.2 (solid line) and 0.3(dotted ling.
two lines at the lefiright) correspond t@=0.4 (a=1.0).

for a=1.0. Nevertheless, the final categorization error is

zation errore is shown as a function of the activity, far  similar for the two activities. This means that the network is
=0.02,s=20, b=0.2, and for several values @f The re- able to overcome a higher amount of errors in the examples
sults reveal that is a monotonically increasing function of by a larger number of these examples. A higher valugisf
a. Since this is the general behavior for other values of thelso required for a higher thresholt in order to reach a
parameters, the results confirm that for the connected, as weligher local field to attain the states with nonzero activity.
as for the diluteg[19] networks, it is better to train the net-
work with low-activity examples. This can be understood
noting that the activitya of the examples is decreased when
a macroscopic number of bits of every example is turned off. We consider next the categorization performance obtained
But in keeping the overlap between examples and conceptsfrom Sg(hg,60"), Eq. (43), for finite 8. Figure 4 illustrates
fixed, the bits that are turned off in the examples must bdhe influence of the temperature on the categorization error,
those that are inverted with respect to the concepts . Whefor «=0.01, s=20, b=0.2= 6, and activitya equal to 0.2
the activity a reaches its minimal, optimal valua=hb, the and 0.3. To the left of the arrow in the curve corresponding
only bits that are turned on in the examples are those that ate a=0.2, the categorization phase is the global minimum,
aligned with the concepts, leading to the smallest categorizawhile it is a local minimum to the right. In what concerns the
tion error. In this case the categorization task of the networlpresent set of parameters, the categorization phase for
becomes similar to the reconstruction of a puzzle from loose=0.3 is a local minimum for all temperatures, whereas the
pieces. Finally, the figure also shows the discontinuous jumpgpin-glass phase is the global minimum. Thus, it is also ad-
to the spin-glas$SG phase, at the upper phase boundary ofvantageous for an enhancement of the performance of the
Fig. 1. network, in the presence of synaptic noise, to train the net-

The categorization error as a function of the number ofwork with examples of low activity. Figure 4 also shows the
exampless, for b=0.4, #=0, andd=1.0 and two different discontinuous transition to the spin-glass phase at an
activities, namelya=b (all wrong bits in the examples are activity-dependent transition temperature.
turned off anda=1.0 (all wrong bits in the examples are =~ The phase diagram far vs T is presented in Fig. 5 for
included is shown in Fig. 3. Starting from the spin-glass #=0.2, s=20, anda=0.2=b. The categorization phase is
phase, with categorization error equal to 0.5, the networlstable below the upper phase boundary, where it disappears
undergoes a discontinuous transition to the categorizatiodiscontinuously, becoming a global minimum below the
phase as the number of examples increases above a critidalver phase boundary. At very small and T there is a
value. The number of examples required for the jump to theetrieval phase without categorization, not shown in the fig-
categorization phase is considerable smalleafel0.4, than ure. The dashed line on the left is the locus of the AT line.

B. Categorization properties in the presence of synaptic noise
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FIG. 5. Categorization phase diagramcmfvs. T, for the three- FIG. 6. Categorization phase diagram ®fvs 6, for the con-

state network, wherd=0.2, s=20, anda=0.2=b. Below the tinuous Q=« state network, aff=0, whens=20, a=0.2=b.
heavy solid line the categorization phase is the absolute minimurilere,C, SG andP are the categorization, spin-glass, and paramag-
of the free energy. Soliddotted lines indicate a discontinuous netic phases, respectively. Below the heavy solid line the categori-
(continuous transition. The replica symmetry is broken at the left zation phase is the absolute minimum of the free energy. Solid
of the dashed line. (heavy dash-dottedines indicate discontinuougontinuous tran-
sitions. The dashed line indicates the optimal valu@.ofit the left
The replica-symmetric solution for the categorization phasef the dotted line, the network behaves as a binary network with
becomes unstable to replica-symmetry-breaking fluctuationstatesS;= + 1. Below the light dash-dotted line the replica symmet-
at the left of this line. The reentrant behavior of the upperfic solution is stable.
phase boundary at lowis associated to the instability of the
replica-symmetric solution in this region. The spin-glass smb
phase becomes a global minimum to the right of the heavy m1=—( 1- ——
solid, and to the left of the dotted line, where it disappears '
continuously. At the right of the dotted line, the paramag-

netic phase is the global minimum. extl — M2 ) — exn — M 55
20,\/ [exp(—M2)—exp(—M?)], (59

V. NETWORK WITH CONTINUOUS NEURONS

erf(M )

1 smb
erfM_)+ =| 1+ ——
M_)+3 Y

In this section we discuss the categorization properties of
a network with continuous, monotonic neurons trained with q=1— >
continuous or discrete examples of binary concepts. The con- 40 \/—
tinuous limit is obtained by takingg—< in Egs. (1) and 1 222
(15). The following results are independent of the specific + = v (}Jr s Ms )
form of P(\/**), provided that its mean and variance are 20'2\2 2v
given by Egs.(3) and (4), respectively. The general Egs.

———[M,exp—M?)—M_exp(—M?)]

1+

[erf(M_)—erf(M,)],

(39—(42), for the saddle points, apply also to this case. In (56)
the absence of noise, the effective transfer function (&4),
becomes the stepwise linear function and
h,0')= h i 1
SO =san oo Ml oy ) Y C= —[erliM,)—er(M_)], (57

in which 1/29" is the effective gain parameter. Consequently
we obtain where
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FIG. 8. Categorization error as a function of the number of
exampless, for theQ = state network al =0, whena=0.02 and
a=0.2=b. The threshold values are 0.2, 0.3, and @u4rves from

FIG. 7. Categorization error as a function of the actiatyfor
the Q=0 state network atT=0, when «=0.02, s=20, and
b=0.2. The threshold values are 0.2, 0.3, and(6utves from right

to left). left to right).
was noticed in Ref[8], for the retrieval problem in a net-
smb+2¢’ work of continuous neurons. Finally, the heavy dash-dotted
Mi=——F7——. (58 line represents the onset of the continuous spin-glass transi-
Vv tion.

. . In Fig. 7 we present the categorization error as a function
The zero-temperature phase diagram dovs 6 with s ¢ 40 activity of examples, fore=0.02, s=20, and 6

=20 anda=0.2=b is shown in Fig. 6. The categorization _ 5704, Since we deal with a non specifeeh #?), the
pha;e exists below the light .SOI.id line, and it is the gIOb""Ionly restriction imposed i&s=b?. We note from tlhe ,figure
minimum below the heavy solid line. At the left of the dotted {h4t the categorization error is no longer a monotonic in-
line, ' is zero, and the effective gain is infinite. In this creasing function of the activity for all values @ For 6
region, the state§;=*1 are the only accessible states for — 4, ¢_is a decreasing function dd, for small a. The
nonzero local field and the network behaves as a binary neteason is that in the case of large threshgldhe local field
work. In there, the criticalx for categorization assumes its hi({S}) must be sufficiently high to overcome the threshold,
value in the binary network for this set of parameters, i.e.and this is obtained through a moderate increase in the ac-
ac pinary~0.033. When the network enters the multistate,tivity of the examples.

continuous regime, the categorization capacity starts to in- Finally, we discuss the influence of the number of ex-
crease abruptly, and reaches its maximum valye:0.047  ampless on the categorization ability of networks with con-
for #~0.11. The dashed line signals the optimérfor each  tinuous neurons. Figure 8 shows the categorization error as a
a. Itis worth noting that fora< a pinary the optimalé line function of s for a=0.2=Db, threshold ranging from 0.2 to
coincides with the transition to the binary regime. This0.4 anda=0.02. As a result of the continuous nature of the
means that whenever there is a binary network capable tgnits, for low threshold the categorization error decreases
perform the categorization task, it will give the best catego-Smoothly with the increasing number of examples. This is
rization properties for lowf. Only when a> ag pinary the distinct to the previous case of discrete units, where an
network with continuous neurons is expected to have a bettéPrupt decrease i, was observed even at=0 (see Fig. 1
performance. Contrary to the case of fin@ewhere at zero Furthermore, the decreasingag is no longer monotonic for
temperature the replica-symmetric solution is always un@ll values of the threshold. For example, o0.2 there is a
stable, there is here a region where it is stable, and this is th|8Cal maximum ine for s~30.

part of the phase diagram below the light dash-dotted line. VI. SUMMARY AND CONCLUDING REMARKS

The phase diagram illustrates that also the network of con-

tinuous neurons is robust to low gain in the states. The exis- The categorization problem, that consists of the recogni-
tence of a replica-symmetric stable phase at zero temperatution of ancestors, when a network is trained only with their
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descendents, is studied in this work for multistate fully con- The limit of validity of the replica-symmetric solution
nected neural network models, keeping in mind an applicawas established in this work looking for the Almeida-
tion to either artificial or biological networks in which the Thouless lines. FoQ =3, the replica-symmetric solution is
training is with sparsely coded patterns. Indeed, multistat@instable in the absence of synaptic noife=Q) and there is
networks offer the possibility of recognizing full-sized pat- a reentrant behavior for the ratioof recognized concepts, at
terns in networks trained with “small” patterns, in which a small synaptic noise, in accordance with earlier results on the
macroscopic number of bits have been reduced or, eventuetrieval problen37,38 and on the categorization problem
ally, set to zero reducing thereby the activity of the encodedn connected networks of binary neurdrdi]. Nevertheless,
patterns. We found that a low activity can enhance the catsince the replica-symmetric solution stabilizes at very small
egorization ability of a fully connected network in a signifi- T, we argue that replica-symmetry breaking effects should be
cant way, by changing the threshold for firing of the units.negligible, even alT=0. On the other hand, there is a finite
This confirms and extends earlier results on an extremelyegion of interest for the categorization performance domain
dilute network ofQ=3 state neurongl8]. where the replica-symmetric solution is stable, everrl at
The way the network works for the categorization task is=0, in the case of th@ = state network, as demonstrated
the following. After training with correlated examples, the explicitly in this work.
network searches for stable symmetric mixtures states, in To summarize, we succeeded in studying a fully con-
place of pure examples. If these patterns have low activity, ihected multistate neural network model for the categoriza-
will be less likely that they have bits with opposite sign to tion problem of recognizing binary concepts when the net-
the corresponding concepts. The recognition of the lattework is trained withQ-state examples of low activity, in
from the common features of the examples will thereby beplace of the full activity patterns of a binary network of
enhanced. statesS=*t1. The work presented here can be extended in
We derived formal expressions, within replica-symmetricvarious directions. First, to infer multi-state concepts in a
mean-field theory, for the free energy and the relevant ordemietwork with full connectivity and to study the categoriza-
parameters for the categorization problem in a fully con-tion performance for sparsely coded sequential examples. In
nected neural network model, with units in gene@alsing-  order to come closer to biological networks, it would be
states and multistate patterns belonging to a two-level hiefinteresting to consider the partial dilution of synapses.
archy. Training of the network was assumed to take place
through a generalized Hebbian learning rule involving only
the descendents. These may be considered as corrupted ex-
amples of the ancestofsoncepts with a number of turned We are indebted to Alba Theumann for showing us how
off or inverted bits. Explicit results for the relevant phaseto find the Almeida-Thouless line for a network with hierar-
diagrams and the categorization curves were then obtainezhically correlated patterns. We thank D. Bofier com-
for aQ =23 state model with a monotonic activation function ments and discussions, as well as for the kind hospitality of
and for a monotoni®@Q =« state model. In the first case we the Institute for Theoretical Physics of the Catholic Univer-
also checked the robustness of the network performance ity of Leuven, where part of the work of D.R.C.D. and
synaptic noise. Our results are restricted to binary ancestoi&/.K.T. was done. This work was supported, in part, by
and multistate descendents, although the case of multista@\NPq(Conselho Nacional de Desenvolvimento Ciéioti e
ancestors has been considered in an extremely dilute netwoflkecnolaico, Brazi), and FINEP(Financiadora de Estudos e
[21]. Projetos, Brazjl
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