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Theoretical electroencephalogram stationary spectrum for a white-noise-driven cortex:
Evidence for a general anesthetic-induced phase transition
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We present a model for the dynamics of a cerebral cortex in which inputs to neuronal assemblies are treated
as random Gaussian fluctuations about a mean value. We incorporate the effect of general anesthetic agents on
the cortex as a modulation of the inhibitory neurotransmitter rate constant. Stochastic differential equations are
derived for the state variable,, the average excitatory soma potential, coherent fluctuations of which are
believed to be the source of scalp-measured electroencephald§i®@) signals. Using this stochastic ap-
proach we derive a stationatpng-time limit) fluctuation spectrum fon,. The model predicts that there will
be three distinct stationaifegquilibrium) regimes for cortical activity. In region(f‘coma” ), corresponding to
a strong inhibitory anesthetic effedt, is single valued, large, and negative, so that neuronal firing rates are
suppressed. In region Il for a zero or small anesthetic effectan take on three values, two of which are
stable; we label the stable solutions as “active@hhanced firingand “quiescent” (suppressed firing For
region Ill, corresponding to negative anesthétie., analeptit effect, h, again becomes single valued, but is
now small and negative, resulting in strongly elevated firing rétesizure”). If we identify region Il as
associated with the conscious state of the cortex, then the model predicts that there will be a rapid transit
between the active-conscious and comatose unconscious states at a critical value of anesthetic concentration,
suggesting the existence of phase transitions in the cortex. The low-frequency spectral powér,isignel
should increase strongly during the initial stage of anesthesia induction, before collapsing to much lower values
after the transition into comatose-unconsciousness. These qualitative predictions are consistent with clinical
measurements by Buer et al. [Anaesthesiology’7, 226 (1992], Maclveret al. [ibid. 84, 1411(1996], and
Kuizengaet al.[Br. J. Anaesthesi&0, 725(1998]. This strong increase in EEG spectral power in the vicinity
of the critical point is similar to the divergences observed during thermodynamic phase transitions. We show
that the divergence in low-frequency power in our model is a natural consequence of the existence of turning
points in the trajectory of stationary states for the corf&1063-651X99)08312-9

PACS numbes): 87.19.La, 05.10.Gg, 05.70.Fh

[. INTRODUCTION EEG power and in the frequency at which peak power oc-
curs; as concentration is further increased to hypn(tic-

A standard method for following the anesthetic inductiongical anesthesjalevels, the total power and median fre-
of a patient into unconsciousness is to monitor the electroerquency fall away to levels below baseline. This “biphasic”
cephalogram(EEG) signals detected by electrodes attachedresponse has been observed on human volunteers dosed with
to the scalp. We aim to develop a theory which models thehiopental[1] and the widely-used propof¢B]. It has also
dominant electrorhythmogenic processes occurring in the cdseen measured in rats dosed with thiopefi2ad]. Figure 1
rebral cortex as general anesthetic is administered. Suchshows a typical activation/depression response from one of
theory would be useful not only for quantifying at what point the patients in the Kuizenget al. [3] study.

a patient might be considered to be sufficiently anethetised to The EEG signal originates from organized assemblies of
safely undergo surgery, but also to give better understandingxcitatory and inhibitory neural celi®euron$ acting coop-

of cortical function and dynamics in general. A reasonablesratively within a small volume of the cort¢k]. Figure 2 is

test of the theory would ask the following: Does it predict thea schematic representation of such an assembly which can be
kinds of changes in EEG spectral distribution and powetthought of as occupying a cylindrical column of diameter
which are observed in patients during induction of generak-0.3—1 mm and containing 40 000—100 000 neurons. The
anesthesia? excitatory (pyramida) cells make up~85% of the total

It is well known within the anesthesiology community number of neuron§g].
than many commonly used general-anesthetic agents exhibit The EEG is generated by the longitudinal flow of current
what is referred to as a “biphasic” or activation-depressionalong the apicalsuperficial layer dendrites of pyramidal
response: at lowsedativg anesthetic concentrations there is neurons which are aligned with an axial symmetry perpen-
a significant increase above baseline values in both the totdlicular to the cortical surfacg7]. The potential due to the
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250 - - the time variation of the mean excitatory and inhibitory soma
-~ 0to 5Hz potentials of an assembly responding to external inputs and
poo | L2 1110 15 Hz local feedbacks. While these equations have been found to

reproduce a range of experimental results, they are math-
ematically formidable, making it difficult to extract physical
insight into the underlying neural processes. To remedy this,
Liley simplified the model by reducing its dimensionality
and size to represent a 1D neural assembly whose activity
can be taken as approximately constant over spatial scales of
the order of the intracorticalsubmillimetrig connectivity.
The result was a set of eight coupled partial differential equa-
tions[18,19 which give the time development &f, andh;
for a neural aggregate whose inputs are defined in terms of
o 5 10 15 20 25 sigmoidal nonlinear functions. A complete solution of these
Time (min) equations for a specified input yields, as a function of time,
the mean soma membrane potential of excitatory neurons,
FIG. 1. Biphasic effect of propofol anesthetic on 0-5- and 11-interpreted as the scalp-recordable EEG signal.
15-Hz EEG signals. During the 10 min of propofol infusion, the  |n this paper we transform Liley’s deterministic partial
anesthetic concentration increases steadily. At low concentrationgjfferential equation§PDES into a set of stochastic differ-
the EEG signal shows an initial increase in povativatior). EEG ential equation§SDES, also referred to as Langevin equa-
power then falls awa;(jnhibition) as the concentratior_1 is further +tions. This is done by incorporating noise terms, assumed to
increased and the patient becomes deeply unconscious. A secopdginate from random fluctuations in the subcortical inputs,

EEG activation peak is observed as the anesthetic concentratiqﬂ,[0 the equations of motion foh,;. This enables us to
declines and the patient begins to emerge from unconsciousnes&; &l

(Data supplied courtesy of K. Kuizenga, and reported as “patient erive a ;tatlonary spectrum fbg..The Lang_evm formalism .
Is used in many areas of physics, e.g., in quantum optics

[20], to predict emission spectra of atoms interacting with

distributed current sources and sinks induced by affient ~€l€ctromagnetic radiation. Jirsa and Hakei] and Frank
coming synaptic activity along these aligned pyramidal den-€t @l [22] also use this approach in their modeling of den-
drites can be approximated at the cortical surface by a dipoldtic currents in the cortex. , _
term. The deviation from rest of the mean excitatory soma EXPressed in general form, the Langevin equations of
membrane potentiah,— h;est has been demonstrated to be State for t_he excitatory and inhibitory soma potentialg
proportional to the mirrofi.e., sign-reversadimage of the ~C&n be written
extracellular local field potentidLFP) [8]. Because the EEG
is a spatially smoothed version of the LFP, it is reasonable to i
assume that it will be proportional tw, . dt
In contrast, the inhibitory neurons, comprising 15% of the
neural population, are smaller and have their dendrites oriin which A, ; aredrift terms describing the mean or average
ented at random with approximately spherical symmetry, siehavior of then;, andB,; are the correspondingjffusion
their equivalent dipole term will be vanishingly small. The terms which describe the response of the system to random
resulting synaptic currents induced in the dendrites of thdluctuations.£(t) is a Gaussian white-noise source which has
inhibitory cells make negligible contribution to the EEG and zero mean and ig-correlated:
ECoG (electrocorticogramsignal.
Because cooperative neural activity is maintained via (£,(0)=0, (&,(DE (t))=6,,8t-t). (1.2
dense synaptic interconnections, one assumes that cortical
parameters can be expressed as values averaged over t&ting the noise terms to zero in Hd.1) gives the deter-
assembly. This approach of treating assemiflédso called  mjnistic equation for,; :
centers or macrocolumnef correlated cells is referred to as ’
the mean-field or mass-action formalism, and has an exten- dlh
sive history with significant contributions by Freemgsi, gt hﬂ:_
Wilson and Cowan[9,10], Nunez[7], Robinson and co- !
workers [11,12), Wright and Liley [13], Rotterdamet al. - . .
[14], Amit [15], and Jirsa and Hake[16]. Robinson and After_asuffl_c.ler)tly long time, the system Is aS.S“”.‘ed to settle
co-workers[11,17 used a mean-field approach when deriy-into its equilibrium state so that the time derlvatlves on the
ing a set of nonlinear equations to describe the generation ¢fft of Ed. (1.3 can be set to zero. Thus solving g,
electrical waves in the cortex responsible for the EEG signal=0 gives the equilibrium state valuég of the cortex.
Their two-dimensiona(2D) continuum model contained ex-  Having found the stationary state, we linearize the system
citatory and inhibitory neural populations, and included thedPout this state by writing, ; as the sum of its “dc”(low-
effects of axonal conduction delays. frequency or equilibriutncomponent plus small amPhtude
Liley [17] extended these theories by improving the treat-‘ac” fluctuations about this mean valuehe,i=h2’i+he,i.
ment of excitatory and inhibitory neurotransmitter kinetics. This decomposition enables us to transform 8gl) into a
He derived a set of integrodifferential equations which giveset of linear SDEs,

Propofol infusion

150

100

EEG Amplitude (uV/s)

50}

7" in Kuizengaet al.[3].)

; (1.1

he}__{Ae(hevhi)}_i_[Be(fe(t))
hi] [ Ai(he,hy) Bi(&i(1))

Ae(heihi)

Av(he,) | 49
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FIG. 2. Schematic representation of the connective topology within a cortical macrocolumn. Only four-efl@®000 neurons are
shown. Triangles are excitatofpyramida) cells which receive excitatory input via apical dendrifesy., connection type)5and basal
dendriteg1, 7); and inhibitory input directly at the cell bod). Circles are inhibitorystellate or baskgtells receiving input from dendritic
connectiong2, 4, 6 and at the cell body8). The excitatory output from the macrocolumn is shown bold via trunk ljggsns. The symbol
¢e,i represent®—e, e—i input from distant macrocolumns, amgy represents input from the subcortéxg., thalamus and brainstgm
(For clarity, we have omitteg;, and p;; exogenous inputs corresponding to connection types 9 and 10, respegtively.

neurotransmitter rate constant. We show how the Liley equa-
(1.4 tions can be transformed into a set of first-order stochastic

DEs with the appropriate inclusion of white-noise terms.

This allows us to compute both the anesthetic-modulated tra-
where he| are linearized white-noise-driven fluctuations jectory of steady states and the corresponding EEG spectrum
about the stationary solutio®y andB are matrices contain- for small fluctuations about these states.
ing the linearized drift and diffusion coefficients. The power In Sec. lll we give the model predictions and compare
spectrum for fluctuations about the stationary state can thetmese with clinical measurements by other workers. Our
be derived by following standard methods of stochastic calmodel predicts that there will be either one or three station-

&e

‘l+B &

culus[20]. ary (equilibrium) states forh, as a function of anesthetic
Note that our stochastic approach relies on two fundameramount. For the three-state case, only two are stable; we
tal assumptionsia) that there existat least ong well- identify these two states as “activated” and “quiescent.”

defined equilibrium state of the cortex; afly) that an EEG  The existence of an intermediate, third, state which is un-
spectrum can be produced by driving this equilibrium statestable to fluctuations allows for transition between the acti-
with white noise. We observe that the notion of a stationaryated and quiescent states at a critical value of anesthetic,
state for cortical activity has already been invoked by Rob-suggesting the possibility of an identifiable phase transition
inson and co-workergl1,12, who assumed that such statesin the cortex. The model predictions for anesthetic-
are meaningful over timescales much longer than dendritienodulated changes to EEG spectral power show a clear bi-
integration timegi.e., >5-10 m3. Other workers who have phasic (activation followed by inhibitioh anesthetic re-
presented white-noise-driven model EEG spectra includgponse, with good qualitative agreement with the
Rotterdamet al.[14], Nunez[7], Liley [17], Jirsa and Haken experimental work of Kuizengest al. [3].
[21], and Franket al.[22]. The latter pair of cited references  Jirsa and Hakef16] suggested the possibility of a phase
take dendritic current as the state variable, permitting modetransition in the brain after observing MEG patterns of hu-
comparisons  with observed magnetoencephalogramsan volunteers taking part in movement coordination experi-
(MEGS). ments. The subjects were required to press a button in re-
In Sec. Il we present the Liley differential equations sponse to an acoustical stimulus. When the frequency of
(DE9 for a cortical assembly, and discuss how anesthetistimulus presentation exceeded a critical value, the subjects’
effect can be modelled in terms of changes to the inhibitorymovements switched from a deliberated manual action to an
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TABLE I. Symbol definitions and given values for model constants.

Symbol Description Value Unit
e, i (as subscripjs excitatory, inhibitory cell populations
Ne population mean soma potential mV
Tei membrane time constant 40, 40 ms
hit cell resting potential —70, —70 mv
het cell reversal potentialNernst potential 45, -90 mV
lecie total e—e,i—e “current” input to excitatory synapses mV
leiii total e—i,i—1i “current” input to inhibitory synapses mV
Pik(i ke leil) weighting factors for the, inputs
Peeie exogenougsubcortical spike input toe population 11,16 (ms)t
Pei ii exogenougsubcortical spike input toi population 16,11 (ms)t
e long-range(cortico-cortical spike input toe, i (ms)~*
populations
Aceei characteristic cortico-cortical inverse-length scale 0.40, 0.65 &m)
EPSP, IPSP excitatory, inhibitory post-synaptic potential mV
Yeii neurotransmitter rate constant for EPSP, IPSP 0.30, 0.065 “fms)
Ge,i peak amplitude of EPSP, IPSP 0.18, 0.37 mV
e base of natural logarithms 2.7182. .
N2, i total number of locab—e,e—i synaptic connections 3034, 3034
Ni"i,ii total number of local —e,i—i synaptic connections 536, 536
Neeei total number of synaptic connections from distant
e populations 4000, 2000
v mean axonal conduction speed 0.7 cm (nts)
Se(he),Si(hy) sigmoid function mapping soma potential to firing rate (mis)
O inflection-point voltage for sigmoid function —-60, —60 mV
Oe,i sigmoid slope at inflection point 0.28, 0.14 (M)

involuntary synchronous response. This change in movemem/9x? [which would have appeared on the left-hand side of
response was accompanied by an alteration in the recordede equation for the long-range potentia(x,t); Eq. (2.4)
spatiotemporal MEG patterns. To explain these findingsbelow] is eliminated, and all partial derivatives with time
Jirsa and Harkefil6] developed a field-theoretical model of become total derivatives with time. This gives the following
the brain, subsequently extended by Fralal. [22] to in-  set of eight coupled ordinary DEthe symbols are defined in
clude white noise. This model predicts that at a critical driv-Table )

ing frequency there will be a phase transition in the spatio-

temporal distribution of the dendritic currents. We note that 7e0 E he| _ he*—he n Yed eet Pielie 2.1)
their model describes a transition between differean- 07| dt|h| | h—h; Weil it Wi lii |’ '

sciousstates of the brain, whereas our present work is con- ]
cerned with the general-anesthetic-induced phase transition [ d ge NZ, Pe
between conscious and unconscious states. TG ~1INE Se(he) +| 41| .,

In Sec. IV we discuss the implications of our findings ’ (2.2
with respect to analogies between classical phase transitions

[:)ee} ] Geye®s

in physics and state changes in the cortex. We define a cortex d 2 o NiBe Pie
cooperativity parameter, analogous to the order parameter of v T e S+ D Givie, (2.3
a thermodynamic phase transition, and offer some conjec- S . !
tures about how these ideas might relate to “consciousness.” r /4 2 d _
_+VAee ¢e _+VAee AeeNge
dt _ dt h
Il. THEORY d — \2 |7Vl /4 _ i Se(he).
) ) a"‘VAe, ¢i a‘f’VAei AeiNei
A. Cortical equations (2.4

Our starting point is Liley's set of eight coupled PDEs
[19,23 in which we have assumed complete spatial homo- Equation(2.1) gives the time evolution ofi, andh;, the
geneity over the region sampled by the EEG electrode. Thigexcitatory and inhibitory soma potentials averaged over the
is a reasonable approximation, given that a scalp electrodessembly of cooperating neurons. The neural assembly is
has a contact area of approximately 2°crand thus detects assumed to be a single resistance-capacitéR€e compart-
electrical activity averaged across the underlying 5-18 cmment or summing point; in effect, we are defining an average
of cerebral cortex. Thus the one-dimensional Laplaciameuron for the mass. The first two terms on the right corre-
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spond to an exponential return to a resting potelhi,’ﬁf; the
second pair describe perturbations to the membrane potential
due to synaptic inputs to the neural mass. The (where
j,ke{e,i}) coefficients appearing on the right are normal-
ized weighting functions for these inputs. These coeffcients
represent the facts that excitation and inhibition are mediated
by different ionic species and that the corresponding magni-
tude of the postsynaptic currents will depend on the active
state of the neurof24]; they are defined by

(a) Firing rate vs Voltage

hrev_ h h_rev_ h
e e 1 e
e e | e
rev rev (25)
_ he —h _ hi —h (b) First-derivative
Pei= | hrev_ hyes1 o = | hrev_ hyes1 : 0.08 T T
e ' ' — dsgdh_ | _
The constant values used for the restig'and reversahgy 006l — 9S/m | Lo\ S
potentials are listed in Table I. Note that for typical values : : :
for he andh;, the weightsis and ¢,; for input from exci- : : :
tatory sources are positive, while weightg, and ¢;; from 0.04p oo e L S
inhibitory sources are negative. ; ; ;
The time evolution of the input termge, lie, lej, andl;; 002h o /. R\ SR
is governed by Eq82.2) and(2.3) which model the variable ' : : :
coupling strength between cells in terms of sigmoid func-
: 3 0 . ; .
tions Se(he) and S (h) -100 -80 -60 -40 -20
So(he)=[1+ exp(— go(he— 99))]_1. Soma Potential [mV]
1 (2.6 FIG. 3. Sigmoidal functions relating the firing rate to the aver-
Si(h)=[1+ exp(—gj(hi—6;))] " age soma potentiala) Sigmoid curves: excitatory sigmog, (light

) ] _curve); inhibitory sigmoidS; (bold). (b) First derivative of sigmoid
These are nonlinear S-shaped transfer functions representifghctions: ds,/dh, (light curve; ds /dh (bold). The points of
the output pulse ratén, say, pulses per secondf a homo- inflection are set at,;= —60 mV; the midpoint “gains” areg,
geneous neural mass in response to a mean fielg of,; . =0.28 and 0.14 (mV)* [see Eq(2.6)].
0.,i andg,; are constants, ; is the soma potential at which
the function has maximum gradient, aggl; determines the rate constanty; in Eq. (2.3)]. At concentrations appropriate

gain” at this point of inflection. See Fig. 3, and refer to for surgical anesthesia, the IPSPs are prolonged by a factor

Table | for values of the contants. For small values of somasf 1.5- to 4-fold[25-28.
potential, the average firing rate is low; as soma potential \We model this change in inhibitory rate constant by re-

increasegbecomes less negativiring rate increases rap- placing they; appearing on the left-hand side of E@.3)
idly, eventually levelling off at a maximum value of say, with 7 where
|

1000 s1. Thus the strength of the interconnection between
neurons is determined by the value of the soma potential at
that instant. In addition to sigmoid-modulated spike input =,
from the neural mass, there are exogeneubcortical spike

input contributions Pee, Pies Pei» Pii), Plus long-range ) o ]
(cortico-cortica) contributions ¢, ¢;) from distant excita- Here\ is a multiplicative scaling factor assumed to be pro-

tory assemblies. portional to anesthenc' concentration, so that 1 corre-

It is of interest to note that Eq$2.1)—(2.4) have some SPonds to no anesthetic effect, and an increase gorre-
similarities with those derived by Robinson and co-workersSPonds to an increase in anesthetic amddetrease iny;
[11,12, and Jirsa and Hake6]. Robinson and co-workers ate constant See Fig. 4. We now describe how the Liley
wrote differential equations fov, ;, the neuronal potential equations are transformed into linearized stochastic differen-
at the cell body, in terms of inputs determined by arrivaltial equations.
rates of pulses at dendrites, and used a sigmoid function to
relate input voltage to neuronal firing rate. B. Stochastic differential equations(SDE9

In our present work we wish to modify the Liley equa-
tions in order to model the effect of variable anesthetic con-
centration in the cortex. The primary mechanism of action As a first step toward deriving stochastic equations of
common to most general anesthetic agents is the prolongingotion, we need to identify the sources of noise which drive
of the duration of the inhibitory postsynaptic potentilB-  the system. We assume that the noise arises in the subcortical
SPg [25] [or, equivalently, the reduction in neurotransmitter (exogenousinputs to the assembly, and ignore noise enter-

1. System fluctuations
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simulation using stochastic-integration techniques, and these
can be fraught with stability problems. Instead, for a first
approach, we prefer to make some reasonable simplifications

N, ___EPSP
— IPSP (A= 1)

08¢ which will both permit analytic solution and also give some
insights into predicted system behaviors.
0.6r The simplification is possible if we perform a linearized
analysis which is based on the assumption that an equilib-
0.4} rium state of the cortex exists, and is given by solving Egs.
(2.1, (2.4, (2.7, and (2.8) in the steady-state limiti.e.,
o2} d/dt—0) in which all noise terms have been set to zero.
This gives the stationary solution, which we denote by the
0 ‘ ‘ ‘ ) vector
0 20 40 60 80 100
Time (ms) a®=[heghPIgd el gl dedi 1"
FIG. 4. Impulse response for excitatdfight curve), inhibitory Having solved for the equilibrium staie@®, we can lin-

(bold), _ and anesthetic-modified inhibitc_)rybold-da_she)_j post-  aarize Eqs(2.1), (2.4), (2.7), and (2.8) abouta®, and, by

synaptic membranes. Curves are normalized to unit height. For apsysiing them into a set of first-order differential equations,

plication to our model, the heights are scaled by the respectivgyiqin s complete set of stationary statistics such as correla-

EPSP((_axcnator)_/ post-s_ynaptlc potenti@nd IPSRinhibitory post- tion functions and power spectfa0].

synaptic pOFent'al an"tUdes’Ge":o'lg and 0.37 mV. The rate However, the required calculations present a formidable

iog%tggtséng,(:r%szw’fsfor the three curves areye=0.30, ¥ task, since they involve manipulations of several multidi-
R o mensional matrices. We can reduce the dimensionality of the

ing via the long-rangg(cortico-cortical connections from problem, thereby making it more tractable, by noting that the
{nput” terms (I, ¢¢;) can vary on time scales that are

distant assemblies. This assumption is modeled by replacin‘é ite distinct f he i le of th
each of the fourp;, subcortical sources appearing in Egs ugi |sTt|hn_ctbrom the time scale ?] the soma poten';]hags .
(2.2 and(2.3 by he product of s average valiey with 2T B 8 Eoee T americal values
a unit-variance white-noise terfi + &, (t)), e.g., X .

@+ (1)), eg listed in Table J:

ie—{Pie) (L + &o(t
Pie= (Pie) (L €ie(1)) relaxation time fol oo, 1 oi=(7e) 1~3.3 ms,
(We note that this is akin to the phenomenological inclusion
of cortical noise as proposed by Fraekal.[22].) Thus Eqs relaxation time foll . ,1;;=(v;) " '~15.4 ms,

(2.2) and(2.3) are rewritten as

2|: I ee} [
l ei
+[ 1(t)}, (27) whereas the-e’i time scales for t||é’le’i soma pote itials can

(1) be as large as 100 nj29]. For our present modeling work
we setr,= ;=40 ms, allowing us to make the working as-

NG relaxation time forgp,= (VAge) “1~3.6 ms,
ee
Ng;

de
P

(Pee)

Se(he) + ) HGe'yee —
(Pei) relaxation time forg; = (vA.j) " 1~2.2 ms,

+

(d
&"")’e

E+ _)2 le| [[N£ (ho)+ (Pie) Govet Fa(t) sumption that the six neuronal iNpufdeeieleilii Pedil
de ) [ T INE SDF| iy || et Ty equilibrate very much faster than the soma potentials
(2.9  themselves, so that dm,; equilibration time scales, all time
derivatives appearing in Eq&.2)—(2.4) can be set to zero.
where We thus adiabatically eliminate these “fast” variables by
T,0] [(ped&ylt) settingd/dtﬁo in Egs.(2.2—(2.4) while retainingthe noise
[Fl }:[ o 1 }Ge')’eea terms, allowing us to solve fdre, lie, lei, lii, de, ande
2(1) (Pei) €2(t) as functions oh, andh; . The resulting expressions for these
six fast variables may then be substituted back into the equa-
[F3(t) _ (Pie) &3(1) Givie, (2.9 tions of moti(_)n(z.l) for he andh; . .
)] [(pi)éa(t)] ' Note that in contrast to the procedure for determining the

) _ stationary solutiong®, we do not set the noise terms to zero
and the fourg;(t) are Gaussian random terms as defined by, e adiabatic elimination, since we wish to allow fluctua-

Eqgs(1.2. [We do not include any explicit noise terms in EQS {5 from the fast variables to be incorporated into ige

(2.1) and(2.4), so these remain unaltergd. equations.(We note in passing that while Garding20]

warns that this method for treating noise is only valid for

small fluctuations, it has been used with success by many
Our aim is to use Eq$2.1), (2.4), (2.7), and (2.8) to  workers in the field of quantum optics, e.g., by Haken

compute observable guantities such as power spectra. Soli30,31] in his treatment of the laser, and by DrummdR@&]

ing these equations in their full form will require numerical in his work on cooperative fluorescence.

2. Adiabatic elimination of fast variables
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The equations resulting from the adiabatic simplification dF, oF,
follow: e oh, 3_h, 013
el _[[Neel . oy 28] 4 [$Pe ]} 5 ZEZ C;_Ez
Igi Neﬁi ellle ¢? <pei> e® Ve e i eq.
Ty(t) where the eq. subscript means “evaluate at the equilibrium
+{Fl(t)} / yg’ (2.109  point.” Since the SDE is now in Ito form, we may define an
2 equivalent Fokker—Planck equatif20]
12 NZ (pie) — [Ta) P(heh) [0 - O N .
[ﬁ}:[ Nl.g Si(hi)+ <pli(:> Giely+ Fj(t) ;Iz %: K[Allhe"’_Alzhi]+E[A21he+A22hi]
I 1 i
(2.10b ¢ '
{ 2 2 ] o
0 @ + 5| —=Dyu+—=D P(he,hy), (2.149
N 2 - 11 2 22 et
[ZS}% Nie}se(he). (2.100 2| ghZ ah;
i ei

whereP is the probability distribution function for th~laeyi .

Substituting Eq$2.10 back into Eqg2.1), we obtain the  TheDj; are the elements of the diffusidnoise matrix de-
stochastic equations of motion for the soma potentials in théined via
adiabatic limit:

(To(OT(1)=Dyd(t—t"),  (2.153

d he Fl(heahi) l_‘e(t) . () — Y
m{hi}:[whe,hn}*[rim}’ (2113 (T(OT () =Dpdt—t),  (2.15H
D12: D21: 0. (215@

where the drift terms are . cer : L .
(The full form of the drift and diffusion matrices is given in
the Appendix)

Equation (2.14 describes a multivariate Ornstein-
Uhlenbeck process, the stationary statistics of which have
been extensively studid@0]. In particular, if we define the
time autocorrelation foh, as

Fi(he,h)={(h®“he)+ ¢ed (N&+ N2 So(he)
+<pee>]Gee/7e+ )\’r//ie[Ni% (hi)

+<pie>]Gie/'yi}/Tev (2.11b

Fa(he,h) ={(h{®*“h;) + ¢ [ (N&+ N5) Sq(he)

+(Peid1Geel ye+ N [NAS (h)
+(pii)1Gie/ yi} i,

1.
G(t")=lim —J he(t)he(t+t")dt; (2.19
TﬂocT 0
(2.119  then the stationary fluctuation spectrum for can be com-
puted from the Fourier transform

and the corresponding noise terms are

- 1 (=
Shdwl=5- [ e arrar. @17
Ie(t) :{'ﬁee<pee>§1(t)Gee/'ye+ )\‘//ie<pie>§3(t)Gie/'yi}/Tev o

(2.119 Using standard Ornstein—Uhlenbeck analy{&6], we can
derive the spectruns [h and the covariance matrie
i) ={Yei(Pei) £2(1) Gl vet N Pii) Ea(1) G/ %(}2/71-il.e) in terms of tﬁe drift a[ndE(dai)f)fl]Jsion matrices andD:

S [ﬁe(w)]zi(miwn*l D(AT—iwl) %,
(2.18

where the superscrift signifies a matrix transpose. The sta-
tionary covariance matrix is

(Note that we have replaceﬁ by v;/\ in the above equa-
tions in order to make explicit their dependence on anesthetic
“effect” \.)

C. Fluctuation spectrum: linearized theory

We linearize SDE’'92.11) about an equilibrium state® _ <F]e!ﬁe> <Ee :F]i>
to obtain the Ito SDE T m RS R
d{he|  [Re] [Te(t) _ de{A)D+[A—Tr(A)I] D [A—Tr(A)I]"
aM‘ _A[EJ’L[D(U} (212 } 2Tr(A) detA) 2

in which | is the identity matrix; det and Tr are the determi-

nant and trace operators respectively; and where, for ex-
ample,

whereﬁe,i represent small deviations of the; from the
equilibrium state. The drift matriA is given by
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(a) Stationary States responds to no anesthetic effect. Figufb)Shows that for
' ' this value of\, there are three distinct values fo}: A, on

the SA; upper branchQ, on theQ;C lower branch, and an
intermediate valuéunlabeled on the A;Q, middle branch.
From stability analysis, we have established that only the
upper and lower branches contain stable equilibrium points;
all points along the intermediate branch are unstable with
respect to small perturbations.

Suppose the neural assembly is initially at location As
anesthetic effeck increasesh? will slide to the right down
the upper branch té;, whereupon a sudden jump @@; on
o 05 1 15 2 the lower branch must occur, since the middle branch is un-
stable and therefore disallowed. Further increases il
then causehg to advance along th@®;C subbranch. If in-
stead, the assembly was initially @, on the lower branch,

: | — then increases ik would lead to smoothly decreasifigiore
S = = |nduction negati | f . . . - .
| Emergence |] gative values for soma potential, with no jump disconti
nuity.

The points on theéSA; upper branch correspond to very
strong neural firing, since along this branch the soma poten-
3 tial exceeds the sigmoidal inflection-point voltagé.€
] —60 mV; see Fig. B thus we refer to the upper-branch
—1— states as being “active.” Maximum activity will occur &

' ] (upper-left cornerwhen soma potential is least negative; we
Q, Q, refer to theSA; subbranch(region Ill) as “seizure .” The
' ' ' : Q1C lower-branch states have large negative soma poten-
0 0.5 1 1.5 2 . - .
. tials, and therefore suppressed firing rates, so we label this
Anesthetic Effect, A . s " . -
quiet branch “quiescent.” Maximum suppression occurs at

FIG. 5. (3) Model predictions for the stationary states foy ~ C (lower-right corne), so theQ3C subbranch(region |) is
(circles andh; (crossesas a function of scale factor (anesthetic  labeled “coma.”
amounj. Ordinate axes carry units of m\) In region Il bounded If the cortex is pictured as a superposition of neural as-
by A;A;Q5Q, for a given value of\, there are three possible semblies, some active and some quiescent, then even if only
values forh,, but only two of these are stable: points lying on the a small proportion are in the activated state, we might expect
upper (“active”: A;Az) branch, and points on the lowéfquies-  an anesthetic-driven downwards transition acrossAk®;
cent”: Q;Q3) branch. Forn=1.53 (region )), h, becomes single gap to produce a measurable change in the EEG signal if the
valued and neural firing is strongly suppressambma”: Q3C); for  active assemblies are acting synchronously. We make some
A=0.3 (region Il), he is again single valued but now neural firing theoretical predictions about the nature of these spectral
is maximized(“seizure™: SA). changes in the following subsection.

The existence of multiple stationary states in the cortex
(he he)=var(he) =((he— (he))2) = (h2) — (h,)2. was first suggested by Wilson and Cowi@]. In their ab-
2 stract model of populations of inhibitory and excitatory neu-
rons containing sigmoid nonlinearities, they demonstrated
Fluctuations oh, about its stationary state are thus given bythat for sigmoid functions withn inflection points, there
could be up to 2+ 3 stationary, but not neccessarily con-
Ahe=var(hy). (2.21  current, states. Recently, Robinsenal. [12] investigated
the nature of the steady-state solutions for a similar math-
ematical model of the cortex, but, after an extensive param-
IIl. RESULTS eter space search, rather than five equilibrium states, they
A. Stationary solutions found a maximum of either three steady states or a single
) ] . steady state; and that for the three-state case, only two were

By solving Eqs(2.1)—(2.4) in the steady—s(t)ate, ZE10-NOISE staple. This finding is in complete accord with our results
limit, we obtain the equilibrium behavior df, andh; as a reported here.
function of anesthetic “amount”\. See Fig. 5. These Examining the results of Robinsoet al. [12] in more
steady-state values were obtained numerically by locatingetail, they classified their solutions in terms of a rafit.,
the mu|tlp|e intersections Of the iSOCIine Curwi!he/dIZO Where'i (|e) is the net response at the Ce” body per unit
anddh; /dt=0. (See Wilson and Cowaf®], Fig. 4, for an  concentration of inhibitory(excitatory neurotransmitter at
i”ustration.) Values for our SyStem constants follow Closely the Synapses_ They found that the three-state case occurred
those of Liley[19], and are listed in Table I. Recall that in \yhen l;/le~1, i.e., when the inhibitory and excitatory re-
our model, the inhibitory neurotransmitter rate constant issponses were of similar magnitude. However, if the inhibi-
assumed to scale inversely with y;= y;/\, thus\=1 cor-  tory response was strongly dominant over excitatoryice

Soma Potential (mV)

(b) 17 Soma Trajectory

Soma Potential (mV)
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FIG. 6. 3D plot showing variation of spectral power along the FIG. 7. Total power as a function of anesthetic effect. Power
anesthesia-induction trajectof;A;Q3C of Fig. 5. As\ increases values were obtained by integrating the inductiBig. 6) and emer-
from 0.3 to 1.53, low-frequency spectral power increases to reach gence(not shown spectral power curves over the frequency range
strong maximum at the critical point marked; on the upper 0-40 Hz. The labels correspond to those used in Fig. 5.
branch of Fig. 5. A further increase lproduces an abrupt drop in
power as the soma potential transits fhe— Qs jump to reach the  value, the macrocolumn suddenly collapses to its quiescent
lower branch.[The power scale is dB relative to the 1.28 state with much reduced spectral power.

X 10~%(mV)?/Hz coma minimum at 40 HZ. In Fig. 7 we show the total powéarea under each of the
spectral power curvess a function of anesthetic effectfor

versa, they found that the system collapsed to a singlePoth the induction trajectory A;A3QsC) and the

steady state. emergence-from-anesthesia trajectoy;Q;A;). The two

Relating these findings to our model, théjr(l) “net ~ cusps correspond to the two turning poinfs; (@and Q;) in
response” concept would seem to correspond to our IPSEne stationary states trajectory of Figbh Figure 8 shows
amplitudeG; (EPSP amplitudeS,). In our case, we main- the corresponding steady-state noise amplitude as a function
tained these amplitudes constasee Fig. 4 and instead Of anesthetic effect. The shapes of Figs 7 and 8 are rather
increased the inhibitory effectiveness by prolonging the in-Similar because the zero-frequency peak dominates all of the
hibitory neurotransmitter time constafity reducing its in-  SPectral power curves. _ o
verse, the rate constanf) by scaling it with anesthetic fac- ~ How well do these theoretical curves match up with clini-
tor, A. Thus, broadly speaking, odr maps to thd; /I, ratio ~ cal measurements? Kuizengaal. [3] performed a clinical
of Robinsonet al. [12] since \>1 corresponds to strong Study which examined the “biphasic” relationship between
inhibition (leading to “coma’), while at the opposite ex- the concentration of a general anesthetic agertpofo) in

treme,\<1 corresponds to excessive excitatideading to  arterial blood and EEG effects during the transition from the
“seizure”). awake state to hypnosis and during subsequent emergence.

The subjects were ten healthy male patients who were sched-

B. Spectrum for fluctuations about the steady state »

10
For each of the i, h?) equilibrium states markeths

circles and cross¢®n the upper and lower branches of Fig.
5(a), we solved Eq(2.18 for the fluctuation spectrum over
the frequency range 0—40 Hz. Figure 6 shows the predicted
variation in spectral power for a macrocolumn whose inhibi-
tory neurotransmitter time constant is multiplied by dac-

tor which increases steadily from 0.3 to 1.8. This corre-
sponds to induction of anesthesia via the trajectory
A1A3;Q3C from the uppen“active”) to the lower(“quies-
cent”) branch of Fig. ®).

Each spectral curve is peaked at zero frequency, with
power diminishing smoothly with frequency. There is no
suggestion of any cortical resonandssch as the 8—13 Hz 10
alpha rhythm in these curves; this lack of higher-frequency
structure is not unexpected given the approximations we
have madelinearization about equilibrium, adiabatic elimi- |G, 8. Steady-state noise amplitude as a function of anesthetic
nation of fast variablgs effect. The ordinate is the spectral amplitude at zero frequency, and

The interesting feature is the very strong increase in lowcan be interpreted as a vertical “error bar” to be applied totfie
frequency power as the turning pointlat=1.53 [Az in Fig.  steady-state trajectory of Fig. 5. Maximum noise occurs atAhe
5(b)] is approached. Whex is increased beyond this critical andQ, critical points.

Steady-State Noise (mV)
=

0 0.5 1 1.5 2
Anesthetic Effect, A
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250

FIG. 9. EEG amplitude data from Fig. 1 plot-

ted as a function of measured propofol blood con-
centration.(@) 0-5 Hz.(b) 11-15 Hz. Each tra-
jectory commences at the lower-left corner at
zero concentration. For the 0—5-Hz band, the ac-
tivation peak is stronger during the induction
phase(right-hand peak for the 11-15-Hz band,
the activation peak is considerably stronger for
the emergence phasgleft-hand peak (Data sup-
plied courtesy of K. Kuizenga, and reported as
0 o “patient 7" in Kuizengaet al.[3].)

200

150

100

EEG Amplitude (uV/s)

Propofol Concentration (mg/L) Propofol Concentration (mg/L)

uled for lower-limb surgery. A scalp electrode pair wasband. There is also a scale difference with model voltages
placed at the mastoighone behind the epand the forehead being stated in mV, while EEG measurements are.Wi
to monitor the differential EEG signal developed across thélhese apparent discrepencies arise because the model is pre-
hemisphere. Each patient received a 10-min infusion of prodicting the soma potentials for a single coordinated macro-
pofol. The EEG was recorded continuously from 5 min be-column in the cortex, while the EEG measurement is record-
fore the start of propofol infusion until the patient regaineding the complex of signals from thousands of macrocolumns
consciousnesg@pproximately 15 min after conclusion of in- in the vicinity of the scalp electrodes, attenuated and filtered
fusion), and thereafter intermittently for 5-min periods, coin- by the intervening skull and skin. The fact that the activation
ciding with blood sampling, until 190 min after start of in- peaks can be detected at all suggests that a fraction of the
fusion. Blood samples were drawn from a femoral artery amacrocolumns must be acting coherently in the vicinity of
2-min intervals during the first 22 min, then at more widely the critical point.
spaced intervals thereafter. The second point of difference concerns the interpretation
The EEG signal was processed, over 15-s epochs, into aff anesthetic “effect.” In comparing our model with the
six frequency band€-5, 6-10, 11-15, 16—20, 21-25, and results of Kuizengat al, we have implicitly assumed that
26-30 H32 using “aperiodic analysis.” This technique mea- our \ factor (degree of prolongation of the inhibitory time
sures the vertical distance between consecutive peaks awrdnstankt corresponds to propofol concentration measured in
valleys in the voltage trace and computes an effective instarthe femoral artery. Strictly speaking, what is needed is the
taneous frequency frorthalf the reciprocal gfthe time in-  propofol concentration at the cortex, but obtaining this infor-
terval for the peak-to-trough excursion. These voltage excurmation is a complicated exercise in pharmacokinetics mod-
sions are then accumulated, unsigned, into one of the sigling which requires several additional assumptions about
frequency bins to give a total voltage deviation in each fre-multiple-compartment time constants.
guency band for the 15-s epoch. Dividing each band total by
15 s then gives a measure of the average amplitude “slew C. Power divergence at transition

" ich Kui t al. referred t th . . .
raEtEG ;nmgl\iilljsd,ev,\'/mc uizengaet & referred to as the The theoretical origin of the peaking of the power spec-
. trum at the transition points.; corresponding té\; on the

Figure 1 shows the time course of EEG activity for the .
0-5- and 11-15-Hz bands for patient 7 of the KuizengalPPer branch of Fig. 5, anQ, on the lower branch can be

et al. study, and Fig. 9 shows the same information, but nows€€" Py examining the terms making up 218
plotted as a function of propofol concentration at the femoral

2 2 2
artery. Both bands show a pair of pronounced activations[h (0)]=— D1:A%+ DaAlp+ Dugw _
peaks: the first peak occurs during the induction phase as the = * 27 (A1A2— ApiArs— 02) 2+ (At Ay w?
patient becomes unconscious; the second peak occurs some (3.)

time later as the patient emerges from unconsciousness. For ]
the 0—5-Hz band, the induction peak is stronger, while fofFrom Eq.(2.13, the matrix elemen#;; can be written
the 11-15-Hz band the emergence peak is strongly domi-
nant. B &Fl_ dF1 9N

The detection of two activation peaks, one during induc- 1 dhg N dhg
tion of anesthesia and the second during emergence from o
anesthesia, provides encouraging qualitative agreement beimilarly, the remaining elements are
tween the clinical results with the steady-state model predic-
tions of Figs 7 and 8. There are two important and not un- 5 __ _ ‘9_':1 ﬂ __ ‘9_':2 ﬂ o= — ‘9_':2 ﬁ
expected quantitative differences between theory and > dN dhy’ TP oN dhg’ I\ oh;
experiment, however, which should not go unremarked.
First, the model predicts a dynamic range of abodt1Gn ~ From Egs.(2.110 and(2.119, we have
total power(Fig. 7) and 200:1 in dc amplitudé-ig. 8 while
the experiment yields dynamic ranges which are much ‘9_':1:¢. [NES(h)+(p; H%Ea
smaller: 5:1 for the 0—5-Hz band, and 10:1 for the 11-15-Hz gn e e e
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F, p Ge variables(Sec. 11B 2 in Egqs(2.10, we can see thay; and
KZlﬁn[NnSi(hi)Jr(PnﬂﬁEaz- G; (the IPSP “amplitude’) have reciprocal effects on the
stationary points and on the corresponding spectral densities
The diffusion matrix element®,; andD,, are nonzero and [see EqgAl)—(A4)]. Thus reductions iry; are equivalent to
finite at\ ., as are the values, anda,. However, because increases irG; and vice versa. This means that we can in-
the N\—h, and A—h; curves of Fig. 5 have turning points at terpret the effect of anesthetic agents on EEG as arising ei-

N erit ther from augmentation of the IPSP amplitude, or from in-
creases in the time courgeeduction in the rate constant
22N ) associated with IPSP kinetics.
lim ahy lim _(9_hi:0’ Each of the exogenous spike-rate inpusd, Pei, Pie.

pi;) into the neuronal assembly is assumed to take the form
of a white-noise fluctuation about an equilibrium mean.

These inputs originate from neural action potentials gener-
ated within such subcortical structures as the thalamus and

all four elements of matriXA will be zero, and thus at a
critical point Eq.(3.1) predicts that the spectral power will

scale as 1 ) . . .
the reticular nuclei of the brainstem. We ignore the long-
range contributions ¢.., ¢.;) from other cortical assem-
. Dy i i i
lim S[hy(w)]=—=. blies by assuming the) terms are spatially homogeneous
A—Ngit w? and constant in time. Because of the simplifications inherent
in the adiabatic elimination and subsequent linearization, our
That is, for nonzerd,; at a critical point,S [he(w)] di-  theory does not demonstrate cortical resonances such as the

verges at low frequencies. Further, examination of 259  8-13 Hz alpha rhythm. Nevertheless, we believe the low—
and (2.21) shows thatAh,, the fluctuations irh., will be- zero-frequency predictions of our model give some insight
come infinite as\— A ;- into the underlying cortical “gain” manifest in the EEG sig-
The peaking of the power spectrum and the divergence aofial.
Ahg at A is similar to the singular behavior observed in ~ The neurons within an assembly are coupled via a sig-
thermodynamic phase transitions. For example, at the ferromnoid nonlinearity which defines the firing rate as a function
magnetic critical temperature, both heat capacity and of the soma potentiatthe spike-ratél, sigmoid curve; Fig.
magnetic susceptibilityy diverge. The traditional scaling- 3). Below a threshold value the firing rate is Iqweak cou-
hypothesis model for critical phenomena asserts that thegaling between cells whereas above threshold many neurons
singularities arise from large-scale correlated fluctuations oére firing (strong couplingg As a result, the stationary solu-
magnetic spin alignment which occur at the critical point. tion of our model predicts two distinct, stable-equilibrium
For the case of our 1D cortex, because we have a microstates for the soma potential as shown in Fig. 5. The upper
scopic model for the interactions within a cortical macrocol-branchA;S corresponds to the top plateau of the spike-rate
umn, we can see how the presence of finite-amplitude whitsigmoid; we describe this as the “active” state of the cortex
noise in the input termspie, Pic. Pei. Pii) can result in  arising from strong intracortical connectivity and a relatively
infinite fluctuations in thén, soma potential output: because high (near zerp mean soma potential. Conversely, the lower
the h, covariance matrix depends on the stationary-state tra@ranchQ;C, corresponding to low spike rate, is the “quies-
jectory which has a turning point at;, the variance oh,  cent” state brought about by weak intracortical connectivity
tends to infinity as\— A ;. Essentially, the presence of the and a lower(more negativemean soma potential.
turning point provides the required divergent “gain” as the If the inhibitory post-synaptic potential decay time is pro-
anesthetic effect approaches its critical value. longed(thereby moving the cortex into region@;C) either
There is an apparent paradox here. How is it that a linearby application of drugs, or as a result of disease processes,
ized, first-order, equilibrium theory is able to reproduce thethere is a marked decrease in spike rate. This has been ob-
highly nonlinear, nonequilibrium fluctuations and diver- served when neural preparations are exposed to therapeutic
gences associated with a phase transition? The key woukbncentrations of general anesthetic ag¢B#, and when
seem to be the inclusion in the model inputs of white noisepatients are in a state of coma. Although the degree of hy-
These small random fluctuations move the system just faperpolarization induced by general anesthetics is minimal
enough away from equilibrium to allow sampling and cap-(~4 mV) [35], the spike-rate reduction is dramatic.
ture of the essential characteristics of the nonequilibrium be- If we can assume that the essential requirement of normal
havior: divergent low-frequency power and infinite fluctua- cortical function(and presumably of conscious awarenéss
tions at the critical point. the ability of the cortex to make and unmake strong but
transient connections between assemblies, then in region II
of our steady-state model we can picture individual assem-
blies transiting momentarily from the quiescent to the active
The significant result obtained in this study is that powerbranch. A collection of such active assemblies, firing collec-
spectral variations in a linearized stochastic model of corticatively, should produce a coherent effect, much like the light
electrorhythmogenesis due to anesthetogenic variations ifield generated by a laser. However, unlike the laser analogy,
the inhibitory rate constany; show qualitative agreement neuronal assemblies do not remain in a state of high excita-
with clinical observationg33]: there is a sharp increase in tion for extended periods. Indeed, prolonged high excitation
low-frequency power in the vicinity of the critical points. As is a feature of the convulsive state, and may be induced by
a consequence of the adiabatic elimination of the “fast”analeptic drugs such as bicuculine whaftortenghe inhibi-

IV. DISCUSSION
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tory post-synaptic decay time-constd@6]. The convulsive aF,
state corresponds to our region [BubbranchSA; in Fig. A= — “he
5(b)]. €

The strong divergence in low-frequency power as the cor- = —{— 1+ [y {D((NZ+ NL) Sa(he) + (Pee)) + red NS,
tex changes state is similar to the divergences observed in B\ lL) W
thermodynamic phase transitions. In the thermodynamic +Nee) Se '(he) ]Ge€l vet+ N g
case, phase changes can be described within the Ising frame- B
work which introduces the concept of an order parameter to X[NieSi(hi) +(pie) 1Gi€l i}/ 7e, (A1)
distinguish between ordered and disordered states. For ex-, B a(2)
ample, in the ferromagnetic phase transition, the order pa-~12= ~ 1M YieNieS™(hi) Giel yi}/ 7e, (A2)
rameter is the net magnetization which is zero above a criti- o

k Ao1= —{Yei( NG+ NE) SV (he) Geel el 7 (A3)

cal temperature, and nonzero below this temperature. We' 21
postulate that for the cortex, instead of an order parameter,, NN
we can define acooperativity parameterH as the whole- Azo= ~{= 1+ dei [(Nei+ Nei) Se(he) +(Peip IGe€l ve
cortex mean. soma potential relative to its value in the uncon- +7\(lﬂi(i2)[NﬁSi(hi)+<Pii>]

scious state:

_ _ + i NESP (h)Geel v} 7, (Ad)
H=hg(consc) — hg(unconso.
where

This parameter will have a large net value in the conscious
state, and will be zero in the unconscious state. The phase 1) _ eeie @) _ Ieiiii
transition is effected by varying the anesthetic amount. Thus eeie Hh, . elii — gh, oo
the anesthetic provides the randomizing agent which breaks ¢ 4
the connections between coherent subpopulations, transform- 3Se(he) S (h))
. ; (1) e (2) -
ing the cortex from a strongly-connected, cooperative con- Se’(he)= h (hy)= o

e I

scious system to an unconscious system characterized by

weak connectivity and negligible cooperativity. Currently, 1o compute the diffusion matri®, we first note that the
the phenomenologically-derived bispectral indéased on 0 off-diagonal elements are zefsee Eq(2.150]. To cal-

the computation of a limited bispectruns the most sophis- ¢ jjate D,;, we substitute theo(t) noise term from Eq.
ticated measure used in the clinical practice of anesthesia {® 119 into Eq. (2.153, leading to

determine loss of consciousness and thus depth of anesthesia.

However, the use of the theoretically derived paraméter 1

may offer a more rational basis for the assessment of the (Te()Te(t")) = ([ Ve Pee) €2(1) Gell e

depth of anesthesia and thus may have considerable clinical Te

utility. . Al
The actual neural mechanisms and dynamic routes by T N ie(Pie) é3(VGiel 7]

which the cortex may switch between quiescent and active X[ e Pee) E1(17)Gell e

states are not known, and are the subject of ongoing investi- ,

gation. We speculate that noise-induced transitions may be N ie(Pie) €3(t) Giel ¥i]).

important for maintaining conscious awareng3s|.

We conclude that although the EEG is the spatially andG
temporally filtered summation of multiple and complex neu-
ronal processes, the fact that our model correctly predicts
strong increase in low-frequency power at the critical points 1
of induction and emergence suggests that the model design (To(OT (1)) = —2{(¢ee<pee>Gee/7e)2
and assumptions provide a useful advance toward under- Te
standing cortical function.

Recalling that theé&(t) terms represents-correlated
aussian white noise with zero megsee Eq.(1.2)], the
g‘e(t)l"e(t’)) autocorrelation simplifies to

N (Yie{Pie)Giel y) 2} S(t—t)
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(A5)
APPENDIX: DRIFT AND DIFFUSION MATRICES Similarly, solving Eqs(2.11¢ and(2.150 for D, yields
The four elements of the drift matri& are obtained by 1
substituting Eqs(2.11h and(2.119 into Eq.(2.13 and cal- Doo=—5{(tei( Pe)) Gl ) 2+ N2 (Pii ) Gl 1) Z}eq.
culating the soma potential partial derivativeésh, and 7|

dloh; . The results are (AB)
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