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Nonlinear dynamics of Aeolian sand ripples

Leonid Prigozhin
Center for Energy and Environmental Physics, Blaustein Institute for Desert Research, Ben Gurion University of the Nege

Sede Boqer Campus 84990, Israel
~Received 13 April 1998!

We study the initial instability of flat sand surface and further nonlinear dynamics of wind ripples. The
proposed continuous model of ripple formation allowed us to simulate the development of a typical asymmet-
ric ripple shape and the evolution of a sand ripple pattern. We suggest that this evolution occurs via ripple
merger preceded by several solitonlike interaction of ripples.@S1063-651X~99!04507-9#

PACS number~s!: 81.05.Rm, 47.54.1r, 92.60.Gn
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I. INTRODUCTION

Aeolian ~i.e., wind-driven! sand ripples form nice regula
patterns on coastal beaches and desert floors and indica
instability of flat sand surface under the wind-induced tra
port and rearrangement of loosely packed sand grains.
lowing fundamental work by Bagnold@1# more than half a
century ago, formation of sand ripples has been studied
many researchers~see review@2# and the references therein!.
Significant progress in understanding the nature of this p
nomenon has been achieved. Nonetheless, major ques
remain open; these involve the most interesting part of rip
formation, the nonlinear interactions that follow the initi
instability. Previous research on ripples has generally re
on highly simplified continuum models or on stochastic
molecular-dynamics simulation. By means of a determinis
continuous model that seems to better describe the esse
physics, we here investigate salient nonlinear propertie
ripple formation.

As is well known, Aeolian ripples are oriented perpe
dicularly to the wind direction. Mature ripples are asym
metrical in cross section: their stoss~upwind! slopes are typi-
cally much less steep than the shorter lee~downwind! slopes
@2–4#. The steepness of the lee slopes cannot exceed
usually does not reach the sand angle of repose. The rip
have convex stoss slopes, concave lee slopes, and flat
crests, which usually end with a brink. Since smaller ripp
of the same shape have smaller volume to surface ratios,
are translated faster by the wind and can overtake the la
ripples. A possible merger results in gradual elimination
small ripples and in growth of ripple wavelength.

To analyze the mechanics of sand transport, which occ
whenever the wind is sufficiently strong, it is convenient
distinguish two types of sand grain movement: saltation
reptation~or creep! @1,2#. Saltating grains move by long tra
jectories that end in high-energy impacts with the surfa
These impacts take place at almost uniform shallow an
of descent varying from 9° to 15° to the horizontal depen
ing on the wind strength and grain size@5#. After an impact,
a saltating grain usually rebounds sufficiently high to be
celerated by the wind again and continues its saltation. Th
grains gain energy from the wind and transfer part of it to
sand bed on impact. Each impact may cause ejection of
or several low-energy~reptating! particles from the bed sur
face. Reptating particles make a short hop, usually jump
PRE 601063-651X/99/60~1!/729~5!/$15.00
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or rolling for several millimeters or less, and stop. The e
change flux between saltating and reptating grain populat
is supposed to be small@6,7#.

According to the hypothesis put forward by Bagnold@1#,
the ripple wavelength is equal to the mean length of salta
jump. However, this claim has been challenged by numer
researchers~see, e.g.,@2,6#! and it is now commonly ac-
cepted that the essential physics lies in the variation of r
tation flux. The role of saltation, whose trajectories are ma
times longer than the ripple wavelength, is indirect. The o
lique, almost unidirectional bombardment by saltating p
ticles supplies the energy necessary for reptation. W
strength determines the intensity of saltation; the probab
of direct entrainment of particles into reptation by the wi
is small @1#.

A model, based on these views, was proposed by And
son @6#. Linear stability analysis of this model showed th
the initial ripple wavelength is determined by, and is seve
times larger than, the mean length of reptation. Unfor
nately, the model yields unrealistic results at the nonlin
stage of ripple growth, which begins very early. It has be
suggested@2# that the model can be improved by allowin
the reptating grains to continue rolling upon the bed surf
after landing, and not to stop immediately as was assum
originally. Although no such continuous model has been
veloped, employing a similar approach in molecula
dynamics computer simulations of sand ripples@7# was quite
successful.

Interesting results on modeling different aspects of sa
ripples dynamics have been obtained by means of cell
automata models or molecular-dynamics simulations@7–10#.
It was even claimed@10# that no continuum mechanics o
deterministic model can capture the main feature of rip
self-organization: the increase of scale in time due to me
ing of ripples. Below, we show that this general conclusio
based on a schematic discrete model of ripple merging
wrong. The continuous deterministic model proposed her
provides a better description of the physical process than
simplified stochastic model@10#. Our model reproduces th
asymmetrical ripple shape and is able to simulate not o
the merging of ripples but also a more complicated, solito
like mode of ripple interaction, which can be equally signi
cant for ripple self-organization. A somewhat similar beha
ior has been observed in molecular-dynamics simulation
sand ripples@7#.
729 ©1999 The American Physical Society
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730 PRE 60LEONID PRIGOZHIN
Let us mention here also the analytical model of sa
ripples @11#. In this model, the upwind slope of a ripple
given by a smooth solution of the diffusion equation with
negative diffusion coefficient. Such a solution is, howev
unstable. Furthermore, in the absence of wind the rip
shape in@11# is described by a well-posed diffusion equ
tion. This is also unphysical: according to this model ripp
diffuse and disappear, since surface particles continue to
down the slopes. Real sand ripples are, of course, metast

To derive a model allowing for metastability, it is nece
sary to take into account that the surface flux of granu
material is not determined solely by the local surface slo
Models involving an additional variable, surface flux, or t
density of rolling particles, have recently been derived
simulate quasistationary evolution of a growing pile sha
@12,13# or to model the dynamics of pile surface in mo
detail and on a shorter spatiotemporal scale~ @14#, see also
@15#!. In our model of Aeolian ripples we use a similar a
proach to describe the flow of rolling particles.

II. MATHEMATICAL MODEL

In accordance with the physical picture of sand transp
described above and presented schematically in Fig. 1,
assume that there exists a uniform flux of saltating gra
that reach the bed surfacez5h(x,t) at a low angleg to
horizontal. The impacts cause erosion of this surface.
erosion ratef is proportional to the impact intensity, whic
depends on the surface orientation with respect to the di
tion of saltation. Let the saltating particles strike an inclin
surface at an angleu ~Fig. 2!.

Then f is proportional to sinu and we can write

f 5 f 0

sinu

sing
,

FIG. 1. Interaction of saltating, reptating, and rolling sand gra
in the model. Saltating particles follow by long trajectories~dashed
lines!, strike the sand bed surface at almost uniform shallow an
to horizontal, and are rebounded high enough to be accelerate
the wind again. The impacts cause ejection of reptating grains f
the bed surface. These grains trajectories~solid lines with arrows!
are short. The landing reptating grains may roll for some dista
upon the bed surface~small circles! before they stop.

FIG. 2. One-dimensional scheme: saltating grain reaches the
surface at the angleg to horizontal, the surface is inclined at a
anglea; u5a1g is the incident angle of attack.
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wheref 0 is the rate of erosion of a horizontal surface~deter-
mined by the intensity of saltation!. However, if the surface
has sufficiently steep slopes, some parts of it may be
shadow and unreachable by saltating grains. In this case
set f 50; shadowing introduces nonlocality into this pro
lem.

A reptating particle, ejected by an impact at a pointx,
makes a jump and lands on the bed surface at a pointy with
probability densityp given by the ‘‘splash function,’’p
5pa(x,y), first introduced in@16#. This function, which will
be specified below, depends, in particular, on the surf
slope at the point of impact. In our model, the splash fu
tion also accounts for all the anisotropy induced by a cho
wind ~saltation! direction.

Upon landing, reptating particles do not stop immediat
but may roll away, although usually not far from the landin
point. Let R(x,t) be the effective surface density of rollin
particles (Rdx is the volume that particles, presently rollin
over the part of the free surface above the areadx, would
occupy in the sand bed!. When they stop, the rolling particle
are incorporated into the motionless bed. Following@14#, we
denote byG@h,R# the rate of rolling-to-steady-state trans
tion and write the mass conservation equations for the s
bed and for the population of rolling particles:

] th5G@h,R#2 f , ~1!

] tR1“•J5Q2G@h,R#. ~2!

HereJ is the horizontal projection of the flux of rolling par
ticles, and the source term

Q~x,t !5E f ~y,t !pa~y,x!dy ~3!

gives the intensity of ‘‘rain’’ of falling reptating particles.
We assume that reptating particles lose most of their m

mentum in collision with the rough bed surface. Neglecti
inertia, we postulate that upon landing the particles roll
direction of the steepest descent and that the steeper the
the faster they roll. The simplest form@17# of the flux J is,
therefore,

J52m0R“h,

wherem0 is a constant ‘‘mobility’’ of particles.
The rate of rolling-to-steady-state transitionG depends on

the stability of a particle on an inclined sand bed surface
on the amount of rolling particles. Rolling particles nev
form a thick layer on the surface during the ripple grow
there is only a small amount of them at each time momen
can be assumed that, for a fixed free-surface incline, the
of rolling-to-steady-state transition is proportional to t
amount of rolling particles on the surfaceR. Since the ex-
change rate cannot depend on the free-surface slope ori
tion, we further assumeG is a ~smooth! function of u“hu2.
The steeper the free surface is, the easier do particles
down and, correspondingly, the lower is the rate of rollin
to-steady-state transition. For slopes steeper than the
angle of repose,a r'30°, rolling sand grains do not stop a
all. Taking these arguments into account we assume,
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simple but physically reasonable approximation, thatG is
also proportional to tan2a r2u“hu2 and obtain

G5k0RS 12
u“hu2

tan2a r
D ,

where k0 characterizes particle stability upon a horizon
surface.

III. SPLASH FUNCTION

To complete the model we need to specify the spl
function. Although not much is known about this functio
previous studies~see, e.g.,@6–8#! suggest that the system
not very sensitive to the details of splash function behav
and that an approximation, sufficient at least for qualitat
simulation, may be obtained by combining the existing e
perimental data and simple physical arguments. We limit
consideration to the one-dimensional~1D! case.

Collision of quartz grains with a sand bed has been st
ied experimentally by Willetts and Rice@5#. It was found that
ejection of reptating grains from the bed depends o
slightly on the incident angle of attack, which varied in the
experiments in accordance with the systematic change
the bed inclination.~The angle of descent of saltating pa
ticles to the horizontal was constant.! For various incident
angles, ejection occurred at approximately the same m
angle to the bed surface,mf'50°, with standard deviation
sf'40°, and the same mean velocity of ejecta.

We use these results to crudely reconstruct the dep
dence of the splash function on the bed surface inclinatio
the 1D case. First, we define~somewhat arbitrarily, see@18#!
the density of ejection angle distribution,p5p(f), provid-
ing for the mean and standard deviation values as foun
@5# @see Fig. 3~a!#. For simplicity, we further assume tha
particles are ejected from the bed with the same initial
locity v0 at different anglesf, that they then follow simple
ballistic trajectories

x5x01v0 cos~a1f!t, y5h~x0!1v0 sin~a1f!t2 1
2 gt2,

and hit the surface at a horizontal distances from the ejection
point. Herea5tan21(]xh) is the surface angle at the eje

FIG. 3. ~a! density of ejection angle distribution,p(f); ~b! the
mean~solid line! and standard deviation~dashed line! of reptation
jump length as functions of surface inclination.
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tion point x0 , g the acceleration of gravity. Assuming th
surface curvature is small,u]xx

2 hu!g/v0
2 , we approximate

h(x01s) by h(x0)1s]xh(x0) and find the jump length

s5
v0

2

g
~sin 2$a1f%22 cos2$a1f%tana!.

Making use of the probability densityp(f), we can now
calculate numerically the mean and the standard deviatio
reptation jump length,mr(a) ands r(a), for any bed surface
inclinationa, up to the value of a proportionality coefficien
v0

2/g. This factor is eliminated from the final dimensionle
formulation of the model~see below! by choosing the unit of
length equal to the mean reptation length at the horizo
bed surface,L5mr(0). With such scaling,mr(0)51 by
definition. The functionsmr(a) ands r(a) are shown in Fig.
3~b!. Finally, we approximate the splash functionpa by the
density of a corresponding normal distribution,

pa~x0 ,y!5
1

sA2p
expS 2

1

2 Fy2x02m

s G2D ,

wheres5s r(a), m5mr(a), anda5tan21]xh(x0 ,t).

IV. SCALING

The ratio f 0 /k0 has the dimension of length and is of th
order of rolling particles layer thickness. Since the rollin
particles come to a stop and are absorbed by the horizo
sand bed surface much more rapidly than new sand gr
are removed from the bed by saltatation, the effective thi
ness of this layer is usually less than one particle diame
which is many times smaller than the mean length of rep
tion jump L. This allows us to simplify the proposed mode
We rescale the variables,

t85
f 0

L
t, x85

1

L
x, h85

1

L
h, R85

k0

f 0
R,

f 85
1

f 0
f , J85

1

f 0L
J, G85

1

f 0
G,

and obtain

J52nR“h, G5RS 12
u“hu2

tan2a r
D , ~4!

and f 5 sinu/ sing, or f 50 in a shadow. Hereu5u(x,t) is
the angle at which the saltating particles strike the bed,
n5m0 /k0L is a constitutive dimensionless parameter ch
acterizing the competition between mobility and stability
dislodged grains on the sand surface. The rescaling lea
Eq. ~1! invariant while Eq.~2! takes the form

f 0

k0L
] tR1“•J5Q2G@h,R#. ~5!

As it was noted above,f 0 /k0L!1. Neglecting the small
term in Eq.~5! we arrive at a quasistationary mass balan
equation for rolling particles,
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“•J5Q2G@h,R#. ~6!

V. LINEAR STABILITY ANALYSIS

To analyze the initial instability of a horizontal sand be
we assume thath and its derivatives are small and lineari
Eqs. ~1!,~3!,~4!, and ~6!. Up to the second-order term
G@h,R#5R and f 511kg]xh, wherekg5 cotg, so Eq.~1!
yields R511] th1kg]xh.

For small surface slopes, the standard deviation of re
tion length does not change much@see Fig. 3~b!# and we set
s r[s r(0)51.25. Knowing the dependencemr(a) @Fig.
3~b!#, it is easy to find numerically that for small slopesmr
'12km]xh, wherekm52.01.

Let p0(x) be the density of the normal distributio
N„1,s r

2(0)…. It is not difficult to show that

pa~x,y!5p0~y2x!1kmp08~y2x!]xh~x!

plus the higher order terms~‘‘ 8’’ means derivative!. The lin-
earized Eq. ~3! takes the form Q511kgp0* ]xh
1kmp08* ]xh, where ‘‘*’’ is the operator of convolution.

Substituting the linear approximations forG, R, and Q
into Eq. ~6! we obtain, up to the second-order terms,

] th5n]xx
2 h1kg~p0* ]xh2]xh!1kmp08* ]xh .

We can now apply the Fourier transform and substituteh
5elt1 ivx to find the dispersion relation

l~v!52nv21kgiv~ p̃021!2kmv2p̃0 ,

where p̃05 exp$2@vsr(0)#2/22 iv% is the Fourier transform
of p0. Note that withn5km50 one gets the dispersion rela
tion for Anderson’s model@6#. The initial ripple wavelength
can be calculated asl 052p/v0, wherev0 is the wave num-
ber at which the expression

Rel~v!52nv21v~kg sinv2kmv cosv!e2[vsr (0)]2/2

attains a positive maximum. This maximum exists and
flat surface is unstable if

kg.km1n. ~7!

To explain this result we note that ripples grow because
the geometrical effect of greater impact and ejection flux
upwind-oriented slopes than on downwind-oriented slo
@8#. This nonuniformity increases if the saltation angle
attack becomes smaller (kg increases!. On the other hand
the greatern and km are, the more significant are, respe
tively, smoothing effects due to rolling of dislodged particl

FIG. 4. Flat surface instability and formation of sand ripple
Wind direction is from left to right; the unit of length is the mea
length of the reptation jump;n52.
,
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e

f
n
s

f

down the surface slopes and scattering of ejected par
trajectories by an uneven sand surface. Condition~7! indi-
cates when the instability prevails.

As it was mentioned above, the saltating particles usu
hit the sand surface at almost uniform angle to the horizon
varying from 9° to 15°. In the examples below we use t
mean reported value of this angle,g512°. Using the stabil-
ity condition ~7!, it is easy to calculate that the flat surface
unstable ifn,2.69.

VI. NONLINEAR DYNAMICS

To study the ripple evolution further we solved the no
linear system~1!, ~3!, ~4!, and ~6! numerically, assuming
periodic boundary conditions and using an implicit finit
difference approximation. The initial evolution of a slight
disturbed flat surface obeys the linear theory: after a sh
initial stage the fastest growing mode, having the wavelen
predicted by the linear stability analysis, dominates.

The growing ripples remain almost symmetric unt
shortly before the appearance of first shadow regions,
downwind slopes become steeper. This asymmetry deve
quickly as the ripples continue to grow. Further evolution
accompanied by the increase of the ripple wavelength~see
Fig. 4!. It can be seen that the downwind translation
ripples gradually slows down as their size increases.
though our model is much simplified in many respects,
calculated mature ripple shape is similar to that of the r
sand ripples@3#: for n52 we obtained convex stoss slop
inclined at about 11°213°, flattened crests, and slightly con
cave lee slopes with the mean maximal inclination 2
227°; the ripple index~length to height ratio! was about 14.
For n51 the results are qualitatively similar, although th
mean maximal inclinations are 15° and 28° –29° for t
stoss and lee slopes, respectively, and the ripple inde
smaller.

The most interesting part of ripple dynamics is the mec
nism of ripple merging and self-organization. The simu
tions show that simple merger takes place only if the ov
taking ripple is much smaller than the bigger ‘‘overtaken

.

FIG. 5. A typical ripple interaction; see the region bounded
the thin line. To show the details the ripples are stretched in
vertical direction.
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ripple, which moves more slowly. Otherwise another, mo
complicated scenario is usually realized. As a smaller rip
reaches the larger, the trough between them becomes sh
and a ‘‘two-headed’’ long ripple appears. Then the ‘‘dow
wind head,’’ which originally formed the larger ripple cres
starts to move forward as a separate small ripple and
ahead. Two new ripples emerge from this recombinati
The ripple that is left behind is larger than the larger of t
two ripples before the merger. The ripple that runs away
smaller than the smaller one before this event~Fig. 5!. Some-
times the trough between the two merging ripples disapp
before the generated long ripple becomes unstable. Howe
soon there appears a new trough near the end of this ri
crest and a small running away ripple develops. Since i
smaller, this ripple proceeds even faster and soon meets
other large ripple on its way. Complete merger is now m
probable, since the overtaking ripple became smaller. H
ever, another recombination may yet occur before the m
rial redistribution between ripples is completed. Obvious
such a mechanism of ripple interaction produces a reg
e
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ar

ripple array structure more efficiently than a simple merg
of ripples.

In our opinion, this scheme of ripple interaction gives al
a likely explanation to the appearance of small second
ripples in a wind tunnel experiment@19#. Indeed, the appear
ance of such ripples due to the backward eddy flow behin
ripple, as is suggested in@19#, seems hardly possible. San
ripples are so shallow that most probably there is no ba
ward flows in their shadows. Even if small backward edd
existed, they could never cause saltation of sand gra
against the main wind direction, and thus could not produ
any sand ripples. As follows from our simulation, no bac
ward flows are necessary: small ripples appear as a mea
redistribution of mass during the ripple array reconstruct
leading to the wavelength growth.
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