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Nonlinear dynamics of Aeolian sand ripples
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We study the initial instability of flat sand surface and further nonlinear dynamics of wind ripples. The
proposed continuous model of ripple formation allowed us to simulate the development of a typical asymmet-
ric ripple shape and the evolution of a sand ripple pattern. We suggest that this evolution occurs via ripple
merger preceded by several solitonlike interaction of ripdl84063-651X99)04507-9

PACS numbdss): 81.05.Rm, 47.54:r, 92.60.Gn

[. INTRODUCTION or rolling for several millimeters or less, and stop. The ex-
change flux between saltating and reptating grain populations

Aeolian (i.e., wind-driven sand ripples form nice regular is supposed to be smd,7].
patterns on coastal beaches and desert floors and indicate anAccording to the hypothesis put forward by Bagnéld,
instability of flat sand surface under the wind-induced transthe ripple wavelength is equal to the mean length of saltation
port and rearrangement of loosely packed sand grains. Fojump. However, this claim has been challenged by numerous
lowing fundamental work by Bagnolfl] more than half a researchergsee, e.g.[2,6]) and it is now commonly ac-
century ago, formation of sand ripples has been studied bgepted that the essential physics lies in the variation of rep-
many researchersee review2] and the references thergin tation flux. The role of saltation, whose trajectories are many
Significant progress in understanding the nature of this phetimes longer than the ripple wavelength, is indirect. The ob-
nomenon has been achieved. Nonetheless, major questioligue, almost unidirectional bombardment by saltating par-
remain open; these involve the most interesting part of ripplaicles supplies the energy necessary for reptation. Wind
formation, the nonlinear interactions that follow the initial strength determines the intensity of saltation; the probability
instability. Previous research on ripples has generally reliedf direct entrainment of particles into reptation by the wind
on highly simplified continuum models or on stochastic oris small[1].
molecular-dynamics simulation. By means of a deterministic A model, based on these views, was proposed by Ander-
continuous model that seems to better describe the essent&dn[6]. Linear stability analysis of this model showed that
physics, we here investigate salient nonlinear properties ahe initial ripple wavelength is determined by, and is several
ripple formation. times larger than, the mean length of reptation. Unfortu-

As is well known, Aeolian ripples are oriented perpen-nately, the model yields unrealistic results at the nonlinear
dicularly to the wind direction. Mature ripples are asym- stage of ripple growth, which begins very early. It has been
metrical in cross section: their sto@gwind) slopes are typi- suggested2] that the model can be improved by allowing
cally much less steep than the shorter(@ewnwind slopes the reptating grains to continue rolling upon the bed surface
[2—-4]. The steepness of the lee slopes cannot exceed amdter landing, and not to stop immediately as was assumed
usually does not reach the sand angle of repose. The ripplesiginally. Although no such continuous model has been de-
have convex stoss slopes, concave lee slopes, and flattenegloped, employing a similar approach in molecular-
crests, which usually end with a brink. Since smaller ripplesdynamics computer simulations of sand ripdléswas quite
of the same shape have smaller volume to surface ratios, theyiccessful.
are translated faster by the wind and can overtake the larger Interesting results on modeling different aspects of sand
ripples. A possible merger results in gradual elimination ofripples dynamics have been obtained by means of cellular
small ripples and in growth of ripple wavelength. automata models or molecular-dynamics simulatighsl Q.

To analyze the mechanics of sand transport, which occurg was even claimed10] that no continuum mechanics or
whenever the wind is sufficiently strong, it is convenient todeterministic model can capture the main feature of ripple
distinguish two types of sand grain movement: saltation andgelf-organization: the increase of scale in time due to merg-
reptation(or creep [1,2]. Saltating grains move by long tra- ing of ripples. Below, we show that this general conclusion,
jectories that end in high-energy impacts with the surfacebased on a schematic discrete model of ripple merging, is
These impacts take place at almost uniform shallow anglegrong. The continuous deterministic model proposed herein
of descent varying from 9° to 15° to the horizontal depend-provides a better description of the physical process than the
ing on the wind strength and grain sifg. After an impact, simplified stochastic mod¢lL0]. Our model reproduces the
a saltating grain usually rebounds sufficiently high to be acasymmetrical ripple shape and is able to simulate not only
celerated by the wind again and continues its saltation. Thestée merging of ripples but also a more complicated, soliton-
grains gain energy from the wind and transfer part of it to thelike mode of ripple interaction, which can be equally signifi-
sand bed on impact. Each impact may cause ejection of oneant for ripple self-organization. A somewhat similar behav-
or several low-energyreptating particles from the bed sur- ior has been observed in molecular-dynamics simulation of
face. Reptating particles make a short hop, usually jumpingand rippleg7].
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wheref is the rate of erosion of a horizontal surfaceter-
o 7 mined by the intensity of saltatipnHowever, if the surface
—_— ,,g‘,\w‘ has sufficiently steep slopes, some parts of it may be in
d ’ shadow and unreachable by saltating grains. In this case we
set f=0; shadowing introduces nonlocality into this prob-
/ . lem.
____________ / ! reptation X . . . .
B I ! A reptating particle, ejected by an impact at a point
LS e makes a jump and lands on the bed surface at a goivith
sand bed probability densityp given by the “splash function,”p

FIG. 1. Interaction of saltating, reptating, and rolling sand grains__ pa(x,y.),. first introduced ”[16]'_ This fgnctlon, which will
in the model. Saltating particles follow by long trajectoridashed P& Specified below, depends, in particular, on the surface
lines), strike the sand bed surface at almost uniform shallow angl$!0P€ at the point of impact. In our model, the splash func-
to horizontal, and are rebounded high enough to be accelerated BiPn also accounts for all the anisotropy induced by a chosen
the wind again. The impacts cause ejection of reptating grains fronvind (saltation) direction.

'

the bed surface. These grains trajectofislid lines with arrows Upon landing, reptating particles do not stop immediately
are short. The landing reptating grains may roll for some distancéut may roll away, although usually not far from the landing
upon the bed surfacdsmall circles before they stop. point. LetR(x,t) be the effective surface density of rolling

particles Rdx is the volume that particles, presently rolling
Let us mention here also the analytical model of sanchver the part of the free surface above the atgawould
ripples[11]. In this model, the upwind slope of a ripple is occupy in the sand bedwhen they stop, the rolling particles
given by a smooth solution of the diffusion equation with aare incorporated into the motionless bed. Followjihg], we
negative diffusion coefficient. Such a solution is, however,denote byI'[h,R] the rate of rolling-to-steady-state transi-
unstable. Furthermore, in the absence of wind the ripplgion and write the mass conservation equations for the sand

shape in[11] is described by a well-posed diffusion equa- ped and for the population of rolling particles:
tion. This is also unphysical: according to this model ripples

diffuse and disappear, since surface particles continue to roll dh=T[h,R]—f, )
down the slopes. Real sand ripples are, of course, metastable.
To derive a model allowing for metastability, it is neces- JR+V-J=Q—-T[h,R]. @)

sary to take into account that the surface flux of granular

material is not determined solely by the local surface slopeyere J is the horizontal projection of the flux of rolling par-
Models involving an additional variable, surface flux, or theticles, and the source term

density of rolling particles, have recently been derived to

simulate quasistationary evolution of a growing pile shape

[12,13 or to model the dynamics of pile surface in more Q(x,t)=f f(y,t)pa(Y,x)dy (©)]
detail and on a shorter spatiotemporal sdajé4], see also
[15]). In our model of Aeolian ripples we use a similar ap-

) X . i he i ity of “rain” of falli i icles.
proach to describe the flow of rolling particles. gives the Intensity of ‘rain” of falling reptating particles

We assume that reptating particles lose most of their mo-
mentum in collision with the rough bed surface. Neglecting
Il. MATHEMATICAL MODEL inertia, we postulate that upon landing the particles roll in
In accordance with the physical picture of sand transporflirection of the steepest descent and that the steeper the slope
described above and presented schematically in Fig. 1, wie faster they roll. The simplest forfi7] of the flux J is,
assume that there exists a uniform flux of saltating graingherefore,
that reach the bed surface=h(x,t) at a low angley to
horizontal. The impacts cause erosion of this surface. The J=—1oRVh,
erosion ratef is proportional to the impact intensity, which ] - )
depends on the surface orientation with respect to the dire¢Vhereéu, is a constant “mobility” of particles.
tion of saltation. Let the saltating particles strike an inclined  The rate of rolling-to-steady-state transitibrdepends on

surface at an anglé (Fig. 2). the stability of a particle on an inclined sand bed surface and
Thenf is proportional to si@ and we can write on the amount of rolling particles. R_ollmg pa_rt|cles never
form a thick layer on the surface during the ripple growth:

sinéd there is only a small amount of them at each time moment. It

= Osiny’ can be assumed that, for a fixed free-surface incline, the rate

of rolling-to-steady-state transition is proportional to the
amount of rolling particles on the surfage Since the ex-
change rate cannot depend on the free-surface slope orienta-
tion, we further assumg is a (smooth function of |Vh|2.
The steeper the free surface is, the easier do particles roll
down and, correspondingly, the lower is the rate of rolling-
FIG. 2. One-dimensional scheme: saltating grain reaches the bd@-steady-state transition. For slopes steeper than the sand
surface at the angle to horizontal, the surface is inclined at an angle of reposegq,~30°, rolling sand grains do not stop at
anglea; 6= a+ vy is the incident angle of attack. all. Taking these arguments into account we assume, as a
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tion point Xy, g the acceleration of gravity. Assuming the

surface curvature is smallg2,h|<g/v, we approximate
h(xo+s) by h(xg) +sdsh(xg) and find the jump length

: 2
N v )
0 2 11:¢ s= EO(SIH 2Aa+ ¢} —2 cog{a+ Pitana).

6 Making use of the probability densitg(#), we can now
TR RIS e calculate numerically the mean and the standard deviation of
BN reptation jump lengthm,(«) ando,(«), for any bed surface

inclination «, up to the value of a proportionality coefficient
o v2/g. This factor is eliminated from the final dimensionless
formulation of the mode{see belowby choosing the unit of
length equal to the mean reptation length at the horizontal
bed surfacelL =m,(0). With such scalingm,(0)=1 by
definition. The functionsn,(«) ando,(«) are shown in Fig.
3(b). Finally, we approximate the splash functipp by the
density of a corresponding normal distribution,

b

O 0 e

FIG. 3. (a) density of ejection angle distributiop(¢); (b) the
mean(solid line) and standard deviatiofdashed ling of reptation
jump length as functions of surface inclination.

simple but physically reasonable approximation, thats
also proportional to tefay, — |V h|? and obtain

Xouy) 1 1[y—X,—m 2)
W(X0,Y)= exg —=|———| |,
Vh|2 PaXo )= o 2 o
F:KoR 1- y

tarfa, whereo=o,(a), m=m,(a), anda=tan 1o,h(xo,t).

where ko characterizes particle stability upon a horizontal

surface. IV. SCALING

The ratiof,/xq has the dimension of length and is of the
IIl. SPLASH FUNCTION order of rolling particles layer thickness. Since the rolling
) particles come to a stop and are absorbed by the horizontal
To complete the model we need to specify the splasiyang ped surface much more rapidly than new sand grains
function. Although not much is known about this function, 5re removed from the bed by saltatation, the effective thick-
previous studiegsee, e.g.[6-8]) suggest that the system is pegs of this layer is usually less than one particle diameter,
not very sensitive to the details of splash function behaviogynich is many times smaller than the mean length of repta-

and that an approximation, sufficient at least for qualitativeyjon jump L. This allows us to simplify the proposed model.
simulation, may be obtained by combining the existing ex-ye rescale the variables,

perimental data and simple physical arguments. We limit our

consideration to the one-dimensioriaD) case. fo 1 1 Ko
Collision of quartz grains with a sand bed has been stud- t=_t xX'=rx h'=rh R'=+R,
ied experimentally by Willetts and Ri¢&]. It was found that 0
ejection of reptating grains from the bed depends only 1 1 1
slightly on the incident angle of attack, which varied in these f'=—f, J=—113, I'=—T,
experiments in accordance with the systematic changes of fo fol. fo

the bed inclination(The angle of descent of saltating par-

ticles to the horizontal was constanEor various incident and obtain

angles, ejection occurred at approximately the same mean V|2

angle to the bed surfacey,~50°, with standard deviation J=—pRVh, I'=R|1- ) %)
o4,~40°, and the same mean velocity of ejecta. tarfa,

We use these results to crudely reconstruct the depen-
dence of the splash function on the bed surface inclination i@nd f= siné/siny, or f=0 in a shadow. Her@= 6(x,t) is
the 1D case. First, we defifeomewhat arbitrarily, sefd 8]) the angle at which the saltating particles strike the bed, and
the density of ejection angle distributiop=p(¢), provid-  ¥= o/ koL is a constitutive dimensionless parameter char-
ing for the mean and standard deviation values as found iacterizing the competition between mobility and stability of
[5] [see Fig. 8)]. For simplicity, we further assume that dislodged grains on the sand surface. The rescaling leaves
particles are ejected from the bed with the same initial veEQ. (1) invariant while Eq.(2) takes the form
locity v at different anglesp, that they then follow simple

ballistic trajectories :—OLatR+V -J=Q-TITh,R]. (5)
0

X:X0+ Uo COS(a-l— (,'b)t, y= h(X0)+UO Sin(a-l- gb) - %gtz,

As it was noted abovefy/kgL<1. Neglecting the small
and hit the surface at a horizontal distasdeom the ejection term in Eq.(5) we arrive at a quasistationary mass balance
point. Herea=tan 1(4,h) is the surface angle at the ejec- equation for rolling particles,
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FIG. 4. Flat surface instability and formation of sand ripples. I H
Wind direction is from left to right; the unit of length is the mean i ’I&
length of the reptation jumpy=2. ’"
V-J=Q-TITh,R]. (6) ’..
V. LINEAR STABILITY ANALYSIS I
To analyze the initial instability of a horizontal sand bed, X

we assume that and its derivatives are small and linearize o _ _ _

Egs. (1),(3),(4), and (6). Up to the second-order terms, FIG. 5. A typical ripple interaction; see the region bounded by

I'[h,R]=R and f=1+k,d,h, wherek,= coty, so Eq.(1) the thin line. To show the details the ripples are stretched in the
) ’y X ’ ’y 1 . . . .

yields R=1+ dh+k,h. vertical direction.

For small surface slopes, the standard deviation of repta- ) . )
tion length does not change mufsee Fig. &)] and we set down the surface slopes and scattering of ejected particle
o,=0,(0)=1.25. Knowing the dependence,(e) [Fig. trajectories by an uneven sand surface. Conditignindi-
3(b)], it is easy to find numerically that for small slopes  cates when the instability prevails.

~1—Kkydh, wherek,,=2.01. _As it was mentioned above, the saltating particles usually
Let po(x) be the density of the normal distribution Nitthe sand surface at almost uniform angle to the horizontal,
N(L,02(0)). It is not difficult to show that varying from 9° to 15°. In the examples below we use the
mean reported value of this angle=12°. Using the stabil-
Po(X,Y) = Po(y—X) + KnPo(y —X)dxh(x) ity condition(7), it is easy to calculate that the flat surface is

unstable ifyr<2.69.
plus the higher order term$ ' means derivative The lin-

earized Eq. (3) takes the form Q=1+Kk,pg*dh
+kmpo* dch, where “*” is the operator of convolution.

Substituting the linear approximations fbr, R, andQ To study the ripple evolution further we solved the non-
into Eq. (6) we obtain, up to the second-order terms, linear system(1), (3), (4), and (6) numerically, assuming
periodic boundary conditions and using an implicit finite-
difference approximation. The initial evolution of a slightly
disturbed flat surface obeys the linear theory: after a short
initial stage the fastest growing mode, having the wavelength
predicted by the linear stability analysis, dominates.

Mo)=—vol+ kyiw(f)o—l)—kmwzﬁo, The growing ripples remain almost symmetric until,
shortly before the appearance of first shadow regions, the
wherep,= exp{—[wo,(0)]42—iw} is the Fourier transform downwind slopes become steeper. This asymmetry develops
of po. Note that withv=k.,=0 one gets the dispersion rela- quickly as the ripples continue to grow. Further evolution is
tion for Anderson’s moddll6]. The initial ripple wavelength accompanied by the increase of the ripple wavelerigéte
can be calculated d§:277/w01 Wherewo is the wave num- F|g 4) It can be seen that the downwind translation of

VI. NONLINEAR DYNAMICS

dth=va%h+K,(po* dxh— d,h) + Kypg* dch .

We can now apply the Fourier transform and substitute
=eMT19X g find the dispersion relation

ber at which the expression ripples gradually slows down as their size increases. Al-
, though our model is much simplified in many respects, the
Re\(w)=—rvw?’+ w(k, sino—kpw cosw)e ™ Lwor(017/2 calculated mature ripple shape is similar to that of the real

) - ) ) _ ) sand rippleq3]: for v=2 we obtained convex stoss slopes
atains a positive maximum. This maximum exists and thgnclined at about 11= 13°, flattened crests, and slightly con-
flat surface is unstable if cave lee slopes with the mean maximal inclination 26°

K.>Kot . @) —27°; the ripple indexXlength to height ratipwas about 14.

oo For v=1 the results are qualitatively similar, although the
To explain this result we note that ripples grow because ofnean maximal inclinations are 15° and 28°-29° for the
the geometrical effect of greater impact and ejection flux orstoss and lee slopes, respectively, and the ripple index is
upwind-oriented slopes than on downwind-oriented slopesmaller.
[8]. This nonuniformity increases if the saltation angle of The most interesting part of ripple dynamics is the mecha-
attack becomes smallek { increases On the other hand, nism of ripple merging and self-organization. The simula-
the greaterv andk,, are, the more significant are, respec-tions show that simple merger takes place only if the over-
tively, smoothing effects due to rolling of dislodged particlestaking ripple is much smaller than the bigger “overtaken”
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ripple, which moves more slowly. Otherwise another, moreripple array structure more efficiently than a simple merger
complicated scenario is usually realized. As a smaller ripplef ripples.

reaches the larger, the trough between them becomes shallow In our opinion, this scheme of ripple interaction gives also
and a “two-headed” long ripple appears. Then the “down- & likely explanation to the appearance of small secondary
wind head,” which originally formed the larger ripple crest, fipples in a wind tunnel experimefit9]. Indeed, the appear-
starts to move forward as a separate small ripple and rur@nce of such ripples due to the backward eddy flow behind a
ahead. Two new ripples emerge from this recombinationfiPPle, as is suggested [19], seems hardly possible. Sand
The ripple that is left behind is larger than the larger of thefiPPIes are so shallow that most probably there is no back-
two ripples before the merger. The ripple that runs away igvard flows in their shadows. Even if small backward eddies
smaller than the smaller one before this evétig. 5). Some- exsﬁed, they (.:OUI‘.j never cause saltation of sand grains
times the trough between the two merging ripples disappea ainst the main wind direction, and thus could not produce

before the generated long ripple becomes unstable. Howeved Y sand ripples. As follows from our simulation, no back-

soon there appears a new trough near the end of this rippigzr.dtﬂ.gwf are fnecesszry:_ smte:]II rlppltlas appear as a {neins of
crest and a small running away ripple develops. Since it i edistribution of mass during the ripple array reconstruction

smaller, this ripple proceeds even faster and soon meets a ading to the wavelength growth.

other large ripple on its way. Complete merger is now more ACKNOWLEDGMENTS

probable, since the overtaking ripple became smaller. How-
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