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Analytical approach to the stochastic FitzHugh-Nagumo system and coherence resonance

B. Lindner and L. Schimansky-Geier
Institute of Physics, Humboldt-University at Berlin, Invalidenstrasse 110, D-10115 Berlin, Germany

~Received 1 June 1999; revised manuscript received 22 July 1999!

We consider the FitzHugh-Nagumo system under the influence of white Gaussian noise in the excitable
regime. We present an analytical approximation in the limit of fast activator time scale. Marginal probability
densities of a reduced system and dynamical quantities such as the pulse rate are found and the mean interspike
interval and its relative standard deviation are investigated. The latter quantities allow a quantitative description
of the phenomenon of coherence resonance, as comparisons with simulations show.@S1063-651X~99!04112-4#

PACS number~s!: 87.19.La, 05.40.Ca
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INTRODUCTION

The FitzHugh-Nagumo model~FHN! is a simplified vari-
ant of the famous Hodgkin-Huxley model accounting for t
essentials of the regenerative firing mechanism in a excit
nerve cell@1,2#. From the mathematical point of view it is
simple example of an excitable deterministic dynamics a
was the topic of many investigations in the past. There
several versions of that model according to different phys
situations display an interesting spectrum of determini
dynamical effects with wide applicability in neuroscienc
biology, and chemistry.

In reality, neurons are permanently affected by vario
sources of different kinds of noise, e.g., the fluctuative op
ing and closure of the ion channels within the membrane
the cell, noisy presynaptical currents and fluctuations of
distinct conductivities in the system, to name only a fe
These fluctuations cause a sequence of stochastic excita
The spike train and its properties have attracted much in
est in recent studies on the constructive role of noise in n
linear systems. For instance, if signals are input into the
namics, stochastic resonance@3–6# as well as
synchronization with the input signals@7,8# can be observed
Bursting behavior as in real neurons, e.g., occurs if additi
ally harmonic noise is implied in the system@9#.

Similar to bistable dynamics, the application of stationa
noise in excitable systems causes a new time scale, the m
excitation time of the occurrence of new spikes. Its value a
the value of its variance depend significantly on the char
teristics of the applied noise and hence noise controls b
On the other hand, the inherent recovery time of relax
into the fixed point after firing does not really vary with th
strength of the noise, whereas its variance grows with
creasing noise.

Consequently, excitable systems driven by white no
exhibit the phenomenon ofcoherence resonance@10#. It oc-
curs when the activation threshold is small with respect
the applied noise, whereas the noise impact on the varia
of the excursion time is not yet relevant. In this case, wh
is clearly realized at a moderate noise intensity, the sp
train exhibits an optimal regularity.

This effect has been studied numerically by different a
thors@10–12# and could recently be found experimentally
an excitable electronic circuit@13#. Also numerical simula-
tions with coupled neurons were performed and the existe
PRE 601063-651X/99/60~6!/7270~7!/$15.00
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of optimally selected noise intensities and coupling coe
cients were proven for a synchronously oscillating~ordered!
response of the coupled network@14–16#.

But, there is still a lack of analytical investigations o
how, in the simplest case, additive white noise influences
dynamics of the FHN or, more generally, of excitable sy
tems. Being generally a nonpotential system@17#, even the
analytical solution of the corresponding stationary Fokk
Planck equation is still a nontrivial task. A particular analy
cal solution was reported in@18# if assuming a special rela
tionship between the parameters of the applied noise
those of the dynamics. The authors of@19# have proposed a
perturbative approach to nonpotential systems in the bist
regime of a FHN.

Our analysis aims at the analytical determination of
stationary density as well as the stationary dynamical qu
tities in the excitable regime of the FHN. We consider t
FHN in the limit of a fast voltage variable~activator! and
with a noise source in the recovery variable~inhibitor!. In
this limit following a method by Melnikov@20#, we find
analytically the stationary marginal probability density of t
nonpotential system and the rate of spikes in the volt
variable~pulse rate!. As a result, we obtain the transfer fun
tion which reveals how the pulse rate is correlated with
adiabatically slow signal. Moreover, by calculating the fi
two moments of the mean passage times along the two s
branches of the FHN, we are able to find the mean ti
between pulses~in the literature also referred to as mea
interspike interval! and its relative fluctuations and thus
provide analytical results concerning the coherence re
nance in that system.

MODEL

With x being the so-called voltage variable andy the re-
covery variable, the dimensionless FHN dynamics is giv
by

e ẋ5x2x32y1s,

ẏ5gx2y1b1A2Dj~ t !, ~1!

wheree is the time scale ratio of voltage and recovery va
able. As a source of fluctuations, we include additive wh
noise in the equation ofy. We introduces standing for a
7270 © 1999 The American Physical Society
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possible adiabatically slow signal.b andg are parameters o
the recovery determining the position of the fixed point
well as the typical duration of an excitation. Later on we
without loss of generalitys50. The sensitivity of the FHN
with respect to adiabatically slow signals in the current c
be expressed through the dependence onb. Transformation
of the recovery variabley→y2s ~neglecting time deriva-
tives of s) leads to a modifiedb→b2s.

The behavior of the system can be understood in term
the null clines of the variables~cf. Fig. 1!, i.e., the cubic
function in x with maximum Pmax5(x1 ,y1) and minimum
Pmin5(x2 ,y2) @21# and the straight line iny, respectively.
The former consists of three distinct regions, separated
Pmax,Pmin : the stable left and right branches and the unsta
middle branch. Choosing proper values ofg andb, both null
clines intersect only once on the left stable branch~excitable
regime!, providing a single fixed point in (xfix ,yfix). In the
original work by FitzHugh@1#, this point corresponds to th
resting state of the nerve cell, while points at the right bran

FIG. 1. Null clines of the system and some particular poi
used in the calculations. The system has one stable fixed poin
the left branch of the cubic null cline. The currentsJlr andJrl used
in the approximation flow on the straight linesl 1 and l 2, respec-
tively.
s
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belong to the excited state and the points largely above
fixed point on the left-hand side belong to a refractory sta

We note that the voltage variable possesses a m
smaller time scale than the recovery variable (e!1 and e
!1/g), i.e., the system is forced to relax fast to thex-null
cline. Since the middle branch is unstable, the motion of
system is therefore restricted to a narrow region around
left and right branches and the two connecting lines betw
them.

The deterministic system (D50) started at an appropriat
initial state ~for instance, withy,y2) will make one long
excursion in the phase space. First the trajectory reac
quickly the right branch, moving along this branch upwar
until it reaches its top, and afterwards switching to the l
branch, where it relaxes into the fixed point~which takes an
infinite time!. Then in the voltage variable one ‘‘spike’’ o
‘‘pulse’’ is observed.

With DÞ0 and started in the fixed point, fluctuations a
low the system after a typical activation time~the above-
mentioned excitation time! to overcome the inherent thresh
old at (x2 ,y2) and—as in the deterministic case—
perform the excursion in the phase space returning back
the vicinity of the fixed point. In the course of time, ther
fore, a stochastic spike train of the voltage variable is gen
ated~cf. Fig. 2!. On one hand, in the stationary state this c
be characterized by the pulse rate measured by time ave
ing,

r 5 lim
T→`

N

T
, ~2!

whereN denotes the number of pulses during timeT. On the
other hand, the mean time between two pulses~mean inter-
spike interval! may be considered,

^T&5 lim
N→`

1

N (
i 51

N

Ti ,

whereTi is the time between thei th and (i 11)th spike.

s
on
-
nd
for
FIG. 2. Simulations of the stochastic differen
tial equations. Voltage variable versus time a
the corresponding trajectory in phase space
g5b51.5,D50.3; left: e51021, right: e
51024.
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7272 PRE 60B. LINDNER AND L. SCHIMANSKY-GEIER
Both measures give the same information since in
long time limit when lim

T→`
is equivalent to lim

N→`
,

r 5 lim
N→`

S T0

N
1

1

N (
i 51

N

Ti1
TN11

N D 21

5
1

^T&

holds, withT0 ,TN11 being the time intervals until the first o
after the last spike, respectively.

As shown previously, possible adiabatically slow signas
would decrease additively the value ofb. Therefore, the de-
pendence of the rates on2b can be thought of as a transfe
function with respect tos. In @6# it was shown that the slop
of the transfer function is proportional to the ‘‘power norm
introduced in@4#. This quantity measures the correlation
the output, i.e., the pulse rate of the FHN, to a sufficien
small signals. Consequently, the sensitivity of the respon
to an adiabatically slow signal is characterized by the fu
tion

]r

]s
52

]r

]b
. ~3!

The pulse rate and the mean interspike interval does
characterize the regularity of the spike train. For that p
pose, Pikovskiet al. @10# introduced the standard deviatio
of the interspike interval as anoise-to-signal ratio,

R5
A^T2&2^T&2

^T&
. ~4!

For Poissonian sequences with independent single ex
tions, R approaches unity. IfR,1, the sequence become
more regular andR vanishes for periodic deterministic exc
tations, for example in the deterministic limit cycle regime
Eq. ~1!. In the caseR,1, excursions of the trajectories in th
phase space can be interpreted as motion on a stoch
limit cycle @14,22#.

We would like to mention that the occurrence of order
sequences of excitations could be discussed also on beh
spectral measures or correlation functions@22#. For our pur-
pose, the quantity~4! is of advantage since it will require th
first two moments of the interspike interval~ISI! distribution.
Both moments will be available by the approach discus
below for arbitrary strength of the noise.

The system described by Eq.~1! is a ‘‘nonpotential’’ one,
i.e., the corresponding Fokker-Planck equation~FPE! for the
probability densityP(x,y),

] tP52
1

e
]x~x2x32y!P1]y~y2gx2b1D]y!P, ~5!

cannot be solved, even in the stationary case. Likewise
available are the marginal densities

r~x!5E
2`

1`

dy P~x,y!, p~y!5E
2`

1`

dx P~x,y!,

which reveal how an ensemble of independent neuron
distributed over the excited and the resting state or the
covery variable, respectively.
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However, all these functions may be achieved by tim
averaging of a simulation of Eq.~1!. We have used a simple
Euler procedure with time stepDt, being two orders of mag-
nitude smaller thene ~smallest time scale in the system!, and
we shall compare the analytical findings with numerical
sults.

With a look at the simulations ate51024 in Fig. 2, one
notes that the dynamics becomes effectively one dimensi
in the limit e→0. In that case at least
p(y),r(x),r ,dr/db,T, andR can be calculated analyticall
by solving two one-dimensional FPEs connected by app
priate boundary conditions and showing a constant fl
through the system.

In this limit, the FHN system greatly resembles a Schm
trigger~ST! driven by an Ornstein-Uhlenbeck process~OUP!
@24,20#. The recovery variabley replaces the input variable
of a Schmitt trigger. It is an OUP with correlation time equ
to 1, intensityD, and centered aroundgx(t)1b. Similarities
and differences can be seen in Fig. 3. The dashed lines
cate two branches, i.e., the two basic states, namely res
and excited states, which are left aty2 andy1 , respectively.
The slow variabley in each state is governed by respecti
effective potentials~see next section! drawn in the figure
~solid lines!.

On the other hand, there are several fundamental dif
ences between the excitable system and a ST. First and
importantly, the excited state is governed by a dynam
without a fixed point. Its effective potential does not poss
a minimum. As a result, the excited state is left even with
the action of noise on the system. Contrary to the ST,
activation over a second barrier is necessary to return to
initial state. Second, the output is not a binary value, i
x(y) depends itself strictly on the value of the slow variab
In addition, the dynamics at both branches are highly n
linear.

PROBABILITY DENSITIES AND RATE

For smalle the voltage variablex relaxes fast toward one
of the stable branches of the null cliney5x2x3, wherex

FIG. 3. Schematic picture of the system fore→0. Depicted are
the effective potentialsUl(y),Ur(y) ~solid lines! for g5b51.5 and
the absorption pointsy1 ,y2 ; the dashed lines indicate the tw
branches. Although the scheme resembles a Schmitt trigger,
that in this case the output depends on the slow variabley and is not
a constant.
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obeys the inverse of the cubic function on the left- or rig
hand side, respectively@23#,

xl~y!53y2cosS 1

3
arccos~y/y1! D ,

~6!

xr~y!53y1cosS 1

3
arccos~y/y2! D .

In the limit e→0, the motion is restricted to these both line
The two-dimensional Markovian systemseparates into two
one-dimensional subsystemsexchanging probability by cur
rentsJlr ,Jrl infinitely fast via the straight linesl 1 ,l 2. In this
limit there is no finite probability on these lines. Thus w
obtain two coupled FPEs as was introduced for the first t
by Melnikov @20#, who considered the stochastic Schm
trigger.

The FPEs of the two systems not only contain the us
drift and diffusion terms, but additional sources and sinks
probability, changing the probabilities aty1 or y2 , respec-
tively. They read

] tPl~y!5]y@y2b2gxl~y!1D]y#Pl1Jrl d~y2y1!,

] tPr~y!5]y@y2b2gxr~y!1D]y#Pr1Jlr d~y2y2!,
~7!

andPmin andPmax become now absorbing boundaries for t
left and right branch, respectively. This implies

Jlr 5D]yPl~y!y5y2, Jrl 52D]yPr ~y!y5y1
, ~8!

while in y→6` the densities obey natural boundary con
tions on the respective branches. Furthermore, the sum
probabilities on both sides is conserved,

E
y2

`

Pl~y!dy1E
2`

y1

Pr~y!dy51. ~9!

In steady state the currents have to be constant and coin
with each other and to the pulse rate introduced in Eq.~2!,

Jlr 5Jrl 5r . ~10!

With Eqs.~9! and~10!, one finds the solutions of the couple
FPEs~7!,

Pl~y!5
r

D
e2Ul (y)/DE

y2

y

dz eUl (z)/DQ~y12z!, ~11!

Pr~y!5
r

D
e2Ur (y)/DE

y

y1

dz eUr (z)/DQ~z2y2!, ~12!

with the effective potentialsUl(y),Ur(y) explicitly given by

Ul~y!5
~y2b!2

2
2g

xl~y!

4
@3y2xl~y!#,

Ur~y!5
~y2b!2

2
2g

xr~y!

4
@3y2xr~y!#. ~13!
-
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Ul(y) has a minimum at the fixed point, while the maximu
of the densities depends on the pulse rate, which is obta
by Eq. ~9! as

r 5DF E
y2

y1

duE
u

`

dve[Ul (u)2Ul (v)]/D

1E
y2

y1

duE
2`

u

dve[Ur (u)2Ur (v)]/DG21

. ~14!

A. Probability densities

The rate is always positive. Therefore, it can be sho
that the maximum of the density Pl(y) occurs above the po
sition of the fixed point, as can be seen for a particular se
parameter in Fig. 4. On the other hand, there exists at l
one maximum on the right branch~Fig. 5!, which can never
be outside@y2 ,y1#. The total probability on this branch i
comparably small~note the different scale in Fig. 5!. The
comparison to the simulations reveals a satisfactory ag
ment fore51025, while for a larger value the assumed a
sorbing boundary condition fails significantly and the to
probability on the right-hand side declines.

FIG. 4. The probability density on the left branch. The appro
mation ~solid lines! is compared to simulations of the Langev
equations~squares and circles!, which give by time averaging the
shown marginal densities. Parameters areD50.1,g51.5,b51.5,e
51023 ~squares!, ande51025 ~circles!.

FIG. 5. The probability density on the right branch. The a
proximation~solid lines! is compared to simulations of the Lange
vin equations~squares and circles!, which give by time averaging
the shown marginal densities. Parameters as in Fig. 4.
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The marginal densityp(y) is readily obtained by summa
tion of Pl andPr and is depicted in Fig. 6. The main contr
bution to that density comes from the left branch, theref
p(y) looks similar toPl(y).

Taking into account the change of the volume eleme
the marginal densityr(x) is given byr(x)5p(y)udy/dxu. It
does not exhibit any contribution betweenxmin and xmax,
since, as supposed in our approach, there is no probabilit
the straight lines between the branches. In contrast, sim
tions at finitee provide a small amount of probability within
that range, which becomes comparably small by a decre
of e in the logarithmic plot Fig. 7. The density around th
maxima agrees fairly well with the numerical data.

B. Pulse rate

The pulse rate~14! can be evaluated numerically and r
sults are presented in Figs. 8, 9, and 10. We first note that
formula ~14! is clearly an overestimation of the rate at fini
e for two reasons: first, the motion between the branc
obviously takes a finite time. Second, a finitee causes sub-
threshold oscillations, diminishing the rate as well. Nevert
less, the approximation confirms quantitatively the simu
tions at sufficiently smalle, apart from the case of largeg,
to which we shall return below.

Estimations can be made for small and large noise in
sities. For smallD, Eq. ~14! may be simplified to@25#

FIG. 6. Densityp(y), simulations at different values ofe com-
pared to approximation~parameters as above!.

FIG. 7. Log plot ofr(x), simulations at different values ofe
compared to approximation. Parameters as above.
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r'Ul9~yfix!ADUl

pD
e2DUl /D, D!DUl ~15!

with DUl5Ul(y2)2Ul(yfix) being the potential barrier be
tween the fixed point and the absorbing boundary. For la
D, one finds the rate obeying

r'
A2D

4y1Ap
, D@DUl . ~16!

In general, a monotonous behavior is obtained by an
crease of the noise strength~Fig. 8!. Trajectories reach more
often the absorbing boundaries and the rate increases
growing noise. The simulation is compared to the expr
sions~15! and~16! for small and largeD too and shows the
validity of those formulas.

The impact of the slopeg is illustrated in Fig. 9, where
we have chosenb5yfix2gxfix . The fixed point remains a
the same position; an increase ofg turns the null cline ofy in
a positive sense. Doing so, the excursion time is redu
yielding an increase of the rate for smallg. At the same time
the effective barrier@see Eq.~13!# is enlarged, decreasing th
rate for largeg. Thus, a maximum of the rate with respect

FIG. 8. Pulse rate versus noise levelD, with g50.8,b50.9,e
51024. Approximation Eq.~14! ~solid line! compared to simula-
tions ~circles! and to the simplified expressions~15! ~dashed! and
~16! ~long dashed!.

FIG. 9. Pulse rate versus the slopeg, while D50.1 and the
fixed point is fixed toxfix520.8, thereforeb5b(g). Approxima-
tion Eq. ~14! ~solid line! compared to simulations withe51024

~thin solid line! ande51025 ~circles!.
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g is observed in Fig. 9, indicating an optimal value of t
rate in the model~1!. Note that for growingg, the deviation
of the predicted rate from the simulation data becomes st
ger since the assumed time scale separation between th
tivator and inhibitor variable is weakened.

Variation of parameterb changes the position of the fixe
point; an increase of it enlarges the distance to the thres
and diminishes therefore monotonously the rate~Fig. 10!.

FIG. 10. Pulse rate versusb for D50.05,g51.0. Approxima-
tion Eq. ~14! ~solid line! compared to simulations withe51023

~circles! ande51024 ~squares!.
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C. Sensitivity to adiabatically slow signals

As outlined previously, an important quantity is the d
rivative of the pulse rate with respect to a possible addit
signals in the activator dynamics. It is found by

FIG. 11. The derivative of pulse rate with respect tos versus
noise strengthD for b50.7,g51.0. Approximation Eq.~17! ~solid
line! and simplified expression Eq.~18! ~dashed line! compared to
simulations withe51023 ~circles!. The arrow indicates the maxi
mum calculated by Eq.~19!.
]r

]s
52

]r

]b
5

E
y2

y1

duS E
u

`

dv~v2u!e[Ul (u)2Ul (v)]/D1E
2`

u

dv~v2u!e[Ur (u)2Ur (v)]/DD
F E

y2

y1

duS E
u

`

dve[Ul (u)2Ul (v)]/D1E
2`

u

dve[Ur (u)2Ur (v)]/DD G2 . ~17!
he
ons

ter-
om
re-
eals
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A simplified expression is obtained by derivating Eq.~15!,
where we neglect theb dependence of the curvatur
Ul9(yfix). It yields

]r

]s
'

Ul9~yfix!~yfix2y2!

ApDDUl
S DUl

D
2

1

2De2DUl /D, D!DUl .

~18!

The interesting fact is that the function]r /]s displays a
maximum with regard to the noise strength at a mode
value. From Eq.~18! the maximal slope is found to appear

Dmax'2~22A3!DUl . ~19!

As numerically demonstrated in@6#, a nonmonotonous be
havior with respect toD is a fingerprint ofaperiodic stochas-
tic resonance. The slope is in linear approximation propo
tional to the ‘‘power norm,’’ i.e., the cross correlatio
between an adiabatically slow signals(t) and the output fir-
ing rate. The value of the noiseDmax where the maximum
occurs can be estimated by Eq.~19! and is indicated in Fig.
11 by an arrow. Note that the curve being the result of sim
lations at a fairly large voltage time scale (e51023) is al-
ways below the analytical curve~solid line! and the maxi-
te

-

mum occurs at a slightly larger noise intensity. As for t
previous results, however, the convergence of simulati
and theory can be improved by decreasinge ~not shown in
the figure!. We would like to point out the similarity of our
analytical result with Fig. 7~c! in @6#.

NOISE-TO-SIGNAL RATIO

The mean time between two spikes, i.e., the mean in
spike interval, is given by the sum of the passage times fr
the injection to the absorption point on each branch. The
fore, in estimating the time sequence of the spikes, one d
with the classical mean first passage time~MFPT! problem
and can use standard formulas@26#.

The first and second moments on both branches are
tistically independent and obey

^Tl~y1!&5
1

DE
y2

y1

dueUl (u)/DE
u

`

dve2Ul (v)/D, ~20!

^Tl
2&5

2

DE
y2

y1

dueUl (u)/DE
u

`

dve2Ul (v)/D^Tl~v !&, ~21!
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and analogical for̂ Tr&,^Tr
2& with appropriate integration

boundaries for the right branch and potentials according
Eq. ~13!. Equation~20! proves again the equality of curren
~pulse rate! and the inverse of the sum of the passage tim
i.e., the mean interspike interval.

With Eqs. ~20! and ~21! the noise-to-signal ratio~4! can
be calculated by

R~D !5
A^Tl

2&1^Tr
2&2^Tl&

22^Tr&
2

^Tl1Tr&
. ~22!

This quantity exhibits a minimum with respect to th
noise strength~Fig. 12!, indicating a coherent~i.e., most

FIG. 12. Relative fluctuations versus noise strengthD, with g
50.8,b50.9. Approximation~solid line! compared to simulations
with e51023 ~squares! ande51024 ~circles!.
nd

a

to

s,

regular! spike train for a particular noise level. Results of t
simulations, depicted in the same figure, confirm the anal
cal findings, particularly the rough position of the maximu
as well as its depth. It is remarkable that a finitee ~cf. simu-
lations! deepens the minimum and shifts it toward larg
values ofD. Because there is no doubt that the coherenc
destroyed from a larger value ofe on, there should be a
critical value ofe for which R becomes minimal.

CONCLUSIONS

We have presented analytical and numerical results
the dynamics of a nerve cell driven by white noise. In t
limit of a fast voltage variable, we could calculate the s
tionary probability densities, the mean interspike interv
and its relative error, as well as the slope of the pulse r
with respect to a slow signal. Results are in accordance w
former numerical results@6,10#. Our analytical study has re
vealed that the pulse rate exhibits a maximum versus
slope of the recovery-null cline and has proven the existe
of a minimum of the interval error~noise-to-signal ratio!. All
these findings were confirmed by numerical simulations
the full system.
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