PHYSICAL REVIEW E VOLUME 60, NUMBER 6 DECEMBER 1999

Analytical approach to the stochastic FitzHugh-Nagumo system and coherence resonance
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We consider the FitzHugh-Nagumo system under the influence of white Gaussian noise in the excitable
regime. We present an analytical approximation in the limit of fast activator time scale. Marginal probability
densities of a reduced system and dynamical quantities such as the pulse rate are found and the mean interspike
interval and its relative standard deviation are investigated. The latter quantities allow a quantitative description
of the phenomenon of coherence resonance, as comparisons with simulationsSHi8@-651X99)04112-4

PACS numbegps): 87.19.La, 05.40.Ca

INTRODUCTION of optimally selected noise intensities and coupling coeffi-
cients were proven for a synchronously oscillatiogdered
The FitzHugh-Nagumo mod¢FHN) is a simplified vari-  response of the coupled netwdrk4—14.
ant of the famous Hodgkin-Huxley model accounting for the =~ But, there is still a lack of analytical investigations of
essentials of the regenerative firing mechanism in a excitableow, in the simplest case, additive white noise influences the
nerve cell[1,2]. From the mathematical point of view it is a dynamics of the FHN or, more generally, of excitable sys-
simple example of an excitable deterministic dynamics andéms. Being generally a nonpotential systgti], even the
was the topic of many investigations in the past. Therebyanalytical solution of the corresponding stationary Fokker-
several versions of that model according to different physicaPlanck equation is still a nontrivial task. A particular analyti-
situations display an interesting spectrum of deterministical solution was reported i8] if assuming a special rela-
dynamical effects with wide applicability in neuroscience, tionship between the parameters of the applied noise and
biology, and chemistry. those of the dynamics. The authors[@B] have proposed a
In reality, neurons are permanently affected by Varioug:)erf[urbative approach to nonpotential systems in the bistable
sources of different kinds of noise, e.g., the fluctuative opentegime of a FHN.
ing and closure of the ion channels within the membrane of Our analysis aims at the analytical determination of the
the cell, noisy presynaptical currents and fluctuations of thétationary density as well as the stationary dynamical quan-
distinct conductivities in the system, to name only a few.lities in the excitable regime of the FHN. We consider the
These fluctuations cause a sequence of stochastic excitatiofdIN in the limit of a fast voltage variabléactivatoy and
The spike train and its properties have attracted much intelith a noise source in the recovery varialfiehibitor). In
est in recent studies on the constructive role of noise in nonthis limit following a method by Melnikov[20], we find
linear systems. For instance, if signals are input into the dyanalytically the stationary marginal probability density of the
namics, stochastic resonancd3-6] as well as nonpotential system and the rate of spikes in the voltage
synchronization with the input signdlg,8] can be observed. variable(pulse rate As a result, we obtain the transfer func-
Bursting behavior as in real neurons, e.g., occurs if additiontion which reveals how the pulse rate is correlated with an
ally harmonic noise is implied in the syste. adiabatically slow signal. Moreover, by calculating the first
Similar to bistable dynamics, the application of stationarytwo moments of the mean passage times along the two slow
noise in excitable systems causes a new time scale, the meffanches of the FHN, we are able to find the mean time
excitation time of the occurrence of new spikes. Its value andPetween pulsesin the literature also referred to as mean
the value of its variance depend Significant|y on the Characmterspike interval and its relative fluctuations and thus to
teristics of the applied noise and hence noise controls botprovide analytical results concerning the coherence reso-
On the other hand, the inherent recovery time of relaxing’@nce in that system.
into the fixed point after firing does not really vary with the
strength of the noise, whereas its variance grows with in- MODEL
creasing noise. _ _ .
Consequently, excitable systems driven by white noise With X b_emg the so.—calle(.j voltage variable ay.mhe. re-
exhibit the phenomenon abherence resonandaa]. It oc- covery variable, the dimensionless FHN dynamics is given
curs when the activation threshold is small with respect t(py
the applied noise, whereas the noise impact on the variance

S T ) i =Y —x3_
of the excursion time is not yet relevant. In this case, which EX=X=XT—Y TS,
is clearly realized at a moderate noise intensity, the spike .
train exhibits an optimal regularity. y=yXx—y+b+2DE&(t), D

This effect has been studied numerically by different au-
thors[10—12 and could recently be found experimentally in wheree is the time scale ratio of voltage and recovery vari-
an excitable electronic circuftLl3]. Also numerical simula- able. As a source of fluctuations, we include additive white
tions with coupled neurons were performed and the existenceoise in the equation of. We introduces standing for a
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y / belong to the excited state and the points largely above the

b fixed point on the left-hand side belong to a refractory state.

We note that the voltage variable possesses a much
smaller time scale than the recovery variabke<l and e
<1/y), i.e., the system is forced to relax fast to tkaull

T

yT cline. Since the middle branch is unstable, the motion of the
X*\X K + x <" system is_ therefore restricted to a narrow r_egio_n around the
G L + = left and right branches and the two connecting lines between
X them.
1, The deterministic systenD(=0) started at an appropriate
y — initial state (for instance, withy<y_) will make one long
B J. excursion in the phase space. First the trajectory reaches

quickly the right branch, moving along this branch upwards
until it reaches its top, and afterwards switching to the left
branch, where it relaxes into the fixed poimthich takes an

FIG. 1. Null clines of the system and some particular points!,nflmte,,t'.me)' Then in the voltage variable one “spike™ or
ulse” is observed.

din th Iculations. Th tem h table fixed 'tno. . . . .
psed in he caicliations. 1he sys'em nas one stable ixed POt O \vith D+ 0 and started in the fixed point, fluctuations al-

the left branch of the cubic null cline. The curredfsandJ,, used . oo r .

in the approximation flow on the straight linés and|,, respec- low the systen_1 a_fter a typical activation furr(the above-

tively. mentioned excitation timeo overcome the inherent thresh-
old at (x_,y_) and—as in the deterministic case—to

) ) ) ) perform the excursion in the phase space returning back into
possible adiabatically slow signdl.andy are parameters of he yicinity of the fixed point. In the course of time, there-

the recovery determining the position of the fixed point astyre, 5 stochastic spike train of the voltage variable is gener-
well as the typical duration of an excitation. Later on we Setated(cf. Fig. 2. On one hand, in the stationary state this can

without loss of generalitg=0. The sensitivity of the FHN e characterized by the pulse rate measured by time averag-
with respect to adiabatically slow signals in the current canpg

be expressed through the dependencé.ofransformation

of the recovery variably—y—s (neglecting time deriva- N
tives of s) leads to a modifieth—b—s. r=Iim =, (2
The behavior of the system can be understood in terms of Tow T

the null clines of the variable&f. Fig. 1), i.e., the cubic

function in x with maximum P ,,,.=(x ,y+) and minimum  whereN denotes the number of pulses during tifeOn the
Pmin=(X_,y_) [21] and the straight line iry, respectively. other hand, the mean time between two pulgasan inter-
The former consists of three distinct regions, separated bgpike interval may be considered,

P max:Pmin: the stable left and right branches and the unstable

middle branch. Choosing proper valuesyoéndb, both null 1 N
clines intersect only once on the left stable brafetcitable (T)=lim N Z Ti,
regime, providing a single fixed point inXgy ,Ysx). In the N—eo 1N 1=1

original work by FitzHugh 1], this point corresponds to the
resting state of the nerve cell, while points at the right branclwhereT; is the time between thith and {+1)th spike.

15[ ' ‘ i 15 |
05 | . 05
x(t)
-05 ‘ J w (Md J%\ﬂ {1 05¢
Y y
15 . ‘ 15 FIG. 2. Simulations of the stochastic differen-
0 5 10 15 0 5 10 15 tial equations. Voltage variable versus time and
t t the corresponding trajectory in phase space for

' y=b=15D=0.3; left: e=10"1, right: €
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Both measures give the same information since in the
long time limit when lim.__ is equivalent to ling_ _, y ¥,

-1

N
- [(To 1 Thta 1
r=1lim W+Ni§lTi+ N =M

N— o

holds, withTy, Ty 1 being the time intervals until the first or right branch
after the last spike, respectively.

As shown previously, possible adiabatically slow sigrsals
would decrease additively the value mf Therefore, the de-
pendence of the rates onb can be thought of as a transfer
function with respect t®. In [6] it was shown that the slope | = ———p— "7 =7 =

. . . o H left branch
of the transfer function is proportional to the “power norm
introduced in[4]. This quantity measures the correlation of
the output, i.e., the pulse rate of the FHN, to a sufficiently FIG. 3. Schematic picture of the system for-0. Depicted are
small signals. Consequently, the sensitivity of the responsethe effective potentials);(y),U,(y) (solid lineg for y=b=1.5 and
to an adiabatically slow signal is characterized by the functhe absorption pointy, ,y_; the dashed lines indicate the two

tion branches. Although the scheme resembles a Schmitt trigger, note
that in this case the output depends on the slow variahled is not
or or a constant.
—=—- . 3
Js b @

However, all these functions may be achieved by time

The pulse rate and the mean interspike interval does ndtVeraging of a simulation of E¢1). We have used a simple

characterize the regularity of the spike train. For that pur-EUl€r procedure with time stept, being two orders of mag-

pose, Pikovskiet al. [10] introduced the standard deviation MNitude smaller them (smallest time scale in the systgrand
of the interspike interval as moise-to-signal ratio we shall compare the analytical findings with numerical re-

sults.
(T2 —(T)2 With a look at the simulations at=10"* in Fig. 2, one
R= # (4) notes that the dynamics becomes effectively one dimensional
M in the Imit e—0. |In that case at least,

)(y),p(x),r,dr/db, T, andR can be calculated analytically

y solving two one-dimensional FPEs connected by appro-
priate boundary conditions and showing a constant flux
through the system.
In this limit, the FHN system greatly resembles a Schmitt

For Poissonian sequences with independent single excit
tions, R approaches unity. IR<1, the sequence becomes
more regular andR vanishes for periodic deterministic exci-
tations, for example in the deterministic limit cycle regime of

Eq.(1). Inthe casdR< 1, excursions of the trajectories in the E igger(ST) driven by an Ornstein-Uhlenbeck procéGip)

ﬁmssyfgaﬁi g%n be interpreted as motion on a stochas gﬁ,zq. The recovery variablg replaces the input variable
We would like to mention that the occurrence of orderedmc i S'cpmlt'tttrlggerd Itis tan OdUP with c;)rJrrekI)atlg'n t'||m(.—:‘t.equal
sequences of excitations could be discussed also on behalqu » INtenst yD, and centere _aro_unyzb(( ) +b. Simi aries
and differences can be seen in Fig. 3. The dashed lines indi-

spectral measures or correlation functi¢ag]. For our pur- cate two branches, i.e., the two basic states, namely resting
ose, the quantityd) is of advantage since it will require the . S ’ i
b 9 ) g d and excited states, which are leftyat andy, , respectively.

first two moments of the interspike intervdbl) distribution. he sl iabley | h state | db i
Both moments will be available by the approach discusseJ € slow variabley In each staté IS governed by respective
effective potentials(see next sectiondrawn in the figure

below for arbitrary strength of the noise. (solid lines.

The system described by E@.) is a “nonpotential” one, .
i.e., the corresponding Fokker-Planck equatliBRE) for the On the other hand, there are several fundamental differ-
probability densityP(x,y) ences between the excitable system and a ST. First and most
e importantly, the excited state is governed by a dynamics
1 without a fixed point. Its effective potential does not possess
IP=— =0 (x—x3—y)P+ dy(y—yx—b+Dd,)P, (5 aminimum. As aresult, the excited state is left even without
€ the action of noise on the system. Contrary to the ST, no
a%ctivation over a second barrier is necessary to return to the
ot ) . :
initial state. Second, the output is not a binary value, i.e.,
x(y) depends itself strictly on the value of the slow variable.
In addition, the dynamics at both branches are highly non-

P(X)=f_:dy P(x,y), p(y)=f_:dx P(X,y), linear.

cannot be solved, even in the stationary case. Likewise n
available are the marginal densities

. . . PROBABILITY DENSITIES AND RATE
which reveal how an ensemble of independent neurons is

distributed over the excited and the resting state or the re- For smalle the voltage variable relaxes fast toward one
covery variable, respectively. of the stable branches of the null cliye=x—x3, wherex
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obeys the inverse of the cubic function on the left- or right-

hand side, respective[23], s
1 P /
x(y)=3y.cog 5 arccosyly) |, /
1.0 i ‘
1 (6) %
X (y) =3y, cos<§ arccosy/y_)) . Y
0|/ \
In the limit e—0, the motion is restricted to these both lines. 3
The two-dimensional Markovian systeseparates into two \\\
one-dimensional subsystemschanging probability by cur- 00 == R -

rentsJ,, ,J,, infinitely fast via the straight linek,l,. In this

limit there is no finite probability on these lines. Thus we  FIG. 4. The probability density on the left branch. The approxi-

obtain two coupled FPEs as was introduced for the first timenation (solid lineg is compared to simulations of the Langevin

by Melnikov [20], who considered the stochastic Schmitt equations(squares and circlgswhich give by time averaging the

trigger. shown marginal densities. Parameters Bre0.1,y=1.5p=1.5¢
The FPEs of the two systems not only contain the usuaf 10 ° (squarel ande=10"° (circles.

drift and diffusion terms, but additional sources and sinks of

probability, changing the probabilities gt ory_, respec- U,(y) has a minimum at the fixed point, while the maximum

tively. They read of the densities depends on the pulse rate, which is obtained
by Eg.(9) as
P (y)=ady[y—b—yx|(y)+Ddy]P+ I, 8(y—y),
Y+ *©
APA(Y) =3[y~ b= Y4, (Y) + D, P43, 8y -y ), r=D{ |7 au[“avetvi-uero
(7 -
-1
andP i, andP 5, become now absorbing boundaries for the T Jhduju dvelVr=Umib| (14)
left and right branch, respectively. This implies - —o

Jy=Do,P - Dy 8
Ir y |(Y)y Yoo In=mDoyPY)y—y . ® A. Probability densities
while in y— + oo the densities obey natural boundary condi- ~ The rate is always positive. Therefore, it can be shown

tions on the respective branches. Furthermore, the sum &patthe maximum of the density(fy) occurs above the po-
probabilities on both sides is conserved, sition of the fixed point, as can be seen for a particular set of

parameter in Fig. 4. On the other hand, there exists at least
o Yt one maximum on the right branckig. 5), which can never
f Pi(y)dy+ f __Puy)dy=1. (9 be outsidgy_,y.]. The total probability on this branch is
- comparably smallnote the different scale in Fig.)5The

In steady state the currents have to be constant and coinci§@mparison to the simulations reveals a satisfactory agree-

— —5 H
with each other and to the pulse rate introduced in@y. ~ Ment fore=10"", while for a larger value the assumed ab-
sorbing boundary condition fails significantly and the total

J=J,=r. (100  Pprobability on the right-hand side declines.
With Egs.(9) and(10), one finds the solutions of the coupled 0.10
FPEs(7),
g
P(y)=Le*U'(y)’D " dz d@Pe(y, —2), (11 " T
| D v + ’ — D‘%MMW . B?ﬁd;
0.05 s
r Y+ 4
Py = ge 00 a2 P8y ), (12 /
y H
with the effective potentialll,(y),U,(y) explicitly given by
(y—h)? Xy 000 =55 y 00 s

Ui(y)= > Y72 [3y—xi(y)],
FIG. 5. The probability density on the right branch. The ap-
b)2 proximation(solid lineg is compared to simulations of the Lange-
U, (y)= (y—b) _ er(y) [3y—x,(Y)]. (13) vin equations(squares and circlgswhich give by time averaging
r 2 4 r the shown marginal densities. Parameters as in Fig. 4.
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FIG. 6. Densityp(y), simulations at different values efcom- FIG. 8. Pulse rate versus noise le\@| with y=0.8b=0.9¢
pared to approximatiofparameters as above =10"* Approximation Eq.(14) (solid line) compared to simula-

tions (circles and to the simplified expressioii$5) (dashed and

The marginal densitp(y) is readily obtained by summa- (16 (ong dashey

tion of P, andP, and is depicted in Fig. 6. The main contri- AU

bution to that density comes from the left branch, therefore o [BY1 _aup .

p(y) looks similar toP,(y). r=Uilyn) Vg "' D<Ay, (15
Taking into account the change of the volume element,

the marginal density(x) is given byp(x) =p(y)|dy/dx|. It  with AU;=U,(y_)—U,(ys) being the potential barrier be-

does not exhibit any contribution between,, and X,  tween the fixed point and the absorbing boundary. For large

since, as supposed in our approach, there is no probability oD, one finds the rate obeying

the straight lines between the branches. In contrast, simula-

tions at finitee provide a small amount of probability within V2D
that range, which becomes comparably small by a decrease r= 2y I D>AU,. (16)
+

of € in the logarithmic plot Fig. 7. The density around the

maxima agrees fairly well with the numerical data. o . .
In general, a monotonous behavior is obtained by an in-

crease of the noise strengthig. 8). Trajectories reach more

often the absorbing boundaries and the rate increases with
The pulse raté€14) can be evaluated numerically and re- growing noise. The simulation is compared to the expres-

sults are presented in Figs. 8, 9, and 10. We first note that owions(15) and(16) for small and largeD too and shows the

formula (14) is clearly an overestimation of the rate at finite validity of those formulas.

e for two reasons: first, the motion between the branches The impact of the slope is illustrated in Fig. 9, where

obviously takes a finite time. Second, a findeauses sub- we have choseib=yg,— yXgy . The fixed point remains at

threshold oscillations, diminishing the rate as well. Neverthethe same position; an increaseyfurns the null cline o in

less, the approximation confirms quantitatively the simula-a positive sense. Doing so, the excursion time is reduced

tions at sufficiently smalk, apart from the case of largg yielding an increase of the rate for small At the same time

to which we shall return below. the effective barriefsee Eq(13)] is enlarged, decreasing the
Estimations can be made for small and large noise intenrate for largey. Thus, a maximum of the rate with respect to

sities. For smalD, Eq. (14) may be simplified td25]

B. Pulse rate

3.0

10’ r

p
2,0

10”

1.0
10°

0.0

0 20 40 Y 60 80

1.5
FIG. 9. Pulse rate versus the slope while D=0.1 and the

fixed point is fixed toxgz,= — 0.8, therefordo=b(y). Approxima-
FIG. 7. Log plot ofp(x), simulations at different values af tion Eq. (14) (solid line) compared to simulations wite=10"*
compared to approximation. Parameters as above. (thin solid line® and e=107° (circles.



PRE 60 ANALYTICAL APPROACH TO THE STOCHASTC . .. 7275
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FIG. 11. The derivative of pulse rate with respectstoersus
noise strengtid for b=0.7,y=1.0. Approximation Eq(17) (solid
line) and simplified expression E¢L8) (dashed ling compared to
simulations withe=10"2 (circles. The arrow indicates the maxi-
mum calculated by Eq.19).

v is observed in Fig. 9, indicating an optimal value of the

rate in the mode(1). Note that for growingy, the deviation C. Sensitivity to adiabatically slow signals

of the predicted rate from the simulation data becomes stron-

ger since the assumed time scale separation between the ac-As outlined previously, an important quantity is the de-
tivator and inhibitor variable is weakened. rivative of the pulse rate with respect to a possible additive

Variation of parameteb changes the position of the fixed sjgnalsin the activator dynamics. It is found by
point; an increase of it enlarges the distance to the threshold
and diminishes therefore monotonously the i@&ig. 10.

FIG. 10. Pulse rate versusfor D=0.05,y=1.0. Approxima-
tion Eq. (14) (solid line) compared to simulations witle=10"3
(circles ande=10"* (squares

—

fy*du( fwdv(v_u)e[u|(u>—U.(v>1/D+f” dv(v_u)e[ur<u>—ur(v)]/n>
a o )y

u

an_ i i . an
gs  db U”du(f dve[u.(u)—ul(v)]/o+f“ dve[u,(u)ur(v)]/o>
y- u ’°°

A simplified expression is obtained by derivating E#5), mum occurs at a slightly larger noise intensity. As for the
where we neglect theb dependence of the curvature previous results, however, the convergence of simulations
U/ (Ysiy)- It yields and theory can be improved by decreasingot shown in

the figurg. We would like to point out the similarity of our
analytical result with Fig. (&) in [6].

(?rNUIH(yfix)(yfix_y)(AUI_E>eAU|/D' D<AU,.

s |mDAU, D 2
(18) NOISE-TO-SIGNAL RATIO
The interesting fact is that the functiadr/gs displays a The mean time between two spikes, i.e., the mean inter-

maximum with regard to the noise strength at a moderatspike interval, is given by the sum of the passage times from
value. From Eq(18) the maximal slope is found to appear at the injection to the absorption point on each branch. There-
fore, in estimating the time sequence of the spikes, one deals
Dimax~2(2—/3)AU;. (190 with the classical mean first passage tiflFPT) problem
and can use standard formula6].
The first and second moments on both branches are sta-
tistically independent and obey

As numerically demonstrated 6], a nonmonotonous be-
havior with respect t® is a fingerprint ofaperiodic stochas-
tic resonance The slope is in linear approximation propor-
tional to the “power norm,” i.e., the cross correlation 1
between an adiabatically slow sigre{t) and the output fir- A s [ —U(v)/D

ing rate. The value of the noide,,,x where the maximum (Mily+))= ny dueh® fu dve %P, (20)
occurs can be estimated by HA49) and is indicated in Fig.

11 by an arrow. Note that the curve being the result of simu-

lations at a fairly large voltage time scale=10"3) is al- (T2)= Efy+dueu|(u)/of°°dveul(v)/D<T|(v)> (21)
ways below the analytical curvisolid line) and the maxi- : DJy_ u ’
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regulap spike train for a particular noise level. Results of the
R simulations, depicted in the same figure, confirm the analyti-
cal findings, particularly the rough position of the maximum
1.2 as well as its depth. It is remarkable that a firdtécf. simu-
lationg deepens the minimum and shifts it toward larger
values ofD. Because there is no doubt that the coherence is
1.0 destroyed from a larger value ef on, there should be a
critical value ofe for which R becomes minimal.
0.8 CONCLUSIONS
L - - \ We have presented analytical and numerical results for
10 10 b 10 10 the dynamics of a nerve cell driven by white noise. In the
FIG. 12. Relative fluctuations versus noise strergttwith y  limit of a fast voltage variable, we could calculate the sta-
=0.8,b=0.9. Approximation(solid line) compared to simulations tionary probability densities, the mean interspike interval,
with e=10"23 (squaresand e=10"* (circles. and its relative error, as well as the slope of the pulse rate

with respect to a slow signal. Results are in accordance with
and analogical for(Tr>,<Tr2> with appropriate integration former numerical resultg,10]. Our analytical study has re-
boundaries for the right branch and potentials according tyealed that the pulse rate exhibits a maximum versus the
Eq. (13). Equation(20) proves again the equality of current slope of the recovery-null cline and has proven the existence
(pulse ratg and the inverse of the sum of the passage timesQf & minimum of the interval erranoise-to-signal ratip All
i.e., the mean interspike interval. these findingS were confirmed by numerical simulations of

With Egs. (20) and (21) the noise-to-signal rati¢4) can  the full system.

be calculated by

~ \/<T|2>+<Tr2>_<TI>2_<Tr>2 ACKNOWLEDGMENTS
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