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Conformations of closed DNA
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We examine the conformations of a model for a short segment of closed DNA. The molecule is represented
as a cylindrically symmetric elastic rod with a constraint corresponding to a specification of the linking
number. We obtain analytic expressions leading to the spatial configuration of a family of solutions represent-
ing distortions that interpolate between the circular form of DNA and a figure-eight form that represents the
onset of interwinding. We are also able to generate knotted loops. We suggest ways to use our approach to
produce other configurations relevant to studies of DNA structure. The stability of the distorted configurations
is assessed, along with the effects of fluctuations on the free energy of the various configurations.
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[. INTRODUCTION writhe, linking number, and energy. We will use this formal-
ism to generate both unknotted and knotted forms of closed
If a segment of untwisted rod is forced to close smoothlyDNA. We will also outline how our formalism can be ex-
on itself, it will take on a circular shape in order to minimize ploited to produce other shapes of interest to DNA research-
the elastic energy. Thermal fluctuations will exert a signifi-ers.
cant effect on this configuration only if the circumference of The configurations that will be discussed include those
the circle is greater than the temperature-dependent persithat arise as a result of the the supercoiling instability for a
tence length of this segment. When the looped rod is alselosed loop. We will also examine the configurations that
forced to undergo a twist, the circular shape may prove to beepresent the evolution of higher energy deformation of a
unstable. The rod will then either distort into a nonplanar,circular loop. In addition, we will briefly discuss configura-
nonintersecting form, or it may wind about itself, in an in- tions that are associated with knotted loops. Such knots in-
terwound, or “plectonemic,” configuratiofl—7]. clude, but are not limited to, the trefoil. All the more elabo-
When torsional and flexing stresses are not too s€\dre rate configurations are unstable with respect to fluctuations
the DNA molecule can be modeled as such a rod. A shorébout the solutions that extremize the energy of the loop.
enough segment of looped DNA will thus take on shapesHowever, it is possible to envision mechanisms, analogous
determined by the minimization of elastic energy. Planarno those leading to the nucleosome struc{@®g2], that sta-
shapes, characteristic of “relaxed” DNA have been ob-bilize these configurations and, therefore, cause them to be
served, as have the plectonemic forms when the molecule iglevant to biological systems.
over or underwound. The distortion, or supercoiling, of DNA  As noted above, we will discuss the mechanical stability
under the influence of torsional stresses is widely believed taf the configurations to be studied, and will present results
have significant implications with respect to the action of thiswith regard to the contribution to the free energy of thermal
molecule in biological settingEd]. That this is so may be fluctuations about the minimizing shape. These results will
inferred from the existence of enzymes known as topoibe relevant as long as thermal fluctuations do not give rise to
somerases, which act to facilitate the alteration of the tora significant alteration of the shape that the rod takes, and, as
sional characteristics of DNA configuratiof@—12|. noted above, if the circumference of the rod is not large
The elastic model of DNA has been the subject of intenseompared to the rod's persistence length. The precise crite-
research in the past 30 years. Theoretical appraches to thin for this will be examined later on in this paper.
problem include Lagrangian mechanics3-17, b splines The most important advance in the work presented here is
and(numerical molecular dynamicgl8], and statistical me- the algorithm for the analysis of the stability of the configu-
chanics[19]. It has been possible to determine the equilib-rations, particularly the one associated with the principal su-
rium configuration of a closed segment of DNA, as modeledpercoiling instability. On the basis of the stability analysis, it
by a distorted rodi14,20,21. A comprehensive discussion of is clear that only some of the configurations that one can
the properties of these equilibrium configurations has not yegienerate with the use of the methods described in this paper
been published. are, in and of themselves, mechanically stable. However, the
In this paper we contribute to the knowledge of this con-existence of devices that support noninterwound supercoiled
figuration by describing a method by which one can obtainconfigurations in the case of open strands of DNA22]
the shape of a closed section of an elastic rod, along witlallow one to speculate as to the possible relevance of those
various key properties of this system, including its twist, configurations to DNA in biological settings. Furthermore,
one can envision utilizing these methods in conjunction with
other calculational tools to study the mechanical properties
*Present address: Department of Structural Biology, Stanford@and packing configurations of longer strands of DNA.
University, Fairchild Building, D-109, Stanford, CA, 94305-5126. The paper is organized as follows. First, the mechanical
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model is described and important parameters are defined. Of lll. CANDIDATES: THE ELASTIC EXTREMA
especial importance is an identification of the parameters that
will be adjusted in order to obtain solutions of the energy
extremum equations. Key quantities, including topological As a precursor to the discussion of the possible deforma-
invariants, will be defined in terms of those parameters. Théions of a closed loop, we review the family of excitations of
stability of the circular configuration of a closed rod undera closed, circular loop, and the conditions under which this
torsional stress is then assessed. The principal instability igonfiguration may become unstable to one or more of these
identified, and it is shown how to obtain the family of closed excitations. A detailed discussion of these issues has been
curves that represent the evolution of this instability. Thisrelegated to Appendixes A and B. The Appendixes also con-
family interpolates between the circle and a figure eight, thdain derivations of key formulas presented below.

latter of which lies at the onset of interwinding. The stability ~ The excitation of a circular loop is describable in terms of
of the members of this class is then assessed. It is found th&te deviation of the Euler anglefrom the constant value of
they are, indeed, stable against small fluctuations. Then, it ig/2 that it has in the case of a circle. If we writs)
shown that the method by which the outcome of the super=m/2+ y(s), then small excitations about a circular shape
coiling instability is investigated can be utilized to generatewill be of the form

deformed configurations, among which are configurations in

which the closed loop is also knotted. Finally, there is a brief Y(s) cos(zln i 5) 3.1)
discussion of the contributions of fluctuations about the clas- L ' '

sical solution configurations. Details and background are rel-

A. Stability and excitations of the circular loop

egated to the Appendixes. wheren is an integefpossibly 0 and§ is an arbitrary phase
factor. The energy of such a sinusoidal excitation is propor-
tional to
1. ELASTIC MODEL AND EXPRESSIONS OF INTEREST
2 2
In a previous work we have outlined some developments En:é(Z_w) [nz—l— (E) Lk 2]_ (3.2
in the elastic model of DNA23]. The molecule is repre- 2\ L A

sented as a slender cylindrical elastic rod. At each pihe
rod is characterized by relating the local coordinate frafne
to the frameF, rigidly embedded in the curve in its relaxed
configuration. The relationship between the stressed and u
stressed local frames is specified by Euler angle
0(s),(s),¥(s) needed to rotate, into F.

The requirement that the fluctuations leave the loop
closed and, also, that they not change the linking number of
rI]he loop rule oun=0 andn=1 as possibilities. The allowed
,geformation with the smallest energy has 2. Substituting
this value into Eq(3.2), we find for the energy cost of this

We begin by summarizing some of the results needed fopxeitation
this paper. We denote the elastic constants of bending and Al2m\2 c\2?
torsional stiffness byA andC, respectively. The length of the E,x _(_> { — (_) Lkz] _ (3.3
rod is denoted by.. The elastic energy is given by 2L A

It is clear that this deformation of the circle can give rise to

L [A . . C . . i i i i
_ Ao 2, 2 a lowering of the energy. This state of affairs holds if
Eel fo ds(2(¢ sSirfo+ 6 )+2(¢cose+¢) .

A
2.9) Lk>23. (3.9
The “dot” notation for derivatives is used interchangeably

with the explicit derivative with respect to arc lengiids.
The twist is given by

In fact, the condition in Eq(3.4) is just the requirement for
the supercoiling instability of the closed loop. Deformations
associated with higher values oflower the energy of the
loop when the condition

1o . :
Tw= z—f ds( ¢ coso+ ). (2.2 A
mJo Lk>6\/n2—1 (3.5
A relevant result from our previous work is that Lk, the

linking number, can be written as holds.

It is clear that the instability with the earliest onset, and
the one that will prove dynamically “strongest” is the one

1 (L. . i '
Lk=T—1+ _j (d+)ds. 2.3 with threshold as given by Ed3.4).
2 0
B. A family of curves
Where we have used Fuller's theordi?4] to obtain the We start by looking for a family of closed solutions to the

writhe, and White’s theorenj25] for the total link. The Euler-Lagrange equations that represent the evolution of the
guantityZ is an integer that encodes the knotting of the loop.deformation associated with the supercoiling instability, i.e.,
It is equal to the number of signed crossings of the loopn=2 in Egs.(3.1) and(3.2) above. This family of curves can
assuming that it has been flattened out as much as possiblee indexed by the writhe, Wr, of a member, which ranges
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from Wr=0 for a simple circle to W& 1 of the other limit-

ing member of the family, a “figure eight.” The actual con-
straint imposed on the closed curves that are of relevance to
this discussion is that the link is fixed at a predetermined
value. We shall therefore examine the conditions under
which the family of writhing curves can satisfy the imposi- u=cos 0
tion of a linking number.

FIG. 1. The tangent oscillates—b—c—b—c. The curve is

o composed of two symmetric parts.
C. Euler-Lagrange minimization

Our goal is to extremize elastic energy and keep the curve us) d¢ ds
closed. The functional to consider for closed configurations é( _f < godu
. u(s=0) ds du
of DNA is
L . with
H=f dE.— Ftzds. (3.9
° ds [ A 1 (311
The first term of Eq(3.6) is clear—the elastic energy must du V2F Ju—a)(u—b)(u—c) '

be extremized. The second term enforces the constraint that

the curve minimizing the elastic energy also closes uporThe key to the solution of the equation for the distorted
itself. In general, one expects to introduce Lagrange multiclosed loop is the determination of the paramefers, b,
pliers controlling the extent of the curve in all directions. andc.
However, one can concentrate on the net displacement in
only the z direction, because it is always possible to trans-
form to a reference frame in which the curve is closed in the

XY plane. Written explicitly as a function of Euler angles, To complete the analysis we must determine the param-
Eg. (3.6) becomes eters generated by the minimization procedure. One choice

of parameters is the set of invariadtg andJ,,, the constant
LA, ., C . o, Eo, and the Lagrange multipliefF. However, as indicated
H= fo ds 5 (¢ sin* 6+ 6%) + 5 (¢coso+y)°—Fcosé.  above, a better practical choice is the Lagrange multiier
3.7) and the parametees b, andc. To determine the parameters
' we impose constraints on the curve. Figure 1 is a good visual

The extrema are found by applying Euler-Lagrange equaguide to the geometric meaning of the constraints. They are

tions to Eq.(3.7). Denoting the conserved quantities & 35 follows. _ _ —
— 7H19 and = a1l we obtain (A) The loop closes on itself in the direction. Because
= =

the curve consists of four segments, in each of which the
variableu(s) goes fromb to c, or fromc to b, we have

D. Constraints

., Jg—J,cosb
¢="Asing 38 L/a
f u(s)ds=0. (3.12
0
S dy -
V= E—¢cose. (3.9 (B) The loop goes through one quarter of a turn in each

segment. This reduces to
The equation ford is a quadrature obtained by integrating
dHI96=d/dsaH/ 96 with E, as the constant of integration. fLMdd)(S) de= T (3.13
Defining u=cos# we see that the behavior of solutions is o ds 2° ’
governed by a cubic polynomial i

(C) The linking number takes on a predetermined value

‘o 2(1-u?) 1, 0, for the loop. This requirement leads to the following math-
U= (EO_F“)_;(JVFJV 2343 yu) ematical constraint on the solution to the Euler-Lagrange
equations:
2F L
=" _(y— _ _ di(s
= (Uma)(u=b)(u=c), (310 f Ig(s)ds=Lk. (3.14
0

where we order the roots<u(=cos#(s))<b=a. Equation
(3.10 requires that cog(s) oscillates betweer andb. For
the distortions studied here, there are two complete ocilla
tions as the the closed curve is traversed once. All the rel- .

evant quantities, including the shape of the curve, can be f ds=L. (3.15
obtained using Eq3.10. For example, 0

(D) Finally, the length of the loop takes on a predeter-
mined value. Mathematically,
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The above condition is not as tautological as it seems. The
actual parametrization of the curve will be in terms of the
dependence of quantities on the cosine of the Euler angle
0(s).

E. Reparametrization

At this point we reparametrize the problem in terms of
F.a,b,c instead ofF,Eq,J,,J,. Parametrizing the problem
by the roots of the polynomial is extremely advantageous: it
makes the analytic manipulations more transparent; it also
streamlines the computational tasks. The two sets of param-
eters are related in the following manner:

Eo=F(a+b+c), (3.19
AF AF
Jy= \/;(pli P2); Jy= \/;(pp—” P2 (3.17
with
py=[(c=* D(b+1)(a=1)]*2 FIG. 2. The family of curves ranges from the circle in th¥

plane to the figure eight in théZ plane. The perspective is slightly
The choice of branchx) is imposed by the family of con- asymmetric to aid visualization. The “fins” on these, and all other
figurations sought. For circular DNA without intrinsic curva- pictured curves, trace out the embeddednd y axes, and thus
ture,J, takes a—, andJ,, correspondingly & . (The choice  depict the twisting of the rod.
of a particular branch is a nontrivial procedureet us make
some definitions that render the notation more transparent:relevant quantities are computed via elliptic integrals. For
example, the explicit expression fé(s) in the first quarter
Ab=(b—c); Aa=(a—c), (8.18  of oscillation is[we have inverted Eq3.1D)]:

Ab [FAc  [Ab
=/—". (3.19 _ _
q Aa cosé Absr?( T (3.23

Employing Eq.(3.11) we rewrite the constraint equations,

Egs. (3.1, (3.13, and (3.15, in terms of the new param- ¢ and ¢ are obtained similarly from Eq$3.8) and(3.9).

Figure 2 displays the family of curves computed in the

eters: ; . . ) .
manner discussed above. Since the constraint equations in-
aK(q)=AaE(q), (3.20 volve elliptic integrals, finding a solution on a computer is
virtually instanteneous; analytically and computationally el-
1 [[(a+1)(b+ 1)|1/2 Ab liptic integrals are equivalent to, say, arcsin.
"= Al e | (—1—c’q)
G. Bounding members: circle and figure eight
(a-1)(b-1)[** [ Ab - .
- 1 II 17— (3.21 Let us check whether the initial member of our family, a
(c=1) ’ circle with Wr=0 joins smoothly with the previously known
stable family of twisted circle§26]. The circle corresponds
_ 32A K(q) (3.22 to Wr=0. A circle in theXY plane the curve must haug
Aal? ' ' =cy=0. Equation(3.21) now states that
whereK, E, andII are complete elliptic integrals of the
first, second, and third kind, respectively. The issue of the \/_O(Va0+ —Va—1)=1, (329

constraint on linking number will be left for later discussion.

F. Solving for a, b, ¢, andF which in turn gives
We find that the optimal procedure for the calculation of o 2 A

parameters appropriate to a solution is to utilize BoR2 to po=—— (\/?Jr Jag—1)= _\/—

eliminateF, then Eqs(3.20 and(3.2]) eliminateAa andc. L \/—o

Because the writhe Wr, is a monotonically increasing func- (3.29

tion of Ab, we make use of this property to distinguish be-

tween the members of a family of curves. Once the constantSombining Eqs(2.2) and(3.9) to obtain the twist Tw of the

F,a,b,c are determined, the desired solutions and all thecircle (3.29 gives
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FIG. 3. The three types of behavior of Lk for our writhing FIG. 4. The energy as a function of writhe for the cases plotted
family of curves. The rati®\/C controls the plectonemic transition. N Fig- 3. The energy is expressed in units of the combinatiéf 2

The quantityC is the torsional modulus, whilé is the bending Wherel is the circumference of the writhing loop, amlis the
modulus. bending modulus. Also shown in this plot is the limiting value of

the energy, at the figure eight configuration, which is displayed as a

L horizontal line. The ratic\/C controls the behavior of the energy.

A
TWo=5—Jy0=V3 5. (3.26 _ _ _ _
™ folds continuously until self-crossing occurs. Further in-

It is also of interest to compute the Tw of the figure eight crease of Lk presumably results in @ plectonemic configura—
which, like the circle, can be performed virtually by ins ec-,tlon'-hc O.5<A/C§1 then one can expect the curve to distort
. i . C p . y by Insp continuously until the writhe achieves some value interme-
tion. The figure lies in the\_(Z plane,_ Wh'.Ch force&ﬁ ©  iate between zero and one. There is, at this threshold value
behave as followgrefer to Fig. 1 for visualization of the writhe, a transition, almost certainly to an interwound
L form. WhenA/C>1, none of the members of the writhing
—) ) (3.270  family support the necessary linking number, and as soon as
2 A Lk exceeds the supercoiling threshold valy8A/C the
twisted circle snaps into a plectoneme. An interesting fact is
that this behavior isndependenof the length of the mol-
ecule. That this ought to be so follows from the absence of
an absolute length scale in the problem of the deformed loop.
Greater insight into the behavior of the deforming loop is

épgzw( 5(0)+ 6

Combining Eqs(3.27) and(3.8) forcesJ y5=J,5=0 which
immediately sets Ty=0. The value ofAbg is easily deter-
mined from the fact thatg= —1 (this can be seen from the
curve itselj necessitatinga=1. Then Eq.(3.21) yields

Abg=1652.... gained if one also investigates the way in which the energy
depends on the various properties of the loop. The energy
IV. LINKING NUMBER AND THE PLECTONEMIC can be expressed in terms of the previously introduced quan-

TRANSITION tities. A straightforward calculation yields for the energy of

We have found a family of writhing solutions that are the the 100P

extrema of elastic energy. The writhe of the curves covers

the range &<Wr=<1. (That the figure eight has W 1 just ﬁ_luf ds. (4.4)

before crossing can be seen from the shape of the gurve. C B

However, the physical constraint imposed on the molecule is

Lk, the linking number. The explicit expressions for Tw, Lk, Where the final integral is over arc length. Expressing the

and Wr are easily obtained: circumference of the loop in terms &f, a, b, andc, we
obtain the following result for the energy in terms of the total

1
E=Fi(a+ b+c)+Z(p1+ p,)2

2 A circumference of the loof the bending modulu8, and the
Tw= —\/EK(Q)(F’DL P2)E (4.2 parmetersa, b, andc:
A 1 A
Wr—\/Ta[—K(Q)(Pﬁpz)*‘mH(_1_C,Q) | 4 (;'
P Ab x( f i au ) (4.5
2 . .
1_CH<E,Q (4.2 ¢ y(a—u)(b—u)(u—c)
and, using White’s theorefi25] The energy of the loops as a function of writhe for various
values of the modulus rati&/C is plotted in Fig. 4. A few
Lk=Tw+Wr. (4.39)  facts about the energies of the deformed configuration can be

established numericallyand we do not doubt that analytic
With reference to Fig. 3, we can now describe what hapdemonstrations can also be construgtédrst, the energy is
pens to a deformed loop of DNA as the linking number isa monotonically increasing function of linking number, if not
increased. The loop remains a circle unilLk=/3A/C. of writhe. This is not immediately evident in Fig. 4, although
After that there are three possibilities. AfC=<0.5 then the it is indicated, in that the energy increases or decreases
writhing family supports a steady increase to the linkingmonotonically with writhe when the link does so. Further-
number limit Lk=1 of the figure eight and the molecule more, when there is a maximum in link as a function of
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writhe, there is also an energy maximum, and, as indicated in V(s)
Figs. 3 and 4, the maxima occur at the same value of the 06 -04 -02 02 04 06 g
writhe.

In addition, when there is a maximum in the linking num-
ber as the writhe increases from zero to one, so that there are
two possible writhes associated with the same linking num-
ber in for a range of the latter quantity, the configuration
with the lower writhe always has the lower energy. This can
be established by a separate set of calculations. This implies
that when, for instance, 0<6A/C<1, the loop, in distorting
from its planar form, will not be susceptible to a discontinu- . . _ :

FIG. 5. Typical potential, as given by EJA10), in the

ous distortion to a more highly writhed, but not mterwound,Schr..m”nger_Iike equation, EqA9). obeyed by fluctuations about

configuration before it snaps to a plectoneme. In. the ab_tpe deformed state. The quantityis the total arc length of the loop.
sence of thermal fluctuations or external perturbations, tha

transition will to occur when the link has reached its maxi-

mum value as a function of writhe. fact, the existence of such states is guaranteed by the exis-

q ]!: cr)rrniarl1 mlore deltar:Ie(\jNi?;]scussilon t?fnth? tﬁnergetrlcs C}ft;‘h?ence of the translational mode—the “fluctuation” equal to
elo g loop, aiong a calcuation ol the energy of €y, o erivative with respect to arc length of the extremizing

plectoneme, the reader is referred to R0, 0(s). As the system is invariant with respect to translations
along the closed loop, the infinitesimal transformation of the
V. STABILITY OF THE DEFORMED LOOP extremizing solution 0c1(S)— O¢1(s+ 8S) = 0(S)

Given the existence of the solutions for the deformed loop* 95d6ci(S)/ds has no effect on the energy of the configu-
corresponding to the evolution of the supercoiling instability,'ation. The functior(s)<d 6 (s)/ds has the requisite pe-
it is desirable to determine whether these solutions are, thenfiodicity, in that it is unchanged is goes tos=nL. This
selves, stable against small fluctuations. There iapoiori ~ Implies the existence of a solution to the Salinger equa-
guarantee that this is so. We will find, in fact, that the sta-tion with zero eigenvalue. This solution is displayed in Fig.
bility of the closed configuration is enforced by the relatively 6- In both Figs. 5 and 6, the arc-length parameter ranges
large number of constraints that must be satisfied by fluctuafom —L/2 to L/2. This will prove to be useful later on,
tions about the extremizing solutions to the Euler-Lagrangévhen we take advantage of the reflection invariance of the
equations. A number of technical details associated with th@otentialV(s).

determination of the stability of a configuration are to be The important thing to note is that the translational mode
found in various Appendixes. has nodes. Note, furthermore, that this mode is odd on re-

flection abouts=0. On the basis of a simple node-counting
argument, one can readily establish that there will be another
antisymmetric solution to EqA9), having fewer nodes in
the interval—L/2<s<L/2, and, hence, a lower eigenvalue
The energy of a fluctuation about a solution to the Eulerthan the translational mode. This lower eigenvalue is neces-
Lagrange equation is expressible in terms of solutions to thgarily negative. As it turns out, there are two symmetric so-
linear second order differential equatioh9), equivalent to  |utions to Eq.(A9) having the requisite periodicity and nega-
the Schrdinger equation of a particle in the potential Eq. tive \'s. The extremizing solution is, thus, nominally

(A10). In particular, any fluctuatiog(s) of the Euler angle ynstable with respect tthreekinds of fluctuations.
0(s) about the form it takes in an extremizing solution can

be written in the form

the Schrdinger-like equation with negative eigenvalues. In

A. Stability in the absence of constraints:
The translation mode

B. Effects of constraints

Certain constraints apply to any fluctuation in a closed
g(s)=2l Kiw(s), CR) loop. In fact, there are five such constraints, listed in Appen-
dix A. These constraints must be incorporated into any cal-
whereW(s) is a solution to Eq(A9), with eigenvalue\, .
Assuming that the?,’s are normalized, the energy of this D(s)

fluctuation is given by
0.4
Zl K2\, (5.2 02
04 02 o2\ oz | 3L
The extremizing solution will be stable as long as there are -0.
no solutions to Eq(A9) with negative eigenvalues. Now, B
consider the potentiaV(s), displayed in Fig. 5, associated

with one particular member of the family of solutions that

we have been considering. FIG. 6. The translational mod&,(s). The normalization of the
A striking property of this potential is that it is always mode is such that its derivative is unity s0. The quantityl is

negative. From this one can infer that there are solutions ote total arc length of the loop.



PRE 60 CONFORMATIONS OF CLOSED DNA 7245

Stability determinant stability determinant
® 150 . 200
L ]
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FIG. 7. The determinant of the four-by-four matrix obtained by .
sandwiching the response kernel for the deformed loop between

four of the five functions associated with the constraints on fluctua- FIG. 9. The determinant of the one-by-one matrix obtained by
tions about a solution of the Euler-Lagrange equations for a closedandwiching the response kernel for the deformed loop between the
loop. Here the parameters, b, and ¢ are equal to 1.14903, function associated with the constraint of closure inytirection.
0.145102, and-0.154 898, respectively. The poles in the determi- The parametera, b, andc are equal to 1.149 03, 0.145 102, and
nant are at the locations of the negati/e associated with uncon- —0.154 898, respectively. The pole in the determinant is at the
strained fluctuations about the extremal solution. location of the negativa associated with an unconstrained fluctua-

. - .. . tion about the extremal function.
culation of the stability of an extremizing solution. The gen-

eral effect of such constraints on the stability calculation isregime in which the loop interwinds does not represent the
outlined in Appendix C. The determination of the stability of only possibility for deformation. One can also generate de-
a deformed loop amounts to a search for zeros of a determfermed loops associated with the evolution of higher energy
nant obtained by sandwiching a response kernel between fiwecitations of the circular loop. This is accomplished by al-
different functions, each associated with one of the five contering the requirement on the change in the Euler arfgle
straints that must be satisfied by any small variation of theover a complete “period” of the oscillation of the variable
solution to the Euler-Lagrange equations for the extremali(s)=cosé(s), as it cycles between its limiting values bf
loop configuration. The five functions are readily extractedandc. If, instead of asking tha# advance byr/2 in half a
from the integrals in Eqs(A16)—(A22). With the use of period, one requires a change ®ifn, then it is possible to
symmetry arguments, one can verify that the five-by-five magenerate a family of solutions to the Euler-Lagrange equa-
trix constructed out of the response kernel, which is exhibtions associated with the excitations havimgeriods around
ited in Appendix D, reduces to a four-by-four matrix and athe circumference of the circular loop. Figure 10 displays
one-by-one matrix. The latter matrix consists of the expectasuch a distortion of the circular loop. Hene=5. The sta-
tion value of the response kernel with respect to the functiomility analysis of this family of solutions is straightforward.
associated with closure in thedirection. This function is  Starting with the translational mode, one counts nodes and
contained in the integral in EGA20). determines the number of solutions to the eigenvalue equa-

The matrices are straightforwardly constructed, althoughion for fluctuations for which. must be negative. There are
the calculation is somewhat tedious. We find that all thesimply too many to allow for stabilization by the action of
configurations associated with the supercoiling instabilityconstraints. In the absence of external stabilizing mecha-
that interpolate between the circle and the figure eight ar@isms, such as histones or their equivalent, a loop will spon-
mechanically stable. This is so because the determinant do%eougy distort out of this configuration.

not pass through zero for any negative value of the parameter

\. An example of the calculation of this determinant for a B. Knotted configurations
particular deformation of the circular loop is displayed in
Figs. 7, 8, and 9.

-200

It is possible to generate solutions to the Euler-Lagrange
equations for the extremization of the elastic energy that

VI. GENERALIZATIONS

A. Higher order deformations

The solution that interpolates between the supercoiling
instability and the figure eight deformation bordering on the

Stability determinant

10
. 8
p
* 6
[ ]
° ¢ 4
p‘[ :
A 1 0.6 02 FIG. 10. The deformation with fivefold symmetry. This repre-

sents one of the most “developed” members of the family of five-
FIG. 8. A more detailed version of Fig. 7, in which the region fold deformed loops. The perspective is off-center to aid visualiza-
between the pole at the less negativand the origin is displayed, tion. The actual curve is fivefold symmetric. The “fins” on this
to highlight the fact that the determinant does not go through zera@urve trace out the embeddedandy axes, and thus depict the
when\ is negative. twisting of the rod.
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their elastic energy. Thus, in the absence of externally im-
posed stabilizing mechanisms, these extremal configurations
are not mechanically stable.

The trefoil solution has also been generated in finite ele-
ment calculations, and knotted configurations of closed DNA
have long been known to exist vivo [27].

VII. ENTROPIC CORRECTIONS

The analysis of the fluctuations about the classical solu-
tion described above readily lends itself to a calculation of
the entropic contributions to the partition function of a loop

FIG. 11. A trefoil solution to the EuIer-Lagrange equations. ThiSof DNA at finite temperature_ Performing an expansion of
is a member of a family of solutions to the Euler-Lagrange equathe Euler-angles about the form taken in a solution to the
tions that knots in this particular way. It represents one of the morgz ey Lagrange equation and retaining terms that are second
strongly “writhed” members of this particular class of solutions. 4 qer jn the deviation of those angles about their classical
The "fins” on this curve trace out the embeddeandy axes, and /51,65, one obtains the following expression for the partition
thus depict the twisting of the rod. function of a closed DNA segment:

close and that are, in addition, knotted. Again, one simply

alters the requirement on the way in which the Euler argle Zoce‘BEe'("O"f’O"”O)f Dy(s)exd — B{y(s)| L] y(s))],
advances over the course of a “period” in the oscillation of (7.)
the quantityu(s)=cos#(s) between its two limiting values '
of b andc. Imposing the requirement that the change(is)
is equal tomsr/n, wherem andn are relatively prime, and
m<n, one obtains knotted solutions. For example, setting 42

n=3 andm=2, one generates closed loops in the form of L=——+V(s), 7.2

where the operatof is given by

trefoils. An example of this solution to the Euler-Lagrange ds?

equations is displayed in Fig. 11. Alternatively, setting

=5 andm=3, one obtains a knotted solution with fivefold with V(s) as defined in Eq(A10). The quantityy(s) is the
symmetry. This solution is shown in Fig. 12. Both displayeddeviation of the Euler anglé(s) from its classical value.
loops are members of a family having the same topological The integral overy(s) in Eq. (7.1) yields the inverse

characteristics. These closed extremal curves interpolate bgquare root of the Fredholm determina®(p), of theopera-
tween nearly circular, “braided,” loops and relatively tor £, where

strongly writhing forms, such as those displayed in the fig-
ures.

It is possible to assess the stability of the solutions shown F(N)= H (N —N). (7.3
in the figure. In this case the constraints on fluctuations do !

not suffice to stabilize them against deformations that lower N )
The quantities\, are the eigenvalues of the operatbrThe

Fredholm determinant is readily calculated with the use of a
method commonly exploited in the study of instanton effects
in nonlinear systemg28]. The application of this method to
the case at hand is outlined in Appendix E. One finds that the
determinant can be expressed in terms of the quan(iy),
defined in Eq.(E6). This quantity is plotted for a character-
istic member of a family of deformed loops that interpolate
between a circle and a figure eight in Figs. 13 and 14. A
noteworthy property of the Fredholm determinant as dis-
played in the plots is the fact that this functionopossesses
a zero aft = 0—this as a consequence of the existence of the
translation mode—and the fact that there are zeros at nega-
tive values of\. These latter features point to the instability
of the unconstrained solution to the Euler-Lagrange equa-
tions.

Given thatT(0), and, by extensionF(0), is equal to

FIG. 12. A fivefold knotted solution to the Euler-Lagrange Z€r0, One expects the Gaussian integration over the variable
equations. This is a member of a family of solutions to the Euler-¥(S) to blow up. However, the translational mode has a well-
Lagrange equations that knots in this particular way. It representgefined influence on the fluctuation spectrum. It simply gives
one of the more strongly “writhed” members of this particular rise to a multiplicative factor reflecting the freedom one has

class of solutions. The “fins” on this curve trace out the embeddedn the fixing location the distortion on the loop. One elimi-
x andy axes, and thus depict the twisting of the rod. nates this zero from the Fredholm determinant by noting that
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T For the general principle underlying this result, see Appendix

20 F. The matrixG is a 5X 5 version of the matrix introduced in
Appendix C. The determinant of this matrix has poles at the

15 negative values o\ at which the functionT(\) passes
through zero. Figures 7, 8 and 9 display the dependenaee on

10 of the two quantities that when multiplied together yield this

s determinant. The plots in these figures are for the same so-
lution to the Euler-Lagrange equation as generatedr{he

- \/_1 { 5 A displayed in Figs. 13 and 14. The quantity
5 BN —-T'(0)de(G(A=0))] (7.8

FIG. 13. The functioriT(\), as defined by E(E6) for a char-  represents the contributions of fluctuations about the classi-
acteristic supercoiling solution to the Euler-Lagrange equations focal solution, to within readily calcuated numerical factors. In

a closed loop. Note the zeros of this function at negative values ofhe example for which quantities are displayed, the argument
. The function also passes throught zero.at0 as the result of  of the square root is finite and positive.
the existence of the translational mode.

VIIl. CONCLUSION

%H (M—N) =— H (M—MO). (7.4 We have presented a formalism for obtaining the elastic
! 1#1o mimima of a segment of closed DNA subject to a constraint

in the linking number. The methods exploited here have been
tilized to construct the family of deformations interpolating
etween the “relaxed” circular form taken by such a seg-
ment when the molecule is insufficiently under- or over-

wound to induce a supercoiling transition and the figure eight

=—T'(0). (7.5  formthat represents the threshold of interwinding. The mem-
N=0 bers of this family are stable with respect to small fluctua-

tions. The same methods also give rise to solutions that rep-
The result of an unconstrained Gaussian integration ovei€sent the evolution of “higher order” fluctuations about a

A=N,
0

This means that we can eliminate the translational mod
from the Fredholm determinant by making the replacement

dT(A
0~ S

fluctuations is, then, proportional to circle of the twisted loop. These solutions to the Euler-
Lagrange equations for the extremization of the elastic en-
BN —T'(0)] 2 (7.6) ergy of a closed loop are unstable with respect to small fluc-

tuations, in that there exist one or more fluctuation modes
: I that lead to a lowering of the energy with respect to the
}’;’Sgﬁ;‘i(ﬁl esqptijzlt:(;r:]helrr1]ulirgrt:tech?ftrTeOdbizsh;\?igtr”%%I\r;g ;05 thecla}ssical solution. It is also possible to construct knotte_d SO-
displayed in Figs 13. and 14, this result is clearly pa:thologi-ll-Jtlorls o the EuIer-Lagrange_ equatlo_ns. These conflgu_ra-
cal : ’ tions aIso_represent saddlepom_t solutions to the extremiza-
' tion equation. However, as previously noted, it is possible to
envision stabilizing mechanisms consistent with the known
Constraints structure of biological systems.

Of course, one is not allowed to integrate freely over all. N this paper, entire closed loops were generated and stud-

fluctuations. The constraints on the influence of those qucled' The same m(‘a‘thc_)d”ca_n,. in principle, also .be. ut|I|zt_ad to
finite” finite-element analysis in which

tuations are the same as applied in the linear stability analyEOnstruct a truly

sis. The imposition of constraints leads to an additional mul£!astic models can be traced out with the use of noninfini-
fiplicative term tesimal segments. Given our experience in the project de-

scribed herein, we are confident that the properties of the

[de(G(A=0))] 2 (7.7 segments can be controlled and explicitly displayed. This
ought to give rise to a substantial savings in time and effort
TO) in numerical studies of DNA structure.
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APPENDIX A: STABILITY CONSIDERATIONS
-0.01

Starting with the expression for the elastic energy
FIG. 14. A more detailed plot of (\) in the vicinity of A=0.
This function passes through zero with a positive slope, and there _
is, in addition, a zero at small, positive, Eei= | dsCe((s), (A1)
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where U(S)= hei(S)+ B(S), (A%)

A (de(s) d¢(s))2
21\ ds ds

Cldy(s) de(s)|? . . .
+ 5 Fchosﬁ(s) ds (A2) The subscript! stands for the extremizing, or “classical”
values of the Euler angles. The deviations from these classi-

See Eq.(2.1). We expand the Euler angles about their ex-cal valuesa(s), B(s), andy(s), are assumed to be small.

Eel(S)=

2
) +sin20(s)(

0(8)= 0ci(S) + ¥(S). (A5)

tremizing values as follows: Substituting from Eqs(A3)—(A5) into Eq.(A2), one finds at
quadratic order in the deviations from the extremizing solu-
@(S)= e (S)+ a(s), (A3) tions a local energy equal to

g{'y<s>2+ ei(5)27(5) 2 cOS Oci(S) = SIP fci(S) ]+ 4a(S) ¥(S) ey SIN 0 (5)COSOi () + o SirP Oy (5)} + %[B(s)

+ a(8)c0S0)(S) — bei(S) ¥(S)SIN Oy (8) 12— 2[ e (S) + bei(S) 1L () ¥(S)SiN Oy (S) + () ¥2(S)COSO, (S)/2]}.  (AB)

When it does not lead to confusion, the, the subscripts will be dropped from the “classical,” or extremum, Euler angles.
Because the classical Euler angles satisfy an extremum equation, there is no term linear in the deviations.

A cursory investigation of Eq(A6) reveals that the second-order energy depends (@) and 3(s) only through their
derivatives. Minimizing the energy with respect to these variables, we are left with the following dependence of the “fluc-
tuation” energy on the angular variablgs):

ﬁ(dy(s)

2 (s)® (I5+I))[2 codb(s)+1] -4, cos6(cOSH+5)
2\ ds '

2 Asinto

(A7)

Recall that the Euler anglé(s) in Eq. (A7) is the solution to the minimzation equation.
The equation(A7) for the energy of a fluctuation can be further reduced if one makes use of the relationship between the
quantitiesJ , andJ,, and the roots, b, andc of the cubic polynomial in Eq(3.17). The new form of the energy is

1
2

dy(s))z_ 1[2-u(9)][1-u(s)]*(@+1)(b+1)(c+1)+[2+u(s)][1+ u(s)]z(a—l)(l—b)(l—c)zy(s)z A8)

ds 4 [1-u(s)?]

The quantityu(s) satisfies Eq(3.10. This equation is equivalent to the expectation value of the energy of a particle in a
one-dimensional potential. This expectation value can be expressed in terms of the eigensolutions and eigenvalues of the
corresponding Schdinger equation. The stationary version of the Sdimger equation has the form

d?¥(s)
ds?

+V(s)W(s)=\T(s), (A9)

where

1[2—u(s)l[1—u(s)]*(a+1)(b+1)(c+1)+[2+u(s)][1+u(s)]*(a—1)(1—b)(1—c)

V(s)== (A10)
972 [1-u(s)?]?
|
The stability of a fluctuation is tied to the sign of the eigen-  (A) The loop closes smoothly:
values of the stationary Schdimger equation. If all the al-
lowed values of\ are positive, the solution about which de¢(S)ds=27-rn (A11)
fluctuations occur is positive. On the other hand, if there is o ds ’

one or more negativi, then an instability exists.

wheren is an integer.
Constraints (B) The net linking number is fixed:

Fluctuations about the classical solution must obey certain
i i i Ldy(s)
constraints. In particular, they cannot change the following ds=const. (A12)
properties of the loop. o ds
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(C) The loop closes in th& direction:

L
J sinf(s)cos¢p(s)ds=0. (A13)
0
(D) The loop closes in thg direction:
L
f sin(s)sin¢(s)ds=0. (A14)
0
(E) The loop closes in the direction:
L
f cosé(s)ds=0. (A15)
0

In the above expressions, the Euler angles are not necessarily

equal to their extremum values.

Expanding the solution about its extremum form and ex-
pressing the fluctuations in the Euler angeand in terms
of the fluctuationy(s), in the Euler angled(s), the condi-

tions above take the forms shown below.
(A) Smooth closure;

[F (tpalu(s)—11%+pylu(s)+1]?
2Afo [1—u(s)]? 7(8)ds=0,
(A16)

Here, and below, the quantity(s) is cosé(s), whered(s) is
the solution to the extremum equations.
(B) Constancy of the link:

[F (tpall—u(s)]*=pa[1+u(s)]?
ﬂfo : [1—U(S)§]3/2 y(s)ds=0.

(A17)
(C) Closure in thex direction:
f:[ u(s)cosegc(s)
— 2 2
" \/gpl[l u[(f)_]u:;igi; M o) woyds
=0. (A18)

Here, the quantityZ,(s) is given by
S
Ix(s)zf V1—u(s')?sing(s')ds'. (A19)
L/2

(D) Closure in they direction:

fL{ u(s)singg(s)

0
| F p1(1—u(9))*+py(1+u(s))?
B 2A (1- u(s)2)3/2 Iy(S) y(s)ds

=0, (A20)
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I,(s)= fs/ V1—u(s')?cosg(s’)ds’.  (A21)
L/2
(E) Closure in thez direction:
jL\/l—u(s)zy(s)dSZ 0. (A22)
0

APPENDIX B: STABILITY ANALYSIS
OF THE CIRCULAR LOOP

The solution of the extremum equations leading to a cir-
cular loop is

u(s)=0, (B1)
27Ss
bei(s)= - (B2)
27S
Pei(s)= LkT’ (B3)

the quantity Lk being the linking number of the circular loop.
Making use of Eq(A7), we find for the eigenvalue equation
for fluctuations

Al d*y(s) (d¢c|(5))2 (C)z(d'ﬁcl(s))z
2] 42 || ds | \A ds 7(s)
=\y(9) (B4)

substituting for the rate of change of the classical Euler
angles,¢¢(s) and ¢ (s), the eigenvalue equation becomes

Al d*y(s) (2m)\? 1.[C 2Lk2 .\
> 4 T A Y(S)=N¥(s).
(BS)
Now, the solutions to the equation above are
2mn
v(s)ox cos(Ter o/, (B6)

wheren is an integer and is an arbitrary phase angle. Look-
ing at Eq.(B5), one might be tempted to conclude that the
circular loop is always unstable, in that solutions of the form
of Eq. (B6) with n=0 andn=1 give rise to negative eigen-
values. However, those solutions are inconsistent with the
constraints on fluctuations. A cursory inspection of the con-
straints listed in EqQ9A16) to (3.12) reveals that the follow-
ing conditions must hold in the case of the circular loop:

JOLy(S)dS=O, (B7)

L 27s
J y(s) CO{ T) ds=0, (B8)

0

L [27s
f y(s)sm(—L )ds=0. (B9)
0
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These three constraints explicitly rule out fluctuations of theThis set ofm equations for the Lagrange multiplies has
form of Eq. (B6) with n=0 orn=1. All other values ofn  nontrivial solutions only if the determinant of timex m ma-
are allowed. If we substitute a fluctuation given by E86)  trix G is zero. The equatiofG|=0 represents a condition
with n=2, the equation for the eigenvalueis on the parametex.

Now, given a solution to Eq.C6), we take the expecta-

= é 2_77 ? n2—1—(9)2|_k2 (B10) tion value (£££). Substituting from the right hand side of
2\ L A ' Eq. (C6), we find for this expectation value
The lowest value ok is associated with the smallest allowed m A m A
value ofn?, corresponding tm=2. Replacingn by 2 in Eq. > <§£—|X|> => <§(/;_)\)_'X|>
(B10), we find =1 L=\ =1 L=\
=227 15 () e B11 i A,
“2\T) |3 la) ) 1D a3 (¢
=1 L=\

According to Eq(B11), A will be negative, corresponding to
an instability in the circular configuration, when Lk

> J3(A/C). =2 Aéx) (el

APPENDIX C: GENERAL EFFECT OF CONSTRAINTS

ON A STABILITY CALCULATION =\. (C7)

In Eqg. (C7) we have made use of the orthogonality &fo

The question_ of the stabilifcy of a solution _to the Euler- the x,’s. We are also assuming that the functiéis normal-
Lagrange equations Is poseq In terms of the e|genva!ue SPeLed. Thus, in solving for the value of that satisfies Eq.
trum of a linear operator. This, in turn, can be recast in term%ces) we ar’e also determining the effective values of the ei-

of the problem of finding extremal values for the expectation .
value genvalues of the constrained problem.

(&Llg), (C1) APPENDIX D: THE RESPONSE KERNEL

where/. is the linear operator. The constraints are equivalent The quantity 1/C—X\) represents the response kernel in
to requiring that thet between which the operator is sand- the interval—L/2<s=<L/2. This kernel, which can be writ-
wiched is orthogonal to a set ahy’s. There is also the ten in the formK(s,s’), is the inverse of the operator
constraint on the absolute magnitude &fThe constraints  —d?/ds?+V(s) on that interval, and it has the additional

are, then of the form property that it maps onto periodic functions. This response
is constructed out of two solutions to the differential equa-
<§|§>:11 (C2 tion
=0. C3
<§|X|> ( ) dz(I)(S) -
In Eqg. (C3), the indexl runs from 1 tom. The equation for - d< FV(S)D(s) =AD(s). (D1)

the extremum of the quadratic for(@1), subject to the con-

straints(C2) and(C3), takes the form The first solution,®(s) is even under reflection about the

m origin. It has the property
Ll&=N&)+ 2 Ailx). (c4
=1 ®,(0)=1 (D2)
The coefficients\ and A, are Lagrange multipliers, which
enforce the constraints to which the system is subject. The d®,(s) -0 (D3)
solution to the above equation is ds |,
m
&= Ay ). (C5) The second solutiorb,(s), is odd with respect under reflec-
=1 L=\ tion about the origin. It satisfies the following conditions:
The Lagrange multiplierd, must now be adjusted to ensure _
. : ; ®,(0)=0, (D4)
the orthogonality requirements. These requirements are of
the form
ddy(s)

=1. (D5)

1 ds |,
T—N X

That the response kernel below satisfies all the require-
=GA,. (Co) ments above can be established by explicit calculation:



PRE 60

1
K(s,8")=P1(s-)Pa(s<) = 5 [P1(s)Pa(s')

D,(L/2)

+D,(s)Dy(s")]+ m

D(s)Py(S")
P,(L/2)

m‘pz(s)‘bz(s')-

(D6)

In Eq. (D6), the argumens. - is the greaterlessey of
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oy 329 E5
=2—0y( )—TS:L (E5
This means that the function af
ddy(s)
TN)=—-2+d(L)+ d (E6)
S L

s=

is equal to zero at the eigenvalues of the operaier
—d?/ds?>+V(s). Furthermore, it can be established that this

s,s’, and the dots refer to differentiation with respect to arcfunction is free of singularities and zeros at any other finite

lengths.

APPENDIX E: THE CONSTRUCTION
OF THE FREDHOLM DETERMINANT

The Fredholm determinant of the operatdr \, where

d2
L=— E+V(s) (ED
is of the form
H (\—N), (E2)

where the\,’s are the eigenvalues of the operatorin the
case of interest the eigenfunctions of this operator are per
odic, in that if LV, =\ ¥, then¥(s+L)=¥(s).

The Fredholm determinant is defined in terms of its ana-

lytic properties in the complex plane. It is obvious that this
function of the variable. has no poles at finite values bf

value of\.

The functionT(\) is not identically equal to the Fred-
holm determinant of the operatdi— \, in that the behavior
at|\|= of the two quantities is not the same. However, if
we defineT () as the function corresponding Tg\) when
the potentialV(s) has been set equal to zero, and if we
denote byF(\) andFy(\) the corresponding Fredholm de-
terminants, then the following relationship can be esablished:

FOO T

Fo(N)

o0 (&7
Given that the Fredholm determinant of the operaigr \
=—d?/ds’—\ is readily calculated, EqE7) leads to a di-
rect determination of the desired quantity. Figures 13 and 14
display a characteristid(\) for one of the writhing solu-
fions that interpolate between a circle and a figure eight.
Figure 14 shows in detail the behavior of the Fredholm de-
terminant in the vicinity ofA=0. Note that this function
passes through zero at=0, and that there is a zero of this
function at a small, positive value of.

and that all zeros are on the real axis, at the locations of the

eigenvalues of the operatdr There is another function of
having this property, formed from the solutiods(s) and
d,(s), defined in Appendix D. To construct this function we
note that any solution of the equatidh? =AWV can be rep-

resented in terms of the two linearly independent functions

®, andd, as follows:

¥(s)
ds

d
W(s)=¥(0)P4(s)+ Do(s).

s=0

(E3)

This means that we can express the functb(s) and its

derivative, ¥'(s) at s=L in terms of the function and its
derivative ats=0 in the following form:

sl o sl

Given the fact that the Wronskian df; and®, is equal to
1, the matrix on the right hand side of Ed4) has a deter-
minant of 1. Now, if the functionV (s) is periodic ins, then
the right hand side of EqE4) is equal to the left hand side.

W(L)
V(L)

¥ (0)
¥ (0)

Py(L) Py(L)
Dy(L) Dy(L)

) . (E4)

This leads immediately to the characteristic equation for the

matrix

O__<1>1<L>—1 ®,(L)
C|dyL) dyL)-1

APPENDIX F: THE EFFECT OF CONSTRAINTS
ON A GAUSSIAN INTEGRAL

Given the quadratic form

n

ij=1
the Gaussian integral
n n
f H dXi eXF{ — 2 XiAinj) (FZ)
i=1 ij=1
subject tom the constraints
X-y;=0, 1<I<m, (F3
is equal to
1\m " .
(E) flﬂl dw, .1;[. dx; exp( —X-A-X
m
=1

Performing the integral over, we are left with the following
integral over thew,’s:



7252 BORIS FAIN AND JOSEPH RUDNICK PRE 60

m m
[de‘(A/w)]‘l’z(%) ><exp< —kzl kak|w|/4). (F5)
m m ) ) ) , .
X 11:[1 ex _k,|2:1 wk)7k~Al~)7|w|/4) 'SI'SI? Gaussian integration over thg's leads to the final re-
1\"r 2 1\n
E[de(A/w)]_m( E) f Jl:]l [det A/)de( B/47T)]_1/2(ﬁ) : (F6)
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