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We present a phase-field modBFM) for solidification in binary alloys, which is found from the phase-field
model for a pure material by direct comparison of the variables for a pure material solidification and alloy
solidification. The model appears to be equivalent with the Wheeler-Boettinger-McF@d&M) model
[A.A. Wheeler, W. J. Boettinger, and G. B. McFadden, Phys. Re¥5A7424(1992], but has a different
definition of the free energy density for interfacial region. An extra potential originated from the free energy
density definition in the WBM model disappears in this model. At a dilute solution limit, the model is reduced
to the Tiaderet al. model[Physica D115, 73 (19998 ] for a binary alloy. A relationship between the phase-field
mobility and the interface kinetics coefficient is derived at a thin-interface limit condition under an assumption
of negligible diffusivity in the solid phase. For a dilute alloy, a steady-state solution of the concentration profile
across the diffuse interface is obtained as a function of the interface velocity and the resultant partition
coefficient is compared with the previous solute trapping model. For one dimensional steady-state solidifica-
tion, where the classical sharp-interface model is exactly soluble, we perform numerical simulations of the
phase-field model: At low interface velocity, the simulated results from the thin-interface PFM are in excellent
agreement with the exact solutions. As the partition coefficient becomes close to unit at high interface veloci-
ties, whereas, the sharp-interface PFM yields the correct ang8&63-651X99)08712-7

PACS numbe(s): 64.70.Dv, 81.30.Fb, 81.10.Aj, 05.70.Ln

[. INTRODUCTION velocity [21-23. A problem in this model, especially in nu-
merical simulation where a finite interface thickness is as-
The phase-field modéPFM) is known to be very pow- sumed, is the parameters varying depending on the interface
erful in describing the complex pattern evolution of the in-thickness[23]. Due to chemical energy contribution to the
terface between mother and new phases in the nonequiliiterfacial energy, there is a certain limit in the interface
rium state because all the governing equations are written ahickness, which is not only restricted by the interface en-
unified ones in the whole space of system. The model whiclergy, but also the difference between the equilibrium liquid
was originally proposed for simulating dendritic growth in and solid compositions.
pure undercooled meftLl—9] has been extended to solidifi-  The model by Steinbach and co-workéds,18 uses a
cation modeling of alloy$10-20. different definition for the free energy density. In the model,
The PFMs for alloy solidification may be divided into the interfacial region is assumed to be a mixture of solid and
three groups depending on the definition of free energy deriquid with different compositions, but constant in their ratio.
sity for interfacial region and how they were derived: TheEven though the derivation of governing equations in the
first is a model by Wheeler, Boettinger, and McFaddenmodel was not made in a thermodynamically consistent way,
(WBM) model[10,13. Caginalp and Xi¢16] have proposed there is no limit in the interface thickness. The model is
a similar model. The second is a model by Steinbethl.  thermodynamically correct for a dilute alloy only.

[17,18 The thirds are the models by Loset al. [19], and It has long been realized that the governing equations de-
Lowen, Bechhoefer, and Tuckermgz0], which are analogi- scribing alloy solidification are similar to the ones corre-
cal versions of the PFM of pure materials. sponding to pure materidR4]. This enables us to extend

The WBM model that has been used most widelystraightforwardly the PFM for a pure material to an alloy
[10,11,13,21,2Pis derived in a thermodynamically consis- PFM, by matching the variables in the pure material problem
tent way[13]. In the model, any point within the interfacial to the alloy problem. In this way, Losegt al.[19] extended
region is assumed to be a mixture of solid and liquid boththe thin-interface PFM for a pure material to an alloy case,
with the same composition. The phase field parameters in thehich permits us to find vanishing interface kinetics coeffi-
model can be determined not only at a sharp interface limitient. However, their model is based on two unrealistic as-
condition[10], but also at a finite interface thickness condi- sumptions: First the liquidus and solidus lines in the phase
tion [23]. It has been shown that the model can reproducaliagram were assumed to be parallel and secondly the solute
correctly the solute trapping phenomena at a high interfacdiffusivity is constant in the whole space of the system. In
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general, the slopes of liquidus and solidus lines in the phase o Tm 20

diagrams of most alloys are significantly different from each Ts=T =Tm— I PEAL )

other and the diffusivity in solid phase is much smaller than f

that in liquid phase by about orders of 5. _ _ IHs 9H
In this study, we present an alloy PFM and describe its (HL—Hg)VzDg——D[—L,

properties in detail. The model is a natural extension of the an an

PFM for pure materials and may also be derived in a ther-

modynamically consistent way. The model is free from thewhere the subscrifitandd/dn mean the partial derivative by

limit in the interface thickness in the WBM modg10,13 time and the interface normal derivative, respectivé),

and the unrealistic assumptions in the Losetral, model  @nd D/ are thermal diffusivities of solid and liquid, respec-
[19], and correctly generates the solute trapping phenomerfiY€!Y: the superscripton temperature and enthalpy denotes
at high interface velocity. In Sec. II, by reexamining the (N€ values at the interface is the interface energy, is the
correspondence between the variables in the sharp interfag@dius of the interface curvatur¥,is the interface iveloci:lty,
model of pure material solidification and alloy solidification, A IS the interface kinetics coefficient, atH(=H_—Hy)

we find an alloy PFM from a pure material PFM. It will also i the latent heat of melting. Equatiof) is the Gibbs-

be shown that the model is equivalent to the WBM modelThomson condition corrected by a kinetic undercooling ef-
[10,13, only with a different definition of the free energy fect and.Eq.(G) is the energy balance conditioq at the inter-
density for the interfacial region. Also it will be shown that face. Using Egs(1) and(2), if the enthalpy notations in Egs.

in a very dilute solution the present model can be reduced t63) (4) and the right-hand side of E¢6) are replaced by the

the Steinbach and co-workers modai7,1§ for a binary ~temperature notations, the above equations appear to be
alloy. In Sec. Ill, a relationship between the phase-field mo£quivalent to the traditional forms. Now we write the classi-
bility and the interface kinetics coefficient is derived at acal sharp interface model for isothermal solidification of an
thin-interface limit condition under an assumption of negli- /oy as
gible diffusivity in solid phase, which permits not only a

6)

— 2
vanishing kinetics coefficient, but also a thick interface (cs)y=DsV-cs, )
width, as in Refs[25], [19]. In Sec. IV, for a dilute alloy, a (¢ )=D, VZc )
steady-state solution of the concentration profile across the e =Lt H
interface is derived as a function of the interface velocity and H 20
the resultant partition coefficient is compared with the high S (¢l)=fL (¢l )=fe- . f BV ———s,
velocity asymptotic$22] of the WBM model. In Sec. V, at s L Tm(cL—C9) r(ci—cg

one-dimensiona(l1D) steady state where the classical sharp 9
interface model is exactly soluble, we perform numerical
simulations for the PFM with the parameters determined at
the thin-interface limit(thin-interface PFM and the sharp
interface limit conditiongsharp-interface PFM

dCg Jc,

(cL—CyV= Ds——Du

(10)
where cg and ¢, are the compositions of solid and liquid,
respectively,Dg and D are the diffusivities of solute in
solid and liquid, respectively;s andc| are the compositions
A. An alloy phase-field model of solid side and liquid side at the interface, respectively,

At first we examine the correspondence between variabledNd ¢t are the equilibrium compositions of solid and liquid
in governing equations of pure material and alloy solidifica-at & given temperature, respectivel)gs and f'EL are the
tion in the classical sharp interface models. When the spechemical potential of solid and liquid, respectively, diids
cific heats of solid and liquid are same and independent ofhe chemical potential at a thermodynamic equilibrium state.
temperature, the enthalpies per unit volume of solid and ligHereafter the chemical potential denotes the relative chemi-
uid of a pure material as a function of temperature are giveral potential of solute with respect to solvent. By comparing
by Egs. (7)-(10) with Egs. (3)—(6), we can see that replacing
the enthalpy and the temperature in the equations for a pure
Hs(Ts) =Hs(Tm) + Cp(Ts= Tm), @ material b?/ythe compositi%n and the cherr?ical potential,pre—
spectively, yields the equations for isothermal solidification
HU(TO)=Hu(Tm) +cp(TL=Tw), (2 in an alloy. This correspondence between the variables may
permit us to derive an alloy PFM from the PFM for a pure
respectively, wherd s and T, are the temperatures of solid material.
and liquid, respectivelyT, is the melting temperature of the  Let us write the PFM for the solidification of a pure ma-
pure material, and,, is the specific heat. Then the classical terial, which is basically the same as the previously reported
sharp-interface model describing the solidification in a purgorm [5-9], as follows:
material may be written as

Il. ALLOY PHASE-FIELD MODEL

H,=V-K(¢p)VT, (11)

_NnT
(Hs)i=DgV?Hs, 3 H=M(e2V2p—1 ), (12)

(H)=D[V?H_, (4) H=h(¢)Hs+[1—h(¢)]H,, (13
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Ts(x,t) =T (X, 1)=T(x,1), (14) more physically resonable does not matter, because the in-
terfacial region in PFMs cannot be regarded as a physical
fIH(T),p]1=h(p)F{H(T9)] real entity, but as a mathematical entity for technical conve-

L nience. It should be mentioned theg andc, in Egs. (20)
H[1=h(H) I HL(TO]+WA(¢), (15  and (21) are not the compositions of the solid and liquid

where we defined the phase field=1 at solid ands=0 at sides of the interface, but the compositions of solid and lig-

o : o : e uid, respectively, at a certain infinitesimal point which is
I|quu.j,' k(¢). is the the.rr.nal conductlwtyM IS ph_ase field assumed to be a mixture of solid and liquid phases. Thus the
mobility, € is the coefficient of phase-field gradient energy

. ; . : condition(21) does not imply the constant chemical potential
:ﬁ;md'c?ug:g-f,séivagtt;fiznesn;%Eu;g'?hn:dfi;hgnﬁ'ghggn- throughout the interfacial region. It is constant across the
sities of solid a%d i uid as a function of tem e?gture Orinterface only at a thermodynamic equilibrium state, which

d g : P ; will be shown later. The chemical potential can vary across
enthalpy, respectively, angl( ¢) is a double-well potential.

The function h ; N v changing functi the moving interface from the chemical potential at the solid
e functionh(¢) is a monotonously changing function side to the chemical potential at the liquid side of the inter-

from h(0)=0 toh(1)=1. In Eqs.(13-(15 we should note ¢, "\ hich results in the solute trapping effé26—29. In
that the interfacial region is assumed to be a mixture of solic{nosi alloys except for some specifideal or regular solu-

and liquid with a same temperature. Whdiis eliminated by .. : : ;
) tions, the material properties such as interface energy and
using Eqs(1) and(2), Eqs.(11)~(15) can be reduced to only interface kinetics coefficient of an alloy are seldom derivable

two equations from the data of pure solvent and pure solute. In this case,
CoTi—AHh' (¢) =V -k(¢)VT, (16) the properties of the alloy can be given as constants in most
cases. Therefore we assumed that the material properties are
=M[€e2V2¢p+h'($)(f-—fS)—wg'(4)], (170  independent of the composition.

4 [ ¢ 20 g(#)] Equations(18) and (19) in the present model may be
which are identical with those in the PFM for a pure materialmodified into more tractable forms described explicitlyday
[5-9]. andc, instead ofc. Regardingcg andc, as functions ofc

Using the correspondence between the variables in thand ¢, from Egs.(20) and (21) we can get following four
classical sharp interface models for pure material and alloyelationships:
solidification, that is, simply replacing andT in Egs.(11)—

(15) by c andf, respectively, we can immediately write the JacL ffc(Cs) 23
equations for an alloy PFM as follows: ¢ [1—h($)Ifs(ce) +h(e)fic)’ @3
c=V- wwc, (18) 9Cs _ foo(cL) 24

ce e [1—h(¢)]fe(cs)+h(d)fs(cy)’

_ 2u24

¢’[ M(G \Y% d) f¢), (19) ﬁ_ h,(qs)(CL_CS)ffc(CS) (25)

together with d¢  [1-h(p)]felce)+h(p)feclcL)’

c=h(¢)cst[1-h(¢)]c., (20 Jcs h'(¢)(c—co)fi(cy)

i , 26
f5 eaut)]= 1L [ey(x.0], @D 76 [ n@lico ndike) 20

where we used the notations f(c, )=d?f(c,)/dc? and
(22 f2.(cg)=d?fS(cg)/dci. Using these four relationships, from
the definition(22) of the free energy density we can derive

f(c,¢)=h($)t(cs) +[1—h(¢)If (cL) +wg(),

whereD(¢) is the diffusivity dependent on the phase field.

S A o : o dft(c)

f an_df are the free_ energy _densmes of splld an_d liquid as fy(c.d)=—h"(¢) fl(c,)—fS(ce)— 5 (C —Cg)
functions of composition, which can be given either by a CL

solution model of an alloy or thermodynamic data. In Eq. +wg' () 27)

(18), f.. was added to guarantee a constant diffusivities in

both the bulk solid and liquid. The diffusion equati¢t8) dft(c,) dfS(ce)

and the phase-field equati¢h9) are the same as those in the f.(c, )= , (28)
WBM model [13], which were derived in a thermodynami- de. dcs

cally consistent way. In Eq$20)—(22), however, the inter- s L

facial region is defined as a mixture of solid and liquid with fo(c.d)= fea(Cs)fee(cr) 29
compositions different from each other, but with a same ce [1-h(#)]fs(ce)+h(p)fs(c)’
chemical potential. In the WBM mod§l0,13, on the con-

trary, the interfacial region was defined as a mixture of solid feg(Cid)

and liquid with a same composition, but with different m:h (¢)(cL—Cs). (30)

chemical potentials. If the conditio(21) is replaced by a
condition cg=c, =c, the above model is reduced to the Inserting Eqs(27) and (28) into Egs.(18) and (19), we get
WBM model. Which definition for the interfacial region is the explicit forms of the present model:
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1 At the limit where all compositions go to zero, E@4) can
Md)t:V'fZVfﬁ*‘ h'()[f(cL)—f3(ce) be further approximated as
_ _ L _ ’ C Ce
(cL—cy)fc (cL)]-wg' (o), (31 Es_ —S=ke, (41)
c. ¢
Jc D(¢) o _ . - .
E:V f—Vf (cL) (32 wherek® is the equilibrium partition coefficient. With Eq.

(41) we see

together with auxiliary equation®0), (21), and(29). Using RT
Eg. (30), the diffusion equatiori32) may be expressed into G(cg,c )=—TI[(c[—c—(c .—cg)]
an equivalent equation Vim

Jc RTU-KD (T—T—mec,) 42
, =———(T,—T—m%,),
—1 = VID(9)Ve]+VID()h'(¢)(cL—cg)Ve]. (33 Vim® " -
wherem® is the liquidus slope in the phase diagram. There-
B. Dilute solution approximation fore the phase-field equation becomes
The dilute solution limit is often useful for both engineer-
ing applications and finding out fundamentals. Here we write Mg{)t: V-e?Vop+h'(p)
full equations of the present model at the limit. Equati®h)
yields RT(1—k®)
X—————(Tn—T—mc)—wg'(p). (43
ce (1-cy(l-c) (34 Vmm®
cics (1-ch)(1-cg)’ A set of equationg20), (40), (41), and(43) is identical with

the governing equations in the Steinbach and co-workers
wherecg andcf are the equilibrium compositions of solid model for binary alloy solidification. Therefore the present
and liquid, respectively. Also we can get the following equa-model may be regarded as an extension of their model be-
tions: cause the present model can be reduced to their model at a

L s L special case.
G(cs,c)=f"(c )~ fcg) —(cL—cg)fc (L)

RT (1-cd(1—-cy)
m (39 Here we find the equilibrium composition, the phase field
- s profile and the relationships between material properties and
phase field parameters in the present PFM, Eg§%) and

C. Equilibrium properties and parameters

H(¢,Cs, CL)— RT _[1 h(¢)]c (1—c) (32) together with auxiliary equation(®0), (21), and(29). At
Vinf 1D stationary state, Eq32) yields ftL(cL)zfﬁ (constant
+h(¢)cs(1—cs), (36)  According to the conditiorf21), therefore, we get
) RT ¢ fo (c)=felce)=1c, (44)
fCL(c,_)=A+ V—mlnl_CL, (37)

from which we can see (x)=c; andcg(x)=cg. Thus the
wherev,, is the molar volumeR is the gas constant, andin phase-field equatiof81) at the equilibrium state becomes

the last equation is a material’s constant. Therefore we can 2
write the phase-field and diffusion equations as d“¢o
d

1
MGV Ve ($)G(cs,c)~wg'(4).  (38) —(cf—cd)ft (ct)]-wg'($o)=0, (49

+h' (o) F-(c]) — (cY

where ¢, is the phase-field profile at the equilibrium state.
(39 After multiplying d¢py/dx on both side of Eq(45) and in-
tegrating it fromx= —o to x=+o,
The present model at the dilute solution limit consist of Egs. Liney_ £S/ a6\ (e ~evgl [ ey
(20), (34), (38), and(39). f=(c)—f3(cg) —(cL—cg)fc (c))=0. (46)

It should be addressed that our model closly resembles the
Steinbactet al. model[17,18. With h(¢)= &, the diffusion Equationg44) and(46) result in the well-known equilibrium

equation(33) becomes condition

Ct:V D(¢)H(¢1CSICL)VInlf

Jc S8 _fL (e _fL(CE)_fS(Ces)
— =VID($)Vec]+V[D(d)(cL—coVl.  (40) feled) =T (CO=""ce—e (47
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by which the equilibrium compositions of solid and liquid
can be determined at a given temperature.
By using Eq.(46), the phase field equatiof#5) at the
equilibrium state reduces to
d?¢g da( o)
2 —
€ 2 =W . (48) =
dX d¢0 “é
With  g(¢)=¢*(1—¢)?, under the conditions of 3
bo= 1(solid) at x— — o and ¢=0 (liquid) at x— + o, the )
equilibrium phase-field profile is given by %
@
1 Vw g
¢o(X)=—=| L—tani —x| |. (49
2 J2e
Using Eq.(20), then the equilibrium concentration profile is
Co(X)=h(o(x))ci+{1-h[po(x)}cf. (50
By considering the free energy functional corresponding to g c®) o4
the original equation$l8) and(19), it can be easily shown concentration

that the interface energy is given by

+ oo
e
— 0

Using Eq.(49), direct evaluation of the interface energy
and interface thicknessa\2gives

FIG. 1. Free energy densitiy curves of solid and liquid against

d 2 composition.
¢°) dx. (51)

dx

represented by the differencBE Q) between the dotted curve
(P) and the common tangent lin®] [23], as in Cahn and

Hilliard [29]. This extra potential in the WBM model may be
negligible compared withvg(¢,) either at the sharp inter-

6\/@ face limit wherew—c or in an alloy with a very smal;
o= (52) —cg where the height of the extra potential itself is very
3\/5 small. With increasing interface thickness or increasifig

—cg, however, the extra potential height becomes significant
€ and cannot be ignored. In the present model, however, the
2N= a\/E - (53 interfacial region at an equilibrium state is defined as a mix-
\/W ture of solid and liquid with constant composition§ and

. : -
wherea is a constant which is dependent on the definition of°L ’ respectively. The composition and the free energy den-

the interface thickness, e.g.=2.2 whendg¢, changes from sity without the imposed potentialg(#) at a certain poink
0.110 0.9 at- A<X<\ é\nda~294 Wheng{? changes from within the interfacial region are given by the fraction-
: : J T4 0 ; e e

0.05 to 0.95. The parameter relationship®) and (53) are We'ghtid eaverage Valu‘igw(eqsO)CSJr[1__h(¢0)]CL and

the same as those in the PFM for pure materials. h(¢o)f>(cs) +[1—h(o)Jf"(cr), respectively. Thus the ex-
The notable difference between the present model and tHg2 potential in the WBM model does not appear In the

WBM model lies in definition of the free energy density for Present model because the free enefdybo)f>(cg)+[1

interfacial region at an equilibrium state. In the WBM model —h(¢o)1f"(c{) corresponds to the common tangent line it-

[10,13, in addition to an imposed double-well potential self.

wg(¢g), there exists an extra double-well potential. The ex-

tra potential originates from the definition itself of the free [l. THIN-INTERFACE LIMIT

energy density for the interfacial region, as shown in our ) , , )

previous papef23]. In the WBM model, any point within In thl_s section we focus on_the relatlo_nsh_lp betwe_er_1 the

the interfacial region at an equilibrium state is assumed to b8Nase field mobility and the interface kinetics coefficient,

a mixture of solid and liquid with a same compositicfy x), wh!clj_|s a proporthnal constant petween the driving fqrqe of

wherec? (x) is the equilibrium concentration profile in the solidification and interface moving velocity. The driving

0 . ) . force of solidification without the solute-drag effd@2] is

WBM model and changes continuously froe§ in solid to given by

ct in liquid across the interface. This situation is very similar . A o ‘

to the formulation of the free energy for spinodal decompo- AFs=f(c))— fs(c's)—(c:_—cg)f'gL(c'L), (54)

sition by Cahn and Hilliard29]. Figure 1 shows the typical ‘ _

free energy curvegsolid curves of solid and liquid against - wherec andcy are the compositions at the liquid and solid

composition. The free energy density(¢o)fS(c§)+[1  sides of the interface respectively. With the driving force

—h(¢o)1f (ck) at the interfacial region in the WBM model given by Eq.(54), following our previous work23] on the

lies on the dotted curve in Fig. 1 and the extra potential iISVBM model, one can find a relationship between the inter-
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face kinetics coefficient and the phase-field mobility in thewhere only for convenience we assumed a constant diffusiv-
present model. However, there is another useful relationshigty D; within the interfacial region. Using E@50) for cy(x),
which can correlate PFM for solidification with classical Eq. (29) for f., Eq. (51) for the interface energy and a
sharp interface solidification model and its local equilibriumrelationship

condition. Such a relationship was first derived by Karma

and Rappel25] for a PFM of a pure material solidification. dx € 1
They showed that a relationship could be found at a thin- J: - —\/— dol—do)’ (61)
interface limit where the interface thickness is small com- 0 0 0

pared with the diffusive boundary layer. In this section, un-
der an assumption of negligible diffusivity in solid, we will
derive a corresponding relationship for the present alloy f"(cf)—fs(cg)—(cﬁ—cg)fs(cis)
PFM at a thin-interface limit condition. At 1D instantaneous
steady state, the governing equati®@$) and(32) become

which can be obtained from E#8), it follows that

(o €

Me Di\/ﬂ

{(cg.ed) |, (62

Vde L, d% <
— T dy =€ o (@) —fcy) o e . .
M dx dx? where{(cg,c;) is a temperature dependent function defined
by
—(cL—cg)fg (c)]-wg'(¢), (59
g(cg,ep)=felcfsch)(ct—cd)?
dc d|D(¢) d 1 -
“Vdx dx| fo dx CL( L)} (56 Xf h(d)os)[le (o)) L, .e
ce 0 [1—h(¢o)]fc(cs) +h(o)fc(Cr)
When the diffusivity in solid is negligible, integrating Eq. % do 63
(56) gives the chemical potential profile across the interface do(1— o) (63
< Equation(62) may be written as
fe LeL(0]=f(c9)— VJ (¢)[c<x> csldx, (57) o
(cL—cg)lfc—folcg)]=aV, (64)

whereciS is the composition at the solid side —\) ofthe  here a=a/(Me?) - el(cg,cd)/(D;y2w). With a dilute
interface and . is given by Eq(29). To the first oder in the  sojution approximation, it can be shown that
Peclet number,P=2\V/D (D: average interface diffusiv-

ity), the chemical potential profile.(x) can be written as . RT ciS
y P profilé(x) fﬁ_ffs(c'):v—( - (65)
m S
fg [eLO0]=fS (co)— Vf D(¢$ )[Co(X) celdx, whenck is close tocg at a small interfacial Reet number.

(58) Thus Eq.(64) gives

. e o _ Cs Vi Mfa
wheref:.=f..(cs,C[,Pg). We expandc, (x) andcg(x) in T=Tm—meF—Vﬁm. (66)
the bracket of Eq.55); ¢, =c{+dc. and cg=cg+ dcg.

Then by using Eq(46) it can be shown that If we define the kinetics coefficient as

fh(cL)—f3(cs) —(cL—co)fg (cL) VM vy m® [ o €
~RT1-k® RT1-k°|Me® p.\ow

{(cg.ch) |,
(67)

to the first oder inP. We insert Eqs(58) and(59) into Eq.  then Eq.(66) recovers the relationship in the classical sharp-
(55), and after multiplyingd ¢/dx on both sides of Eq(55)  interface model between the temperature and the interfacial
we integrate fronx=—\ to x=+\, which yields composition:

=fH(ch) — (e —(ct—cf (c1), (59

+2/d
—f ¢°) dx="f"(cf)—F(c§) — (ci—cfe (cy T=Tp—m ——ﬁV (68)
o/ [x Equation(67) permits a vanishing kinetic coefficient by ad-
- f ( f [Cco(X") justing the parameters to cancel out two terms in the brack-

ets, as in the thin-interface PFM for a pure matefi2B)|.
Note that Eq(67) is reduced to the relationship at the sharp-
—cg]fg‘cdx’>h’(¢0)d¢>0, (60) interface limit condition if we takex ~ e/ \w—0.
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IV. SOLUTE TRAPPING ) ) 1 .
. . . cL(X)=cs—cy 1—|e” VXD 76
The solute trapping occurs when the chemical potential L(X)=cs~Cs k® (76)

gradient exists across the diffuse interfd@6—-28. The ]
equality (21) of the chemical potentials looks as though it @ expected. From Eq&2) and(75), the concentration pro-
will prohibit the gradient across the interface. As mentionedfile ¢(x) across the interface is given by
previously in Sec. Il, the chemical potential varies across the
moving interface depending on the position because the
chemical potentials in Eq21) are values only at the same
position. Therefore the solute trapping phenomenon is not
excluded in the present model when the interface velocity is Vo, 7VxID-JX eVx'/Di
enough high. +57Cse AT e o 9X
gh nign. Di 1-(1-k%h(¢)
In this section we show that present model correctly de-

scribes the solute trapping phenomena at a high interfacgyis equation yields the partition coefficient as a function of
velocity and compare the calculated partition coefficient withyne interface velocity. The partition coefficient may be de-
those predicted from the high velocity asymptotics of thefineq py following two different ways: One is the ratio of the
WBM model[22]. Throughout this section we assume a di- .o mposition at the solid side of the interfagtbat is,cy) to
lute alloy, a constant diffusivityD; in both the interfacial the maximum composition across the interface, which has
region and liquid, and negligible diffusivity in solid. been used by Ahmaet al.[22]. The other is the ratio of the

. Integrating the diffusion equatici6) at a 1D steady state compositionciS at the solid side of the interface to the com-
gIves position c(\) at the liquid side of the interface. When we
follow the latter definition, the partition coefficienk
=cg/c(\) at a given interface velocity and phase-field pro-
file can be directly read from Eq77). In this case, it can be
shown thatkk—k® at V—0 andk—1 atV—c, as expected
in the standard solute trapping model. In both definitions, the
partition coefficient as a function of the interface velocity

cs
S e VX +ID;

cO)=[1=(1=k)h(¢)]| i

. (77

d | v i
ax e (C=—pg (c=cyfec. (69
I

For a dilute alloy with (+¢; )—1 and (1-cg)—1, it fol-
lows that

d . . dc, RT 1 dc, can be found only if th_e phase-field pr_ofile across the inter-
&ch(cL)= fcc(CL)Wzv_  ax’ (70 fgce is known. In prmc[ple, the phase-ﬂeld profile as a func-
m L tion of interface velocity can be obtained by solving the

e phase-field equation. However, E(.7) was derived from

Cs(X) C_S_ke, (72) only diffusion equation(56) by introducing a phase field

cL(x) cf only for mathematical convenience. It may be useful to sur-

o ) o vey the solute trapping behavior for any assumed phase-field
where the second equation is the dilute approximation of thgrofile at —\ <x<X.
condition(21). Then we can write By using the partition coefficient defined by Ahmetal.
[22], here we survey the solute trapping behavior as a func-

c()=[1=(1-k)h(¢)]eL(x), (72 tion of V for a givenk®. To do this we rewrite Eq(77) into
a dimensionless form
foc= RT (73
TV 1-(1-Kh(¢) e, 8 . L i
c=[1-(1-kHh($)]|;c®
Therefore Eq(69) becomes

dCL Vv V Cis P P}J; ep;/ d~ (78)
oy v. s +Pe” ————dx’ |,
dx "D, 7D, I-(1-K)h(e) 749 -121 = (1=k9)h(¢)

Under a boundary condition, =cg/k®=ck/k® at x=—\,
the solution of this equation is

cs Vo
CL(X) — FE*V(XJr}x)/Di_'_ ECIse7V></Di

X er'/Di
| e

(75

In the sharp interface limit\—0) or the thin interface limit

(A<D, /V), it can be easily shown tha (x) at x>\ con-

wherex=x/2\ andc=c/ck. Therefore the relative concen-

tration profilec, and therefore, is governed by the interfa-
cial Pelet numberP, the equilibrium partition coefficierk®,

and the phase-field profile. We calculated the partition coef-
ficient k= 1/c,o by numerical integration of Eq(78) with

the assumption that the phase-field profile remains un-
changed from the stationary profil(x), that is,

~ ~ 1 ~
(X) = do(x) = 5[1-tanfax)], (79

verges to the following solution obtained in the classicalin a dimensionless form. And we adoptéd ¢)= ¢?(3

D;:

sharp-interface model with the same diffusivity in liquid as

—2¢) anda=2.94 with which¢ changes from 0.05 to 0.95
at — N <x<\. Figure 2 shows the variations of concentration
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FIG. 2. Variations of concentration profileéx)/c_is, calculated
atk®=0.8 and several different values Bf wherecg is the solid
composition at the interface and 4s the interface thickness.

FIG. 3. Variations of the partition coefficient as a function of
interfacial Pelet numberP, where the filled circles are the predic-
tion from Eq.(78) and the solid curve from the WBM’s high ve-
locity asymptotics with a constant diffusivity at the interfacial re-
gion.
profilesc calculated ak®=0.8 and several different values
of P. For a lowP, c,/Cs is close to the equilibrium value wherec., is the bulk composition. The interface velocity
1.25, and with increasing the height of concentration spike during the partitionless solidification is given byT{
around the interface and thickness of diffusive boundary—T)/B [22]. Here we will derive similar result from the
layer decreases as expected. Figure 3 shows variations of thgesent alloy PFM. For a dilute solution the phase-field equa-
partition coefficient as a function oP, where the filled tion in a 1D steady state is
circles are prediction from E¢78) and the solid curve from

the high velocity asymptotics of the WBM mod&2] with a V¢ 2(12_¢ T RT o
constant diffusivity at the interfacial region, which with our M dx € dx2 (¢) Vi [(cL—c9)
definition of interface thickness can be written as
—(cL—cg)]—wg'(¢). (83
ke+yP o e .
k(P)= m (800  Also, for the partitionless solidification, E¢72) yields
= = 84
where STk e
~ 8(1-k% (1) With the approximatiori71) for a dilute solution, we can get
7" BaIn(1K®)

_ _ 2_+h/ 1_ke e
The partition coefficient curves from E¢r8) and the high MRT dx ¢ dx? () e

velocity asymptotics of the WBM model appear to be nearly g

identical. With decreasing®, the partition coefficient curve o a4 Le .
from Eq. (78) moved significantly to the higt direction, +C°°d¢|n[1 (A=kh()]=wg'(4).
which has also been observed in the high velocity asymptot- (85)
ics of the WBM mode[22]. A detailed analysis of the par-

tition coefficient in the present model and a comparison Withagter multiplying d¢/dx on both sides of Eq85), we inte-

the reported experimental results will appear elsewhgte grate fromx=—x to x=+c, which yields a solvability
One interesting situation is the case with the completg ongition

solute trapping, that is, partitionless solidification. For parti-

tionless solidification the interface temperatdrehould be Vv, (+=[de)\? o e .
lower thanT, temperature where the free energy densities of m—f_w ax| 9= (@—k)ep+caInk®. (86)
solid and liquid become equal. For a dilute solution, the con-

dition can be written af22] Therefore, the condition required for the partitionless solidi-
fication (V>0) is given by
meIn k®
T<To=Tm+C.7 (e (82 (1-K®)cE+c.. Ink*>0, 87
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which is identical with Eq(82) becausec;=(T,,—T)/me.  Then the interface velocity is determined from

Also if ¢(X)=¢o(X), then Eg.(86) can be written in the

form (To—T) =BV, where

V=TT e (94)
" 1-(1-ke)(1—e VIR

v, m® o
TRTI-KEME (88
Whené* — oo, Eq.(94) shows that a positive interface veloc-

I _ . . ity is guaranteed only when the temperatiires lower than
which is the same relationship as that at the sharp-interfacg s sqjidus temperatufB,=T,,— m°c,, /k®. When¢* takes
Ol m 0 .

limit condition, that is, Eq(67) with )‘“E/_\/WHO- Thus the 4 finite value, on the other hand, there exists a positive ve-
sharp m_tgrface PFM _y!eld_s the correct interface velocity forlocity satisfying Eq.(94) whenever the temperature is lower
the partitionless solidification. than the liquidus temperatuf,=T,,—m°c... It should be
mentioned that in the case with a fini§¢ there exists an
V. NUMERICAL SIMULATION unique positive velocity in Eq(94) even whend=0, which

For 1D steady state solidification, the classical sharp in€nables us to test the condition for the vanishing interface
. kinetics coefficient at the thin-interface limit. We will com-

terface model can be exactly soluble. We solve numericall . . .
Y yare the exact solutiof@4) with the results obtained from

the present alloy PFM for 1D steady state solidification at’
bres y > y s solatcat umerical calculation of our PFM at above two different

those situations and compare the calculated results with tHEUme . . . g
exact solutions situations, that is, with and without a solute sink in liquid.

The 1D isothermal system initially has an uniform bulk Aln%tlhey srl]tuatlon v¥hﬁre the”exlact an?m!c s_olutllon h's
compositionc,, and a temperature with a given undercool- available is the case of the partitionless solidification. In this

ing. A solid phase starts to grow from one end of the system?asef’ we sh:)w_ed\}n_s_le_zc. I_\r/ /that_lt_r;]g pregent I.D"FMI yieIt()js the
The system can reach a steady state either when the systdierface velocityV=(To—T)/A. This point will also be

temperature is lower than the solidus or when there exists ?S;ed' ional K d the dil luti
solute sink in liquid, engulfing all solute influx from its or computational works, we used the dilute solution ver-

neighbor, even if the system temperature is between solidion Of our model; thS(Zoé' (34), (38|)' and (39)fWit|’(]j )
and liquidus temperatures. In the latter case which waS(¥)=¢"(3—2¢). The steady-state solution was found by

adopted in our previous work23] for steady-state simula- qbserving the ang time be_havior of the fu!l dy.”%mic equa-
tions, the solute sink continuously move with the same intions. The detailed numerical procedure is similar to that
’ used in the previous work23]. The model system was se-

stantaneous velocity as the interface, maintaining a pre X ) .
scribed distance from the moving interface. In the classicaiccted to be a Ni-Cu0.05 mole fraction alloy, which was

sharp-interface model with diffusion in liquid only, both situ- regarded as a dilute solution rather than an ideal solution.
ations can be described by The material parameters used for computation are as follows:

Dg=1x10 *m?s, D ,=1X10°m?s, T,=1728.0K,

de d2c me=310.9 K, k®=0.7965, ¢=0.37 J/mM, B=10 Ks/m.
—Vd—X=D,_—2, (89) These data yield the liquidus and solidus temperatures of
dx Tiqg=1712.5 andT4,=1708.5, respectively. The grid size
Ax was 1 nm and the interface thickness 8ver where the
V(1-k®)ci=—D %) (90) phase field changes from 0.05 to 0.95 was taken &%.8
L ’ - . . . . ..
dx i Within the interfacial region, the diffusivit{p; was taken as
. the same value a9, . With these parameters, two kinds of
T=T,—m'-8V, 97 computations were performed. In the first series, we t6ok
=10 K s/m andé* — o« and measured the interface velocities
c(&*)=c., (92)  at various levels of undercooling below the solidus tempera-

) , , i ture. In this series, both the thin interface and sharp interface
where £* is the prescribed distance between the interfacg ks were compared with each other. The second series of
gnd the solute sink in Ijquid, and is the composition at the computation was performed at a constant temperdtife9
interface. The case W|t5*_—>oo corresponds to the former k) g test the condition for vanishing kinetics coefficient at
situation and the case with a fini§" corresponds to the he thin-interface PFM. In this series, we set the parameters
I(_alttgr situation. The exact solution of the concentration proy, yield =0 in Eq.(67) and measured the interface velocity
file in Egs. (89)—(92) is and the solid compositions at variogs values. The func-

(1—k®)(e~V¥/DL_g-VEIDL) tion ¢(cg,ct) of Eq.(67) required for the thin-interface PFM
_ . (93  Wwas calculated from the dilute solution approximation of Eq.
1—(1-k®)(1—e V& /DLy (63):

C(X)=C,+Cy

H(1-¢)(3-2¢)(2¢+1) q
(1- )22+ 1)c(1—c8)+ p2(3—2¢)cE(1—cd)

b, (99

RT 1
£(cg.c0)= (et -2 |
m 0
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as a function of temperature, where we us$g@)= »?(3 1
—-24¢).

Figure 3 shows variations of the steady-state interface ve-
locity, calculated from the case without solute sink* (
—), as a function of undercooling¢,—T. The solid
straight line is the analytic solutiof®4) of the classical
sharp-interface model, the dotted line is the analytic solution
for the partitionless solidificatioV=(T,—T)/g, the filled
circles and the crosses are the calculated results from the
thin-interface PFM and the sharp-interface PFM, respec-
tively. The interface velocity from the sharp-interface PFM
deviates from the analytic solution by a constant ratio, inde-
pendent of the undercooling. On the other hand, the interface
velocity from the thin-interface PFM converges to the ana-
lytic solution as the undercooling decreases. The deviation at
high interface velocity is because the thin-interface limit was
derived at the low Reet number condition. At undercool- e —
. . . . 20 40 60 80 100 120
ings close to 10 K, the height of the concentration spike £(in unit of grid size)
across the interface appeared to be negligible in both the
PFMs, which may be regarded as the partitionless solidifica- FiG. 5. variations of interface velocity, calculated without ki-
tion. As seen in Fig. 4, the interface velocity from the sharp-netic effect 3=0), as a function of distancg between the inter-
interface PFM approaches the analytic solution for the partiface and a solute sink in liquid, which engulfs all solute influx from
tionless solidification at large undercooling, as expected ifits neighbor. The system temperature is 1709 K which is between
Sec. IV. the solidus and liquidus temperatures. The curved line is the ana-

Figure 5 shows variations of steady state interface veloclytic solution (94) for the classical sharp-interface model and the
ity, calculated without kinetic effectd=0), as a function of filled circles are the calculated results from the thin-interface PFM
distanceé* between interface and solute sink. The systenwith vanishing kinetics coefficient.
temperature was 1709 K which is between the solidus and
liquidus temperatures. The curved line is the analytic solucircles are the calculated results from the thin-interface PFM
tion (94) for the classical sharp-interface model and the filledwith vanishing kinetics coefficient. Two results are in excel-
lent agreement with each other. The error in interface veloc-
ity was within 2 % for&* >40Ax. In order to see in detall
the situation of the vanishing kinetics effect, we checked the
solid compositions with varying®, which is shown in Fig.

6. The vertical axis represents the relative difference between
the measured solid composition and the equilibrium compo-
sition, scaled by the equilibrium compositiond]. The de-
viation of the solid composition at* >40Ax from the equi-
librium composition is within 0.06%. Owing to the vanishing
interface kinetics condition in the thin-interface PFM, the
solid composition stays at the equilibrium value, in other
words, local equilibrium state is maintained at the interface
without kinetic undercooling. The physical meaning of the
vanishing kinetics condition in the thin-interface alloy PFM
may be interpreted as follows: A finite phase-field mobility
decreases the solid compositifitD,23. On the other hand,
the finite interface thickness bringing the solute trapping ef-
fect increases the solid compositii22,23. At the condition
where two opposing effects are exactly cancelled out, the
solid composition recovers the equilibrium composition,
which is the condition for vanishing kinetics coefficient in
0-0101 —_ : E— "'10 the thin-interface PFM.

) T TX) Unt|l' now our numerical 'sllmu'latlons', were presented only

sol for a dilute alloy. In dendritic simulations of nondilute al-

loys, there are some complexities related with the condition
at £&* — o, as a function of undercoolings,— T. The solid straight (.21) of the equal chemical potentials in solving a set of equa-
line is the analytic solution94) of the classical sharp-interface tions (20), (21), (31), and(32) or equations20), (21);1(31)'
model, the dotted line is the analytic solution for the partiionlessaNd (33). Let us suppose that all the valuesd, c{', c",
solidification V= (T,—T)/, and the filled circles and the crosses and ¢" in currentnth time step are given. In the next (
are the calculated results from the thin-interface PFM and the sharpt 1)th time step we can calculat8** and ¢"** from Egs.
interface PFM, respectively. (31) and (33) and by using them we should fim:gJrl and

interface velocity (m/s)
[=}

1

interface velocity (m/s)
[=}

FIG. 4. Variations of steady state interface velocity, calculated
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1.4 nondilute Al-Cu alloys by using published thermodynamic
. i data[29,30. The calculation time was increased by only
o 12 i about 10%, when compared with the simulation using the
= 10k dilute solution approximation where the iteration is not
- L, needed because Eq20) and(21) are reduced to a quadratic
ap 08 | equation forc3 ™! or ¢ *?
8 o6
el VI. CONCLUSION
S— [ ]
g 04 We presented a PFM for solidification in binary alloys,
S 02 [ ¢ which was found from the PFM for pure material by direct
a L . comparison of the variables for a pure material solidification
© o0k e o and alloy solidification. The model appears to be equivalent
R s * . to the WBM model but has a different definition of the free
02 |- energy density for the interfacial region. An extra potential
0u T originated fror_n the free_ energy density defi_nition in '_[he
“ 0 20 20 60 20 100 WBM model disappears in this model. At the dilute solution

limit, the model is reduced to the Steinbach and co-workers
model.

FIG. 6. Variation of solid composition witt* values calculated A relationship between the phase-field mobility and the
by the thin-interface PFM model with vanishing kinetics coeffi- iInterface kinetics coefficient was derived at a thin-interface

cient. The vertical axis represents the relative solid compositiodiMit condition under an assumption of negligible diffusivity
scaled by the equilibrium composition). in solid phase. The effect of a finite phase-field mobility
tends to decrease the solid composition and the effect of
finite interface thickness increases the solid composition. At
the condition with a vanishing kinetics coefficient, both ef-

consuming iteration procedure because one should work wit cts are exactly cancelled out resulting in maintenance of

complex thermodynamic data. Futhermore, when the squbiI—Ocal equiliprium atthe interface: Fora Qilute alloy, a ste.ady-
ity in solid is low, the iteration may not converge because theotate solution of the concentration profile across the d|ffu§e
chemical potenti’al becomes infinite 0. These serious interface was obtained as a function of the interface velocity

problems, especially in two-dimensional simulations, can bé"md Fhe re.sultant partition coefficient appears to be nearly
tackled as follows: Before the simulation, the thermody-'dentlcal with that from the WBM model.

namic data given by the free energies of the related phases as For the 1D steady state alloy solidification, we performed

functions of compositions are transformed into the composi;[r.]umer'cﬁII S'T#Iat'?ns .Of }hehphas.et-flefld mode(lj a:t .the S|tuta|-
tions as functions of the chemical potentials. The composi—Ions where the classical sharp-interiace model 1S exactly

tions cs and ¢, may be expressed by power series of thesoluble: At '|0\'N interface velocmes,' the simulated results
) o 0s oL ; from the thin-interface PFM were in excellent agreement
chemical potentiald; =f; =f or by tables. With the cal-

with the exact solutions. As the partition coefficient becomes
culatedc""* and ¢"**, now we can find chemical potential close to unity at high interface velocities, whereas, the inter-
fo* from Eq.(20) by the Newton-Raphson method, where face velocity from the sharp-interface PFM converged to that
the iteration procedure is very efficient: The errors in com-given by the standard model for partitionless solidification,
positions after only three iterations were less then*®0 in  as predicted.

¢* (in unit of grid size)

cE*l from Egs.(20) and(21). This last step is a very time-

general. Then the compositiom§ ™! and ¢c{*! can be di-
rectly read from the predetermined relationship between ACKNOWLEDGMENT

compositions and chemical potentials. Note that we do not
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