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Granular collapse as a percolation transition

Jan Tobochnik*
Department of Physics, Kalamazoo College, Kalamazoo, Michigan 49006

~Received 29 April 1999!

Inelastic collapse is found in a two-dimensional system of inelastic hard disks confined between two walls
which act as an energy source. As the coefficient of restitution is lowered, there is a transition between a state
containing small collapsed clusters and a state dominated by a large collapsed cluster. The transition is
analogous to that of a percolation transition. At the transition the number of clustersns of size s scales as
ns;s2t with t'2.7. @S1063-651X~99!04412-8#

PACS number~s!: 81.05.Rm, 45.70.2n, 64.60.Ak, 05.70.Ln
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There is much curent interest in developing a better
derstanding of the behavior of granular systems such as s
powders, and model systems of metal and glass beads@1#.
These systems can behave as a solid, liquid, or gas dep
ing on the external conditions. However, granular syste
behave very differently than molecular systems and can
hibit size segregation, avalanches, pattern formation, clus
ing, and collapse@2–6#. In particular, clustering and collaps
have been observed not just in isolated dissipative syste
but also in driven systems@4,7,8#, where energy is supplied
from an external source so that the system reaches a st
state. To understand this phenomenon will likely require
number of theoretical tools.

It is thus tempting to use the traditional tools of statistic
physics@9#, kinetic theory, and hydrodynamics@2,10,11# to
analyze the behavior of these systems. For example, a hy
dynamic description which stems from the Boltzmann eq
tion depends on the assumption that interparticle correlat
do not exist@12#. However, this work was confined to ne
elastic systems, and cannot explain the phenomena of in
tic collapse which can occur far from the elastic limit. A
though it is possible to define a temperature proportiona
the mean kinetic energy per particle, there is no therm
equilibrium equivalent to that found for molecular system
For example, simulations and experiments have shown
granular systems do not follow a simple Maxwell-Boltzma
velocity distribution, and there is no equipartition of ener
@3,7,12–15#. Hydrodynamic theories have been able to p
dict the length scales of clustering in granular gases@16#,
however, no theory has yet been able to predict the beha
of collapsed systems. In this paper we look at the inela
collapse of a model driven granular system from the poin
view of percolation theory, which describes the transiti
from a configuration of isolated small clusters to a config
ration dominated by a single large cluster which spans
system. We will make an analogy between the percola
transition and a granular collapse transition. It is importan
distinguish the phenomena of clustering from that of colla
discussed here. Clustering refers to density inhomogene
where particles in a cluster have correlated motion. Colla
refers to the case where particles have lost essentially
their kinetic energy due to inelastic collisions. The nov
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aspect of our work is that the collapse of our system occ
over a wide range in the degree of inelastically, but the
ometry of the collapsed particles appears to behave in a m
ner similar to that of a percolation transition.

To investigate the geometry of the collapsed disks in
driven system of inelastic hard disks, we use event-driv
molecular-dynamics simulations@3#. The hard disks are con
fined to a simulation cell of sizeLx3Ly with periodic bound-
ary conditions in thex direction and hard walls aty50 and
y5Ly . The two walls are held at a fixed wall temperatu
Tw . All lengths are measured in units of the disk diamet
The system reaches a steady state when the energy dissi
through the collisions is compensated by energy supplied
the two walls. When a particle collides with the wall, it
ejected with a velocity whose components are distribu
according to the probabilities:

P~vx!5
1

A2p
e2vx

2/2Tw and P~vy!5vye
2vy

2/2Tw, ~1!

where it is understood thatvy takes on only positive value
for the bottom wall and negative values for the top wall. F
elastic disks this probability distribution leads to a Maxwe
Boltzmann ~MB! probability distribution for the particles
near the wall. For elastic spheres it has been shown@17# that
using the functional dependence ofP(vx) for P(vy) @instead
of using Eq.~1!# may lead to deviations from MB velocity
distributions, temperatures away from the wall not equa
Tw , and unphysical inhomogeneities in density and tempe
ture. Actual experimental systems which use vibrating wa
will typically not give MB velocity distributions either.
However, Grossmanet al. @12# found that their results away
from the wall were not sensitive to the details of the boun
ary conditions. For our purposes the only function of the w
is to input energy into the system so that the system
come to a steady state with nonzero energy. The value
using boundary conditions which give the correct MB velo
ity distribution for elastic disks is that we can test our pr
gram in the limit of elastic disks. In our simulations we s
Tw51. The specific value ofTw merely sets the time scale i
the problem. We have performed simulations with differe
temperatures for each wall, but the results are qualitativ
similar to those found when both walls are at the same te
perature.
7137 © 1999 The American Physical Society
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FIG. 1. The temperatureT, pressureP, and
densityr as a function of position from the wal
at y50.
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During a collision between two particles,i and j, momen-
tum is conserved and some energy lost. We denote the c
ponent of the velocity perpendicular to the line connect
the center of the two disks byv i' and the parallel componen
by v i i . We denote velocities after the collision by a prim
The amount of energy lost in a collision between two dis
depends on the coefficient of restitution,

R[
uv i'8 2v j'8 u
uv i'2v j'u

. ~2!

The caseR51 corresponds to the elastic limit. By mome
tum conservationv i i8 5v i i and v j i8 5v j i . The perpendicular
velocities after the collision are given by

S v i'8

v j'8
D 5

1

2S 12R 11R

12R 11RD S v i'

v j'D . ~3!

The mechanical energy lost in the collision becomes

Elost52
1

4
~12R2!~v i'2v j'!2. ~4!

The initial configuration for the particles consists of
random placement of the particles in the simulation cell, w
velocities distributed according to a Maxwell-Boltzmann d
tribution at temperatureTw . Unless otherwise specified, th
number of particles isN5500. Typically, the system ha
reached a steady state after about 105 collisions, and the
properties of the steady state are analyzed. The time use
the simulation is set such that all macroscopic quantities
not systematically change with time. The simulation is
peated for typically 100 runs to collect data.
m-
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We define a ‘‘temperature’’T as the mean kinetic energ
per particle. The behavior for the temperature, densityr, and
pressureP as a function ofy is shown in Fig. 1 for a 30
330 system of 500 disks. The resolution used to make m
surements is one disk diameter. The pressure can be obta
from the time-averaged impulse received by the partic
during collisions. The pressure is found to be unifor
throughout the system as required by mechanical stabi
The density is smaller very close to the walls. This behav
occurs more strongly in relatively dense systems, and dim
ishes as the mean density of the system decreases. The
perature reaches a minimum and the density a maximum
the center of the system for allR,1. This qualitative behav-
ior is easily explained. Particles can receive energy from
walls. As they move away from the walls, energy is dis
pated in collisions. By symmetry we would expect the p
ticles at the center to have the least energy and thus
lowest temperature. Note that the temperature of the parti
whose centers are within a particle diameter of a wall
significantly less than the wall temperatureTw51.0. This
behavior is due to the inability of the particles to come
local thermal equilibrium. Fast moving particles, which ha
just picked up energy from the wall and are moving aw
from it, cannot thermalize with the slower particles movin
toward the wall. Thus, the mean kinetic energy of the p
ticles near the walls is an average over the higher ene
particles moving away from the wall and the lower ener
particles moving toward the wall. Only the temperature
the particles moving away from the wall have a temperat
equal to that of the wall. If the temperatures of the two wa
are different, then our simulations show a temperature m
mum and density maximum that is shifted toward the low
temperature wall.

Because particles at the center have less energy, there
tendency for these particles to pack together, and thus a
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PRE 60 7139GRANULAR COLLAPSE AS A PERCOLATION TRANSITION
sity maximum occurs. We would expect this kind of beha
ior even in the ideal gas limit wherer5P/T. Grossman
et al. @12# developed an approximate hydrodynamic theo
for their system, which worked well for values ofR close to
unity. We have adapted their theory to our system and fo
that it can reproduce the temperature minimum, but qua
tative agreement is only very approximate, even at value
R near unity.

For R close to unity and a sufficiently low density o
particles, the system will consist of a small number of sl
moving particlesNs , defined as particles with a kinetic en
ergy less than 0.01. The value of the kinetic energy cu
was chosen so that the cluster labeling discussed belo
insensitive to small changes in this value, and that the cu
is low enough that there would be very few particles eme
ing from the wall with a kinetic energy lower than the cuto
As R is lowered, the number of slow moving particles i
creases, and some of the slow moving particles begin to c
ter into groups of disks in a collapsed state. This becom
evident because the mean distance moved by slow part
during a collision is of order 1024 of a disk diameter. Par
ticles in these clusters oscillate about an equilibrium posit
similar to molecules in a crystal. Even though energy is l
on each collision, there is energy pumped in from the surf
of the collapsed clusters due to faster moving particles wh
are not part of the collapsed cluster. Thus, the kinetic ene
of particles in the collapsed clusters does not vanish. H
ever, these collapsed clusters do not occur for the same
son as elastic hard disk~or sphere! solidification. In the latter
case hard disks can have any amount of kinetic energy,
cause the kinetic energy only determines the time scale
the simulation. Solidification occurs because of an impo
high density which restricts the motion of the disks. In t
granular case here, the collapsed state occurs becaus
disks lose almost all their kinetic energy. The mean den
of our simulation cell is well below the freezing density f
hard disks.

Two nearby slow particles are defined to be in the sa
cluster if they are separated by a distance less than 1.05.
cutoff definition was chosen so that small changes in
value do not change the definition of the clusters. A co
tinuum version of the Hoshen-Kopelman algorithm@18# is
used to define the clusters. LoweringR leads to clusters o
larger size, and eventually to a state with one large collap
cluster and several very small clusters. At this point, ty
cally the second largest cluster is less than one-fifth the
of the largest cluster. The largest cluster has a stable hex
nal crystal structure with only its surface changing with tim
during the time scale of our simulations. Thus, the partic
can be divided into two groups: those that are part of c
lapsed solidlike clusters of particles which are moving ve
slowly, and a dilute collection of uncorrelated particl
which are moving quickly and thus constitute a granular g
Figure 2 shows snapshots of two systems which conta
large solidlike cluster surrounded by smaller clusters and
lated disks. These snapshots are typical of what is seen
the transition. AsR is lowered the solidlike largest cluste
grows and its hexagonal crystal structure contains fewer
fects.

The above scenario is analogous to that found in stand
percolation theory, where cluster properties are calculate
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a function of a parameterp which is the fraction of occupied
sites~for a lattice model! or a volume fraction of the spac
covered by the objects of interest. Atp5pc , one large clus-
ter forms which spans the entire system. The percola
threshold becomes more sharply defined as the size of
system increases. In the infinite size limit, the connectedn
lengthj, which is a measure of the linear dimension of t
nonspanning clusters, diverges asj;up2pcu2n. The mean
size of the nonspanning clustersx diverges asx;up
2pcu2g. The fraction of the occupied space which is part
the spanning clusterPspanvanishes as (p2pc)

b, whereb is
another critical exponent. In addition atpc the number of
clusters of sizes per lattice sitens scales asns;s2t. Scaling
theory leads to the relations 2b1g5nd and t521b/(b

FIG. 2. Snapshots of two systems which contain a solidl
cluster. The parameters are~a! number of particlesN52000, linear
dimensions Lx580, Ly5160, and coefficient of restitutionR
50.89; ~b! N5500, Lx5Ly530, R50.85.
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FIG. 3. The fraction of slow particlesp as a
function of R with N5500, Lx5Ly530, aver-
aged over 100 runs.
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1g) @19#. The exponentsn, g, b, andt depend only on the
dimensionalityd of space.

Percolation theory has been very useful for describin
large variety of randomly disordered systems. The the
provides a guide for determining which quantities sh
power-law behavior near a transition. In addition the the
makes many universal predictions which are independen
the details of how the disorder is created. For these reas
we believe it is useful to describe granular collapse in
system with percolation theory as a guide.

To make the analogy with percolation theory, we defi
p5Ns /N. At p5pc we expect to see collapsed clusters
all sizes in the limit asN→`. In analogy to percolation
theory we define a spanning cluster as a cluster which sp
the simulation cell in thex direction. Explicit formulas for
calculating the percolation quantities are as follows. T
connectedness length is given by

j25
1

2

(
k51

Nc

(
i

(
j

r i , j ,k
2

(
k51

Nc

sk
2

, ~5!

whereNc is the number of collapsed clusters not includi
the spanning cluster,r i , j ,k is the distance between diski and
disk j in clusterk, andsk is the number of disks in thekth
cluster. The mean cluster size is

x5

(
k51

Nc

sk
2

(
k51

Nc

sk

. ~6!
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y
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Another useful quantity is the fraction of runs which conta
a spanning cluster which we denote byf. We definePspanas
the number of particles in the spanning cluster divided
Ns .

Figure 3 shows howp depends onR for a 30330 simu-
lation cell withN5500 particles. Because the dependence
smooth over the entire range ofR, we expect any power-law
behavior to be the same as a function ofR or p. Figure 4
shows the results for the quantitiesf, Pspan, j, andx. These
results are qualitatively similar to those found in typical co
tinuum percolation systems. Our system sizes are much
small to be able to extract reliable critical exponents o
precise value ofpc . However, if we definepc as the value of
p where f 51/2 and make crude estimates for the critic
exponents, we findn'1, g'1.5, andb'0.5. The estimates
for n andg are approximately the same above and below
transition, a result expected from percolation theory. O
values lead to 2b1g52.5 and 2n52. Because our estimate
are very crude this scaling relation cannot be ruled out.
comparison the values found in standard two-dimensio
~2D! percolation aren54/3, g543/18, andb55/36. Much
better statistics with a larger number of disks would
needed to estimate the percolation exponents reliably
determine if scaling exists.

Near pc , the power-law dependence of the cluster s
distribution is robust and always shows a critical exponen
t'2.7 for several different values ofN and cell size, includ-
ing asymmetric simulation cells such as a 203160 cell. Fig-
ure 5 shows typical log-log plots ofns versuss. For N
51000 we have a sufficient number of runs and number
disks to obtain statistics on clusters up to sizes530. For the
other systems the plots show data for clusters up to sizs
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FIG. 4. Percolation properties as a function of the fraction of slow particlesp. ~a! Plot of f, the fraction of runs which contain a spannin
cluster, andPspan, the fraction of slow particles in the spanning collapsed cluster;~b! the mean cluster sizex, and ~c! the connectednes
lengthj in units of the disk diameter. Properties computed from the same system as in Fig. 3. The statistical uncertainties ofx andj are
approximately 10%. The curves are only guides to the eye.
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510. This estimate fort is much different than that found in
standard 2D percolation wheret5187/91'2.06. If our re-
sult for t is approximately correct, then it is very difficult t
see how the scaling resultt521b/(b1g) could be valid.
One possibility is that the relationship between cluster nu
bers and the other percolation quantities is not the sam
that found in standard percolation theory. This could be
cause in our case there is a systematic variation in den
from one wall to the other in they direction, and forLy large
enough our results are independent ofLy once a steady stat
-
as
-

ity

has been reached. Thus, no cluster properties are norma
by the linear dimensions of the system. On the other ha
standard percolation systems do not have this systemati
homogeneity, and cluster numbers are normalized by the
ear dimensions of the system. Another possibility is that
estimates for the critical exponents are too crude.

Many of the features we observe are similar to tho
found in percolation theory. The connectedness length
mean cluster size grow very quickly with small changes
the coefficient of restitution near the transition in analogy
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FIG. 5. Log-log plot of the mean number o
clustersns of size s versuss for five different
systems. The lines are least-squares fits for e
system. The average of the slopes is 2.7.
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how these quantities grow quickly as a function of an oc
pation factorp in percolation systems. There are large var
tions from run to run in percolation quantities near the tra
sition suggestive of the the critical fluctuations one finds n
a standard percolation transition or any second-order ph
transition. These critical fluctuations are due to the prese
of structures of all length scales. Our robust power-law
havior for the cluster size distribution provides further e
dence for a true phase transition in the limitN→`.

In summary, we have described the inelastic collapse
model system of granular material in terms of percolat
type quantities. We have found that the number of cluster
da
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od
-
-
-
r
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-

a
n
of

sizes behaves as a power law, and that other quantities
have in a way similar to analogous quantities in percolat
theory. Much larger systems are needed to find quantitativ
precise values of the exponents analogous to critical pe
lation exponents. These results suggest that the geomet
collapsed clusters may be an important universal feature
collapse in driven granular systems.
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