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Granular collapse as a percolation transition
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Inelastic collapse is found in a two-dimensional system of inelastic hard disks confined between two walls
which act as an energy source. As the coefficient of restitution is lowered, there is a transition between a state
containing small collapsed clusters and a state dominated by a large collapsed cluster. The transition is
analogous to that of a percolation transition. At the transition the number of clusterfssize s scales as
ng~s~ " with 7=2.7.[S1063-651X99)04412-§

PACS numbdps): 81.05.Rm, 45.70:n, 64.60.Ak, 05.70.Ln

There is much curent interest in developing a better unaspect of our work is that the collapse of our system occurs
derstanding of the behavior of granular systems such as sanaver a wide range in the degree of inelastically, but the ge-
powders, and model systems of metal and glass bgds ometry of the collapsed particles appears to behave in a man-
These systems can behave as a solid, liquid, or gas depeni@er similar to that of a percolation transition.
ing on the external conditions. However, granular systems TO investigate the geometry of the collapsed disks in a
behave very differently than molecular systems and can exdriven system of inelastic hard disks, we use event-driven
hibit size segregation, avalanches, pattern formation, clustefolecular-dynamics simulatioi8]. The hard disks are con-
ing, and collaps2—6]. In particular, clustering and collapse fined to a simulation cell of size, X L, with periodic bound-
have been observed not just in isolated dissipative systemaly conditions in the direction and hard walls at=0 and
but also in driven system#,7,8), where energy is supplied Y= Ly. The two walls are held at a fixed wall temperature
from an external source so that the system reaches a steafly . All lengths are measured in units of the disk diameter.
state. To understand this phenomenon will likely require arhe system reaches a steady state when the energy dissipated
number of theoretical tools. through the collisions is compensated by energy supplied by

It is thus tempting to use the traditional tools of statisticalthe two walls. When a particle collides with the wall, it is
physics[9], kinetic theory, and hydrodynami¢®,10,1] to  ejected with a velocity whose components are distributed
analyze the behavior of these systems. For example, a hydraccording to the probabilities:
dynamic description which stems from the Boltzmann equa-
tion depends on the assumption that interparticle correlations 5 5
do not exist[12]. However, this work was confined to near P(v,)=—==e “¥?™w and P(v,)=v,e "v?Tw, (1)
elastic systems, and cannot explain the phenomena of inelas- V2m
tic collapse which can occur far from the elastic limit. Al-
though it is possible to define a temperature proportional tavhere it is understood that, takes on only positive values
the mean kinetic energy per particle, there is no thermafor the bottom wall and negative values for the top wall. For
equilibrium equivalent to that found for molecular systems.elastic disks this probability distribution leads to a Maxwell-
For example, simulations and experiments have shown th&oltzmann (MB) probability distribution for the particles
granular systems do not follow a simple Maxwell-Boltzmannnear the wall. For elastic spheres it has been shidwhthat
velocity distribution, and there is no equipartition of energyusing the functional dependenceRfv,) for P(v,) [instead
[3,7,12—-15. Hydrodynamic theories have been able to pre-of using Eq.(1)] may lead to deviations from MB velocity
dict the length scales of clustering in granular gaks, distributions, temperatures away from the wall not equal to
however, no theory has yet been able to predict the behavidr,,, and unphysical inhomogeneities in density and tempera-
of collapsed systems. In this paper we look at the inelastiture. Actual experimental systems which use vibrating walls
collapse of a model driven granular system from the point ofwill typically not give MB velocity distributions either.
view of percolation theory, which describes the transitionHowever, Grossmaat al.[12] found that their results away
from a configuration of isolated small clusters to a configu-from the wall were not sensitive to the details of the bound-
ration dominated by a single large cluster which spans thary conditions. For our purposes the only function of the wall
system. We will make an analogy between the percolatioris to input energy into the system so that the system can
transition and a granular collapse transition. It is important tacome to a steady state with nonzero energy. The value of
distinguish the phenomena of clustering from that of collapseising boundary conditions which give the correct MB veloc-
discussed here. Clustering refers to density inhomogeneitigty distribution for elastic disks is that we can test our pro-
where particles in a cluster have correlated motion. Collapsgram in the limit of elastic disks. In our simulations we set
refers to the case where particles have lost essentially all,,=1. The specific value of,, merely sets the time scale in
their kinetic energy due to inelastic collisions. The novelthe problem. We have performed simulations with different

temperatures for each wall, but the results are qualitatively
similar to those found when both walls are at the same tem-
*Electronic address: jant@kzoo.edu perature.
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During a collision between two particleésandj, momen- We define a “temperatureT as the mean kinetic energy

tum is conserved and some energy lost. We denote the comper particle. The behavior for the temperature, densitsnd
ponent of the velocity perpendicular to the line connectingpressureP as a function ofy is shown in Fig. 1 for a 30

the center of the two disks by, and the parallel component *30 system of 500 disks. The resolution used to make mea-
by vi. We denote velocities after the collision by a prime. Surements is one disk diameter. The pressure can be obtained

The amount of energy lost in a collision between two disksfrom the time-averaged impulse received by the particles

depends on the coefficient of restitution, during collisions. The pressure is found to be uniform
throughout the system as required by mechanical stability.

|Vi,J__Vj,J_| The density is smaller very close to the walls. This behavior
R= 2 occurs more strongly in relatively dense systems, and dimin-

Vi =Vl ishes as the mean density of the system decreases. The tem-

perature reaches a minimum and the density a maximum in

the center of the system for &l<1. This qualitative behav-

ior is easily explained. Particles can receive energy from the

walls. As they move away from the walls, energy is dissi-

(v- ) pated in collisions. By symmetry we would expect the par-
1L

The caseR=1 corresponds to the elastic limit. By momen-
tum conservatiorv{;=v;; andvj=v;. The perpendicular
velocities after the collision are given by

ticles at the center to have the least energy and thus the
3 lowest temperature. Note that the temperature of the particles
whose centers are within a particle diameter of a wall is
significantly less than the wall temperatufg,=1.0. This
behavior is due to the inability of the particles to come to
local thermal equilibrium. Fast moving particles, which have
S %(1_R2)(Vii_ij)2- (4) just p_icked up energy from Fhe wall and are moving away
from it, cannot thermalize with the slower particles moving
toward the wall. Thus, the mean kinetic energy of the par-
The initial configuration for the particles consists of aticles near the walls is an average over the higher energy
random placement of the particles in the simulation cell, withparticles moving away from the wall and the lower energy
velocities distributed according to a Maxwell-Boltzmann dis- particles moving toward the wall. Only the temperature of
tribution at temperaturd,,. Unless otherwise specified, the the particles moving away from the wall have a temperature
number of particles iSN=500. Typically, the system has equal to that of the wall. If the temperatures of the two walls
reached a steady state after about t@llisions, and the are different, then our simulations show a temperature mini-
properties of the steady state are analyzed. The time used inum and density maximum that is shifted toward the lower
the simulation is set such that all macroscopic quantities deemperature wall.
not systematically change with time. The simulation is re- Because particles at the center have less energy, there is a
peated for typically 100 runs to collect data. tendency for these particles to pack together, and thus a den-
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The mechanical energy lost in the collision becomes
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sity maximum occurs. We would expect this kind of behav-
ior even in the ideal gas limit wherp=P/T. Grossman
et al. [12] developed an approximate hydrodynamic theory A ..
for their system, which worked well for values Bfclose to . e e
unity. We have adapted their theory to our system and found . -
that it can reproduce the temperature minimum, but quanti-
tative agreement is only very approximate, even at values of
R near unity.

For R close to unity and a sufficiently low density of
particles, the system will consist of a small number of slow
moving particlesNg, defined as particles with a kinetic en-
ergy less than 0.01. The value of the kinetic energy cutoff
was chosen so that the cluster labeling discussed below is
insensitive to small changes in this value, and that the cutoff
is low enough that there would be very few particles emerg-
ing from the wall with a kinetic energy lower than the cutoff.
As R is lowered, the number of slow moving particles in-
creases, and some of the slow moving particles begin to clus-
ter into groups of disks in a collapsed state. This becomes
evident because the mean distance moved by slow particles
during a collision is of order 10* of a disk diameter. Par-
ticles in these clusters oscillate about an equilibrium position
similar to molecules in a crystal. Even though energy is lost
on each collision, there is energy pumped in from the surface
of the collapsed clusters due to faster moving particles which
are not part of the collapsed cluster. Thus, the kinetic energy
of particles in the collapsed clusters does not vanish. How-
ever, these collapsed clusters do not occur for the same rea-
son as elastic hard digkr spherg solidification. In the latter
case hard disks can have any amount of kinetic energy, be- , e
cause the kinetic energy only determines the time scale of :I;:.L‘;L
the simulation. Solidification occurs because of an imposed ~~Aﬁ*‘.‘;,kl
high density which restricts the motion of the disks. In the e Ry
granular case here, the collapsed state occurs because the
disks lose almost all their kinetic energy. The mean density
of our simulation cell is well below the freezing density for
hard disks.

Two nearby slow particles are defined to be in the same
cluster if they are separated by a distance less than 1.05. This
cutoff definition was chosen so that small changes in its
value do not change the definition of the clusters. A con-
tinuum version of the Hoshen-Kopelman algorith8] is FIG. 2. Snapshots of two systems which contain a solidlike
used to define the clusters. Lowerifgleads to clusters of = cjuster. The parameters a@ number of particled= 2000, linear
larger size, and eventually to a state with one large collapsegimensions L ,= 80, L,=160, and coefficient of restitutiorR
cluster and several very small clusters. At this point, typi-=0.89;(b) N=500, Ly=L,=30, R=0.85.
cally the second largest cluster is less than one-fifth the size
of the largest cluster. The largest cluster has a stable hexago-]c i f tarwhich is the fracti f ied
nal crystal structure with only its surface changing with time 'unction of a parametgrwhich IS the fraction ot occupie
during the time scale of our simulations. Thus, the particleé':"tes(for a lattice r_nodel ora volume fraction of the space
can be divided into two groups: those that are part of colcOvered by the objects of interest. pt=pc, one large clus-
lapsed solidlike clusters of particles which are moving very!€" forms which spans the entire system. The percolation
slowly, and a dilute collection of uncorrelated particlesthréshold becomes more sharply defined as the size of the
which are moving quickly and thus constitute a granular gasSystem increases. In the infinite size limit, the connectedness
Figure 2 shows snapshots of two systems which contain Engthé&, which is a measure of the linear dimension of the
large solidlike cluster surrounded by smaller clusters and isoronspanning clusters, diverges &s|p—pc/~". The mean
lated disks. These snapshots are typical of what is seen nesize of the nonspanning clusterg diverges asy~|p
the transition. AsR is lowered the solidlike largest cluster —pc|~”. The fraction of the occupied space which is part of
grows and its hexagonal crystal structure contains fewer dehe spanning clustéP,,,vanishes asg— p.)?, wherep is
fects. another critical exponent. In addition at the number of

The above scenario is analogous to that found in standardusters of sizes per lattice siteng scales ass~s~’. Scaling
percolation theory, where cluster properties are calculated abeory leads to the relationsg2- y=vd and r=2+ B/(B

(b)



7140 JAN TOBOCHNIK PRE 60

1.0

0.8

°
®
®
o
0.6
]
°
= ° FIG. 3. The fraction of slow particlep as a
function of R with N=500, L,=L,=30, aver-
0.4 L4 aged over 100 runs.
.
0.2
0.0 T T v T T T T T T T T T T
0.78 0.80 0.82 0.84 0.86 0.88 0.90 0.92
R

+19) [19]. The exponent, y, B8, and7 depend only on the Another useful quantity is the fraction of runs which contain
dimensionalityd of space. a spanning cluster which we denote byVe definePgp,,as

Percolation theory has been very useful for describing ahe number of particles in the spanning cluster divided by
large variety of randomly disordered systems. The theory

provides a guide for determining which quantities show Figure 3 shows howp depends orR for a 30X 30 simu-

power-law behavior near a transition. In addition the theory,_.. N : .
makes many universal predictions which are independent oIf’mon cell with N 590 particles. Because the dependence is
mooth over the entire range Bf we expect any power-law

the details of how the disorder is created. For these reason%, . ’ -
we believe it is useful to describe granular collapse in ouP€havior to be the same as a functionRbr p. Figure 4

system with perco]a’[ion theory as a guide_ shows the results for the quantitiésPSpan, ¢, andy. These

To make the analogy with percolation theory, we defineresults are qualitatively similar to those found in typical con-
p=Ng/N. At p=p. we expect to see collapsed clusters oftinuum percolation systems. Our system sizes are much too
all sizes in the limit asN—. In analogy to percolation small to be able to extract reliable critical exponents or a
theory we define a spanning cluster as a cluster which spansiecise value op.. However, if we defing, as the value of
the simulation cell in thec direction. Explicit formulas for 5 \where f=1/2 and make crude estimates for the critical
calculating the percolation quantities are as follows. Theexponents, we fing~1, y~1.5, and8~0.5. The estimates

connectedness length is given by for v andy are approximately the same above and below the

N¢ transition, a result expected from percolation theory. Our
> 2 X2 values lead to B+ y=2.5 and 2= 2. Because our estimates
p 1kt T T (5)  are very crude this scaling relation cannot be ruled out. For
2 Ne 5 ' comparison the values found in standard two-dimensional
“ Sk (2D) percolation arer=4/3, y=43/18, andB3=5/36. Much

better statistics with a larger number of disks would be
whereN, is the number of collapsed clusters not includingneeded to estimate the percolation exponents reliably and
the spanning cluster, ; \ is the distance between disland determine if scaling exists.

disk j in clusterk, ands, is the number of disks in thkth Near p., the power-law dependence of the cluster size
cluster. The mean cluster size is distribution is robust and always shows a critical exponent of
N 7~ 2.7 for several different values &f and cell size, includ-
i 2 ing asymmetric simulation cells such as a<2160 cell. Fig-
&4 Sk ure 5 shows typical log-log plots ofiy versuss. For N
X= T, (6) =1000 we have a sufficient number of runs and number of
Z S disks to obtain statistics on clusters up to sz€30. For the

k=1 other systems the plots show data for clusters up to size
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FIG. 4. Percolation properties as a function of the fraction of slow partilé® Plot off, the fraction of runs which contain a spanning
cluster, andPg,,, the fraction of slow particles in the spanning collapsed clugterthe mean cluster sizg, and(c) the connectedness
length ¢ in units of the disk diameter. Properties computed from the same system as in Fig. 3. The statistical uncertairaiesoare
approximately 10%. The curves are only guides to the eye.

=10. This estimate for is much different than that found in has been reached. Thus, no cluster properties are normalized
standard 2D percolation where=187/9%2.06. If our re- by the linear dimensions of the system. On the other hand,
sult for 7 is approximately correct, then it is very difficult to standard percolation systems do not have this systematic in-
see how the scaling resut=2+ B/(B+ v) could be valid. homogeneity, and cluster numbers are normalized by the lin-
One possibility is that the relationship between cluster numear dimensions of the system. Another possibility is that our
bers and the other percolation quantities is not the same astimates for the critical exponents are too crude.

that found in standard percolation theory. This could be be- Many of the features we observe are similar to those
cause in our case there is a systematic variation in densitjpund in percolation theory. The connectedness length and
from one wall to the other in thedirection, and folL, large ~ mean cluster size grow very quickly with small changes in
enough our results are independent.gfonce a steady state the coefficient of restitution near the transition in analogy to
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FIG. 5. Log-log plot of the mean number of
clustersng of size s versuss for five different
systems. The lines are least-squares fits for each
system. The average of the slopes is 2.7.

how these quantities grow quickly as a function of an occusize s behaves as a power law, and that other quantities be-
pation factorp in percolation systems. There are large varia-have in a way similar to analogous quantities in percolation
tions from run to run in percolation quantities near the tran-theory. Much larger systems are needed to find quantitatively
sition suggestive of the the critical fluctuations one finds neaprecise values of the exponents analogous to critical perco-
a standard percolation transition or any second-order phadation exponents. These results suggest that the geometry of
transition. These critical fluctuations are due to the presenseollapsed clusters may be an important universal feature of
of structures of all length scales. Our robust power-law be<collapse in driven granular systems.
havior for the cluster size distribution provides further evi- | am grateful to Arshad Kudrolli for many useful discus-
dence for a true phase transition in the limit- co. sions and Christopher Grostic for catching an error in my
In summary, we have described the inelastic collapse of ariginal program. | acknowledge support of the Petroleum
model system of granular material in terms of percolationResearch Fund administered by the American Chemical So-
type quantities. We have found that the number of clusters ofiety.
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