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Interfacial free energy of hard-sphere fluids and solids near a hard wall

Martin Heni and Hartmut Lo¨wen
Institut für Theoretische Physik II, Heinrich-Heine-Universita¨t Düsseldorf, Universita¨tsstraße 1, D-40225 Du¨sseldorf, Germany

~Received 17 June 1999!

A hard-sphere system near a planar structureless hard wall is considered in thermodynamic equilibrium. The
associated interfacial free energies are calculated both for a bulk fluid and a bulk face-centered-cubic crystal
along~111!, ~110!, and~100! orientation. Combining Monte Carlo simulations and thermodynamic integration,
we obtain the wall-fluid and the wall-solid interfacial free energy over the whole range of possible bulk
densities. The ‘‘exact’’ computer simulation data are compared to theoretical approximations. For moderate
bulk densities, the wall-fluid interfacial free energies compare reasonably well with scaled-particle theory and
density functional results. For the wall-crystal interface, we propose a simple analytical cell theory which
yields good agreement with our simulation data over the whole range of bulk crystal densities.
@S1063-651X~99!01912-1#

PACS number~s!: 68.10.Cr, 68.35.Md, 82.70.Dd
in
h
fr

si
fo
s

h
ti

n
gi
de
d
O
ld
it
ac
r-
fi

te
e

rth
l

an

c
r

se

u-
n
bl
n

st
te
e
re

ap-

ory
la-
the
ifi-

rd-
he
e
rt

se
er-
par-
the

ell
x-
-
ark

ies
tly

l is
ed

IV.
u-
in

-

I. INTRODUCTION

Most of the physical properties of a solid or liquid
contact with a substrate such as wetting, spreading, and
erogeneous nucleation, are governed by the interfacial
energies between the substrate and the material@1#. There-
fore a microscopic theory of surface tensions is highly de
able in order to predict the wettability of a given substrate
different materials@2#. Clearly, since this quantity depend
on the microscopic interactions between the particles bot
the substrate and the material, such a theoretical calcula
represents a formidable task, in general.

A first step into this direction is performed in the prese
paper where we calculate equilibrium surface free ener
for one specific type of microscopic interactions. We mo
the interaction between the particles as hard spheres an
scribe the substrate as a hard structureless planar wall.
motivation to study this excluded volume model is threefo
First, the model has the advantage of being simple as
characterized by a single parameter, namely, the bulk p
ing fraction h. If one wants to achieve a principal unde
standing for the surface free energies, one should study
a simple model and generalize it later to more realistic in
actions. Second, the hard-sphere interaction is actually r
ized in suspensions of sterically stabilized colloids@3#. In
such systems with mesoscopic particles one has the fu
advantage that real-space methods such as, e.g., confoca
croscopy are possible to explore the structure of the bulk
of interfaces directly, see, e.g., Refs.@4–6#. Third, from a
more theoretical point of view, many of the atomic intera
tions can be appropriately mapped onto an effective ha
sphere systems such that a hard-sphere interaction is u
as a reference case@7,8#.

The hard-spherefluid near a hard wall is a standard sit
ation which has been studied in numerous publicatio
Computer simulations for the density profiles are availa
and theories, in particular density functional approximatio
of inhomogeneous systems@9,10#, have been tested again
the simulation data. What is a bit less common is the in
facial free energyg itself which is harder to extract from th
simulation data since it either requires evaluation of the p
PRE 601063-651X/99/60~6!/7057~9!/$15.00
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sure tensor at the wall@11# or thermodynamic integration
over a set of simulation runs@12#. Only few density func-
tional studies are available using the weighted density
proximation @13# or variants of it @14# and an analytical
scaled-particle expression is known@7,15,16#. In this paper
we revisit this problem and show that scaled particle the
and density functional theory compare well with the simu
tion data. However, for high densities close to freezing
published density functional calculation deviates sign
cantly from our simulation data.

The main topic of the present paper concerns a ha
spheresolid near a hard wall where much less is known. T
associated interfacial free energyg now depends also on th
orientation of the solid with respect to the wall normal. Apa
from a density functional study at the melting point@13#, no
results forg have been published in the literature. We u
Monte Carlo computer simulations to investigate the int
face between a hard wall and a hard-sphere crystal. In
ticular, we obtain the wall-solid surface free energy over
whole range of bulk densities for~111!, ~110!, and ~100!
orientations. Furthermore we propose a simple solid c
model for this interface resulting in a simple analytical e
pression forg which is in good agreement with our simula
tion data. Our simulation results can be used as benchm
data to test the ability of classical density functional theor
of freezing to predict solid interfaces such as the recen
developed Rosenfeld approximation@17#.

The paper is organized as follows. In Sec. II, the mode
introduced. Our computer simulation technique is describ
in Sec. III. The case of a bulk fluid is discussed in Sec.
The cell theory for the solid is proposed in Sec. V and sim
lation results are presented in Sec. IV. We finally conclude
Sec. VII.

II. MODEL AND DEFINITION
OF THE INTERFACIAL FREE ENERGY

We considerN hard spheres with diameters in a large
volumeV at a fixed temperatureT. The finite number density
of the spheres isr5N/V which can conveniently be ex
pressed in terms of the dimensionless packing fractionh
7057 © 1999 The American Physical Society
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5prs3/6. For excluded volume interactions, temperatu
only sets the energy scalekBT (kB denoting Boltzmann’s
constant! but does not affect phase transitions or structu
correlations. Hence the bulk system is completely speci
by the packing fractionh. It is well established@18# that the
bulk hard-sphere system exhibits a first order freezing tr
sition from a fluid phase into a face-centered-cubic~fcc!
crystal @19#. The coexisting densities areh[h f50.494 for
the fluid andh[hs50.545 for the solid.

In detail, the center-of-mass positions of the spheres
denoted byrW i5(xi ,yi ,zi) ( i 51, . . . ,N). Two hard spheresi
and j interact via the pair potential

UHS~rW i ,rW j !5H ` if urW i2rW j u,s

0 elsewhere
, ~1!

In the following we include a surface in the hard sphe
system. The presence of such a wall is described by an
ditional external potential

W~zi !5H 0 uzi u.s/2,

w~zi ! elsewhere
~2!

which acts on the centers of thei th hard sphere (i
51, . . . ,N). For sake of convenience the wall position is
z50 in a plane parallel to thex-y plane. The actual wall are
is A. Although we have a hard impenetrable wall in mind w
keep the description a bit more general by allowing a
penetrable wall potentials where the functionw(z) is finite.
For symmetry reasons,w(z) should be an even function, i.e
w(2z)5w(z). The bulk system is recovered for a vanishi
w(z) while a hard wall is described byw(z)→`. The total
potential energy of the system is

U~$rWk%!5(
i 50

N

W~zi !1 (
i , j 51;i , l

N

UHS~rW i ,rW j ! ~3!

resulting in the canonical partition function

Q~N,V,A,T!5
1

L3NN! E d3r 1¯E d3r Ne2bU~$rWk%!, ~4!

where$rWk%5(rW1 ,...,rWN), b51/(kBT) andL being the~irrel-
evant! thermal wavelength. The canonical free energy is
nally gained asF(N,V,A,T)52kBT ln Q(N,V,A,T).

In the bulk case (w(z)[0), there is no dependence on th
area A. Hence we can simply writeF(N,V,A,T)
5kBTF̃bulk(h) where F̃bulk is a dimensionless quantity. In
troducing a wall of areaA addsA as additional thermody
namical variable. In leading order, the full free energy sp
into a bulk and a surface contribution@10# F(N,V,A,T)
5kBTF̃bulk(h)1g(h,T)A1O(L) where g(h,T) is the in-
terfacial free energy of the system andL is a typical edge
length of the system. In other words, the interfacial free
ergy is the excess free energy per area

g~h,T!5
F~N,V,T,A!2kBTF̃bulk~h!

A
~5!

and can equivalently defined via
e
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g5
]F~N,V,T,A!

]A U
N,V,T

. ~6!

We finally note that for a hard wallg(h,T)5kBTg̃(h) such
that the only nontrivial dependence is on the bulk pack
fraction. A suitable reduced quantity isg* (h)5g̃(h)s2. It
is this target quantity which we calculate and discuss in
sequel over the whole range of packing fractions both in
fluid and crystalline bulk phase. In the nonhomogeneo
crystalline phase, the interfacial free energyg* will addi-
tionally depend on the orientation of the solid with respect
the wall. Of course, due to thermodynamic stability,g* has
to be positive.

III. COMPUTER SIMULATION TECHNIQUE

We simulate the hard-sphere fluid and the hard-sph
crystal using a rectangular simulation box of sizeV
5LxLyLz with periodic boundary conditions in all direc
tions. Moreover we can add any given wall potentialW(z)
according to Eq.~2! to the system. The total surface area
the simulation box is thenA52LxLy since in our setup any
single wall applied to the system will appear doubled at b
ends of the simulation cell, see Fig. 1. We use standard N
Monte Carlo ~MC! simulation techniques@20,21# keeping
the volume and the particle number of the system fixed.

NVT simulations have the advantage of being eas
implemented, but bear the disadvantage that artificial st
is introduced in a hard-sphere crystal when inserting a w
In order to check this we have also performed constant p
sure simulations~NPT! @20#. In this case an external pressu
is applied perpendicular to the walls which are freely movi
otherwise. This allows the system to compensate inte
stress. Within the statistical uncertainties both setups y
the same interfacial tensions up to high densities of ab
h'0.66 which showsa posteriorithat the system size in ou
NVT simulation was large enough. For even higher densi
the stress introduced in the NVT simulation is responsi
for the slight differences and NPT simulation prove to
more suitable.

During the simulation particular attention has to be pa
to the equilibration time especially for dense systems. F
thermore the size of the system inz direction, i.e., perpen-
dicular to the wall has to be fairly large to avoid capilla

FIG. 1. Geometry of the hard-sphere system under consi
ation. The simulation box has a volumeV5LxLyLz and containsN
particles of diameters. The total hard-sphere-system–hard-wa
contact area isA52LxLy .
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effects and other spurious mutual influences of the two wa
Moreover we need large surface areas to exclude line effe
System sizes of about 500–2000 particles yielding surf
areasA/2 of about 30260s2 and an extension into thez
direction of aboutLz530240s has been used during ou
simulations. In order to avoid lateral compressional strain
the crystal, the lengthLx andLy where adjusted to the give
crystallographic orientation such that a laterally perio
bulk crystal fits exactly into the simulation box.

To get access to the interfacial free energy, there are
sically two routes to follow. One can use microscopic re
tions relating the pressure tensor to the interfacial free ene
@11#. This has the advantage of needing less computer
but requires exact knowledge of the density and the o
particle correlation functions at contact. Extrapolating the
quantities with high precision is extremely difficult, as th
change rapidly near contact for high densities. We there
choose another method namelythermodynamic integration
@12#, which gives the free energy of the simulated syst
with respect to that of a known reference system. From
free energy difference of the system with wall compared
the bulk system we can calculate the surface energy dire
from Eq. ~5!. To computeg* , this method requires a whol
set of simulations but is still applicable for high densities

Applying the technique of thermodynamic integration, w
start from the known bulk hard-sphere system and inse
gradually increasing wall potential, i.e., we simulate a le
and less penetrable wall. The wall potentialW(z)[W(z;l)
is parametrized with a parameterl which is chosen to give
no wall for l50, a less and less penetrable wall for incre
ing l and finally a hard wall forl→`. Different wall po-
tentialsw(z;l) or the details of the switching on procedu
do not change the final result for the free energy and in
facial free energy as long as a reversible integration pat
followed. The details of the parametrization, however, w
influence the equilibration time and the accuracy of the
merical integration. For the fluid we found the square pot
tial w(z;l)5l sufficient for the thermodynamical integra
tions. A better choice of the parametrization is a triangu
potentialw(z;l)52l(122uzu/s) which leads to a quicke
equilibration and a smoother integrand especially for a b
solid. For consistency, we have checked that both param
zations lead to the same final result.

Let us now sketch the scheme of thermodynamic integ
tion in more detail: To integrate the free energy we need
derivative with respect to the integration parameterl. This
quantity can be written as a statistical average and is
directly accessible by computer simulations. Consequen

]F

]lU
NVAT

52kBT
1

Q

]Q

]l U
NVAT

5
1

Q

1

L3NN! E d3r 1¯E d3r N

]W~z;l!

]l

3exp2bU~$rW%;l!

5 K ]W~z;l!

]l L
l

, ~7!

where^¯&l denotes a canonical average with a penetra
s.
ts.
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wall. A typical example of the integrand̂]W(z;l)/]l&l of
the thermodynamical integration is shown in Fig. 2 for
triangular potential. One sees that typically 10–20 integ
tion points are necessary. For largel, the integrand could be
well fitted by an algebraic decay}l22 which was used to
estimate the tail of the integrand. The integra
^]W(z;l)/]l&l is positive which implies that the interfacia
tension for a penetrable wall is smaller than that for a h
wall.

Using Eq.~5! the interfacial free energyg of the system
with a hard wall can be written as

g5

*0
`dl K ]W~z;l!

]l L
l

A
. ~8!

We used different system sizes and surface areas to esti
the statistical and finite size errors in the calculation. With
the different system sizes used in our simulations, we do
find any systematic corrections. This indicates that our s
tems are large enough.

IV. HARD-SPHERE FLUID NEAR A HARD WALL

The interfacial tension of a hard-sphere fluid~i.e.,
h,h f) at a hard wall can be analytically calculated with
scaled-particle theory~SPT! @7,15#. The key quantity of SPT
is ḡ[g2Ps/2 ~with P being the bulk pressure! which is
negative in general. SPT yields

ḡSPT52kBT
9

2ps2 h2
11h

~12h!3 . ~9!

In SPT the bulk pressure is equivalent to the bulk press
obtained by the Percus-Yevick compressibility equation
state@7#. Therefore remaining inside SPT one has to add

PPYs/25kBT
6

p
h

11h1h2

~12h!3 ~10!

FIG. 2. IntegrandF(l)ª^]W(z;l)/]l&l /(kBT) as dimension-
less quantity vsl for a hard-sphere fcc crystal ath50.63 in ~111!
orientation using a triangular wall potential.
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7060 PRE 60MARTIN HENI AND HARTMUT LÖ WEN
as bulk pressure in order to getgSPT. Yet a more accurate
alternative is to use the Carnahan-Starling equation of s
@22# to obtain the bulk pressure

PCSs/25kBT
6

p
h

11h1h22h3

~12h!3 . ~11!

In the following we will use bulk pressure Eq.~11! to obtain
the interfacial free energygSPT5ḡSPT1PCSs/2.

Another theoretical approach to obtaing is via classical
density functional theory~DFT! of inhomogeneous system
Using different variants of the weighted-density approxim
tion, the interfacial free energy was calculated by Go¨tzel-
mann et al. @14# for moderate densities and by Ohnesor
et al. @13# near freezing.

Data for g from molecular dynamics~MD! simulations
were known already for four different densities in Ref.@11#.
Moreover Ref.@16# uses simulation results to fit the interfa
cial free energy to an empirical formula forg.

We have applied our scheme of thermodynamic integ
tion to this problem and obtained further data forg on a finer
density grid and up to higher densities which are given
Table I. All data available are summarized in Fig. 3. T
scaled-particle theory is in good agreement with the simu
tion if the bulk pressure is taken from the Carnahan-Star

TABLE I. Simulation results for the fluid: Given are the packin
fraction h, the interfacial free energyg* with its statistical error
and numberN of particles in the simulation box as well as th
maximal surface areaA/2 used in the simulation.

h g* N A/2s2

0.100 0.12460.05 684 59.22
0.200 0.32560.02 504–1008 49.74
0.300 0.65660.03 480–1024 50.61
0.400 1.19560.11 1024 41.78
0.436 1.54360.08 1024 39.42
0.472 1.72660.07 1008 28.10
0.490 1.89060.09 1008–2500 57.02

FIG. 3. Reduced interfacial free energyg* of the hard-sphere
fluid in contact with a hard wall vs packing fractionh. Solid line:
scaled-particle theory with Carnahan-Starling equation of st
dashed line: empirical fit from Ref.@16#;* : our simulation data;
open circle: MD simulation from Ref.@11#; diamonds: DFT from
Ref. @14#; triangles: DFT from Ref.@13#.
te

-

-

n

-
g

equation. DFT provides good data for moderate densities
fails near freezing. We remark that the discrepancies at fre
ing might be due to the actual approximation used for
density functional.

We finally remark that precrystallization on the hard w
occurs very close to the bulk freezing transition@23#. The
thermodynamic integration method, however, is not ap
cable if a phase transition is crossed along the integration
is common in any wetting problem, we have henceextrapo-
lated the data from lower densitiesh'0.49 to the freezing
densityh f50.494 to extract the metastable wall-fluid surfa
tension at freezing. We obtainedg* 51.9960.18 which is
about 7% above the theoretical value predicted by sca
particle theory combined with the Carnahan-Starling eq
tion of state.

V. HARD-SPHERE FCC CRYSTAL NEAR A HARD WALL:
CELL THEORY

A. General idea

The cell theory~CT! provides a simple analytical estima
of the bulk free energy of the hard-sphere crystal@24#. It was
also applied to compute the elastic constants of the h
sphere solid@25# and the location of solid-solid transitions i
confining geometry@26#. In the following we shall generalize
this concept to extract the interfacial free energy of a h
sphere solid near a hard wall for different orientations. T
situation is schematically shown for a two-dimensional ha
disk crystal along~11! orientation in Fig. 4.

As there is no major difference between the two- a
three-dimensional analysis, we do it in a general spatial
mensionD and apply the parameter for the dimensionsD
52,3) later on. Let us first recapitulate the bulk theory: In
given solid lattice, the particles have a bulk mean parti
distancea which is the distance between nearest neighbor

e;

FIG. 4. Two-dimensional hard disk crystal in~11! orientation
near the hard wall. The Wigner-Seitz cell volume~resp. area! for a
bulk particleVb and for a wall particleVw is shown. Inside these
cells the free volume cell is indicated asVw f andVb f . The distance
of the first layer of particles to the wall isd and the bulk mean
particle distance isa.
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the lattice. We consider the particles to be confined in in
pendent Wigner-Seitz~or Voronoi! cells of the solid. This
cell has a volumeVb5gbaD wheregb is a geometrical pref-
actor that depends on the lattice type and on dimension
D. Each center-of-mass coordinate of the hard spheres
move within a free volume@27# of

Vb f5gb~a2s!D ~12!

without touching the neighboring spheres. Hence one obt
a lower bound for the bulk partition function,Q
>(Vb f /LD)N, which provides an upper bound to the bu
free energy

F<2NkBT lnS gb~a2s!D

LD D . ~13!

This upper bound becomes asymptotically exact for clo
packing occurring forh→hCP5p&/650.741̄ ~3D! @27#.

We now include a hard wall which induces an inhomog
neity in the problem. We assume that the wall will on
influence the first layer of the crystal. This introduces t
distance of the center of-mass coordinates in the first laye
the wall as new parameterd, see again Fig. 4. All othe
layers of the crystal are treated within the bulk-approach.
be specific let us consider first a closed packed orientat
the ~111! orientation in 3D, respectively, the~11! orientation
in 2D. The form of the Wigner-Seitz cell of the wall particle
is different from the bulk. It has a volume

Vw5
Vb

2
1gwdaD21, ~14!

wheregw is a further geometric prefactor depending on t
lattice type, the orientation and onD. The free volume ac-
cessible for the wall particles is

Vw f5
Vb f

2
1gwS d2

s

2 D ~a2s!D21. ~15!

Again we get an upper bound for the free energy within t
approach. If one optimizes this bound one getsVb f5Vw f
@28# which yields

d5
gb

2gw
~a2s!1

s

2
~16!

resulting in the same free energy per particle as in the b
case. The principal difference now, however, is that the m
distancea5a(N,V,A) depends implicitly on the particle
numberN, the physical total volumeV and on the areaA.
The dependence is explicitly gained by splitting the to
volume into a bulk and a surface part

V5~N2Nw!Vb1NwVw

5NgbaD2
A

gwaD21 S gb

2
aD2gwdaD21D

5NgbaD1sAS gw2gb

2gw
D , ~17!
-

ty
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e
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whereNw5A/(gwaD21) is the number of particles touchin
the wall. Equation ~17! gives the desired relationa
5a(N,V,A). Finally, the interfacial tension is analyticall
obtained by combining Eq.~13! and ~6! as

g[gCT5kBT
s

~a2s!aD21

1

2gwgb
~gw2gb!, ~18!

where a now is the bulk mean particle distance. Differe
from the bulk theory,gCT does not provide an upper boun
for the exact interfacial tension. Before inserting the app
priate geometric factors for the different crystal orientatio
we note that this model applies well for fairly close pack
surfaces, i.e., crystal orientations in 3D along~111! or even
~100! orientation and in 2D along the~11! orientation. For
looser packed orientations as the~110! orientation in 3D and
the ~10! orientation in 2D the calculation becomes mo
complicated as the free cells and Wigner-Seitz cells of
second layer cannot be neglected anymore. Nevertheles
principles of the cell theory can be applied as well but t
calculations become more tedious. We therefore refer to
Appendix for details of the calculations.

Explicitly, for D52 in ~11! orientation,gb5)/2 and
gw51. Hence Eq.~18! reduces to

gCT[gCT
~11!5kBT

1

)

s

~a2s!a S 12
)

2 D ~19!

with the bulk mean particle distancea5sAp/2)h, h de-
noting the area fraction. In~10! orientation, we can expand
the exact solution given in Appendix A to first order an
obtaingb5)/2 andgw').

For D53 in ~111! orientation, on the other hand,gb
51/& andgw5)/2 and Eq.~18! yields

gCT[gCT
~111!5kBT

)2&

)&

s

~a2s!a2 ~20!

with the bulk mean particle distancea5s(&p/6h)1/3. In
~100! orientation, we obtaingb51/& and gw51 and in
~110! orientation the first order expansion of the exact so
tion of the Appendix gives the geometric factorgb51/&
andgw'&.

B. Cell theory with fixed neighbors

The cell theory neglects configurations of collective e
cursions of neighboring particles from their lattice positio
These can be included approximately by keeping all nei
bors fixed on their lattice positions. This yields a better fr
energy for densities away from close-packing and also
cates the melting point better than the original CT. Then,
course, the bulk theory is not any longer an upper bound
the exact free energy. This assumption can be directly tra
ferred to the interfacial situation by assuming larger free v
ume cells. The final result in this cell theory with fixe
neighbors~CTFN! is

gCTFN5kBT
s

~a2s!aD21

1

gwgb
S gw

2
2gb1

gb

2

a

s D ~21!
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which gives forD52 in ~11! orientation

gCTFN
~11! 5kBT

2

)

s

~a2s!a S 1

2
2
)

2
1
)

4

a

s D ~22!

and forD53 in ~111! orientation

gCTFN
~111! 5kBT

s

~a2s!a2 S 1

&
2

2

)
1

1

)

a

s D . ~23!

The results for the~10! orientation in 2D and the~100! and
~110! orientations in 3D can readily be calculated by inse
ing the geometric factors from above into Eq.~21!. It is
intuitively expected that the true interfacial free energy w
be bounded by the CT and the CTFN theory and that
CTFN theory will work better than the CT theory.

C. Results in two dimensions

Results within the CT and CTFN theory are displayed
D52 in Fig. 5 for ~11! and ~10! orientation. A crystal is
stable for area fractions between freezing aths50.71 @29#
and close-packing occurring athcp5p/(2))50.907̄ .
The whole stability region of the 2D crystal is shown in Fi
5. The CTFN gives higher interfacial free energies than
simple CT. Furthermore, the~11! orientation has a signifi-
cantly lower interfacial free energy than the~10! orientation
since a linear chain of disks is better packed along a hard
than a zig-zig structure as realized for the~10! orientation
which is rotated about an angle of 30° with respect to
~11! orientation. Clearly, in both cases,g diverges as close
packing is approached.

VI. HARD-SPHERE FCC CRYSTAL NEAR A HARD
WALL: SIMULATION RESULTS

A. The interfacial free energy in 3D

Results forg* for different orientations and bulk densitie
are shown in Fig. 6 and collected in Table II. With o
choice of the integration parameters we are not yet abl
fully equilibrate the systems for densities larger thang*

FIG. 5. Reduced interfacial free energyg* 5gs/(kBT) of a
two-dimensional hard disk crystal in contact with a hard line
bulk area fractionh. Both ~11! and~10! orientations are shown fo
the CT ~dashed lines! and the CTFN~solid lines!.
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to

'0.70. A more sophisticated wall insertion and longer com
puter runs would be needed to extend the simulations bey
these densities.

As becomes evident from Fig. 6 there is good agreem
of the simulation data with the simple cell theory over th
whole range of packing fractionsh. In particular, the CTFN
almost perfectly reproduces the simulation data for~111! and
~100! orientation. The relative differences between CTF
theory and simulation at freezing (h50.545) is less than two
percent.

Moreover it is interesting to compare the ratio of the su
face tension for different orientations. Simulation data yie
a ratio of g110* :g100* :g111* 52.2:1.4:1.0 near bulk freezing
(h50.545) and a ratio ofg110* :g100* :g111* 52.8:1.5:1.0 for
higher bulk densities ofh50.63. It is appealing to compare
these ratios with a picture of broken bonds to nearest nei
bors where one getsg110* :g100* :g111* 52.0:1.3:1.0 for all den-
sities. Indeed these ratios are very similar for the hard sph
system although there are actually no bonds generated by
interaction potential.

TABLE II. Simulation results for the crystal. Shown are th
packing fractionh, the interfacial free energyg* for different ori-
entations of the crystal with its statistical error and numberN of
particles in the simulation box as well as the maximal surface a
A/2 used in the simulation.

h g* (111) g* (100) g* (110) N A/2s2

0.545 1.4260.10 2.0160.26 3.0860.26 504–1500 53.12
0.550 1.4360.09 2.0860.24 3.2460.24 504–1408 33.79
0.570 1.5960.12 2.3260.21 3.8360.21 1024–1408 32.99
0.600 1.7460.21 2.9560.30 5.0360.30 1500 49.82
0.630 2.4960.24 3.9760.59 7.1860.89 504–1408 30.86
0.680 4.9360.58 8.2661.16 15.0863.20 1024 29.33
0.700 7.8561.40 1024 28.77

FIG. 6. Reduced interfacial free energyg* of a hard-sphere
crystal in contact with a hard wall vs bulk packing fractionh. The
dashed lines are from CT and the solid lines from CTFN. T
crosses are the simulation results. From top to bottom:~110!, ~100!,
and ~111! orientation.
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Finally, the interfacial tensions for~110! and~100! orien-
tations are larger than that for~111! orientations. This im-
plies that a solid will pick the~111! orientation which pro-
vides most efficient packing near a planar hard wall.

B. Cumulants of the density profile in the first layer

Another important quantity which is the output of an
density functional calculation is the inhomogeneous equi
rium one-particle densityr(rW). Our simple cell theory as
sumes a homogeneous density distribution within the f
cells. We have tested this against computer simulation d
To be specific we introduce cumulants of the density pro
within the first adjacent crystalline layer by defining the m
ments

zm5
*2`

` dx*2`
` dy*0

z0dzzmr~x,y,z!

*2`
` dx*2`

` dy*0
z0dzr~x,y,z!

, ~24!

where z0 denotes the position of the first minimum in th
laterally averaged density profile. From this sequence of m
ments one can deduce several important quantities. Firs
averaged distance of the first layer from the wall can
gained byz̄. We normalize this quantity appropriately b
consideringd* 5 z̄/s. The second momentz2 is related to
the width of the density profiles inz-direction. We define a
reduced second cumulant by

w*ª
Az22 z̄2

a
. ~25!

In the bulk system this quantity is proportional to the Lind
mann parameterL of the solid describing the root-mean
square displacement around the lattice positions normal
by a. In fact, w* 5L/). Finally we define the third cumu
lant ~or the reduced skewness! s* via

s*ª
~z323z2z̄12z̄3!1/3

Az22 z̄2
. ~26!

Obviously,s* 50 in the bulk system due to inflection sym
metry.

FIG. 7. Reduced distanced* of the first layer from the wall for
fcc ~111! orientation vs bulk packing fractionh. The dashed lines
are from CT and the solid lines from CTFN. The crosses are
simulation results.
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In cell theory the densityr(x,y,z) is assumed to be
smeared out uniformly over the free cell. Hence the mome
are directly obtained by integrating over the free cell. In t
simulation the densityr(x,y,z) is readily calculated and
used as input into Eq.~24!.

Results for the distanced* of the first layer from the wall
are presented in Fig. 7.d* varies almost linearly with the
bulk packing fractionh. The cell theory yields reasonabl
values as compared to simulation. As close packing is
proached, the first layer sticks to the wall, henced* →0.5 in
this limit.

In Fig. 8 we present the reduced widthw* of the first
layer versus packing fractionh. The presence of the wal
significantly restricts the motion of the particles in the fir
layer into z direction. This becomes evident by comparin
the simulation data with the bulk Lindemann parameter
bulk freezing@30#: The bulk width is 0.074 while the wal
results in a strongly reduced width ofw* 50.04360.001.
Again the cell theories yield reasonable values and cor
trends as compared to the simulation data. Theh dependence
is again almost linear.

Finally, in Fig. 9, the skewnesss* of the first layer is
shown. It is of the order of unity indicating a significan
asymmetric density distribution distorted by the wall. T
reduced skewness is practically independent ofh. The cell
theories both underestimates* by a factor of one half but
also do not exhibit anyh dependence. The increasing devi
tions between cell theory and simulation as the order of
cumulants is growing is due to the fact that the higher m

e

FIG. 8. Same as Fig. 7 but now for the reduced widthw* .

FIG. 9. Same as Fig. 7 but now for the reduced skewnesss* .
We note that the CT~dashed line! and CTFN~solid line! fall onto
the same curve.
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ments are more sensitive to the tail of the distribution. T
tail is not correctly described by a sharp-kink density pro
as assumed in cell theory. We remark that a better theore
description of the cumulants can be obtained by den
functional calculations. A detailed comparison with o
simulation result should provide a stringent test of the c
rent density functional approximations.

VII. CONCLUSIONS

We have calculated the interfacial free energy of a ha
sphere solid near a hard wall and found good agreement
a simple analytical cell theory. Our work demonstrates t
the thermodynamic integration method can be applied to
face problems and provides benchmark data to test m
elaborate theories.

Let us finally discuss some interesting open questio
First, the equilibrium interfacial free energy between a flu
and a solid at coexistence should be calculated for diffe
orientations. There has been a discussion in the litera
@31# about this number which directly influences the nuc
ation rate of sterically stabilized colloidal suspensions@32–
34#. This number will also determine the occurrence of p
crystallization@23#. The structure of the interface has be
extensively simulated@35–37# but the interfacial tension is
still unknown. Second, a structured surface should be inv
tigated. It is expected that the interfacial free energy is
duced considerably if the microscopic surface pattern is c
patible with that of the adjacent solid. A peculiar wa
structure is a wedge geometry where the structure of the
sphere fluid has been investigated recently@38#. Furthermore
one should simulate the hard disk crystal near a hard
which we did not discuss in our present work. The probl
here is that even the nature of the bulk melting transition
controversial@29,39#. Third, for very loosely packed orien
tations, a faceting transition towards stable vicinal orien
tions@40# is expected. This should be verified for hard sph
crystals. Finally, the method of thermodynamic integration
also applicable to calculate surface free energies of so
solid interfaces such as twin boundaries@41# and interfaces
between different stacking sequences@42#. Work along these
lines is in progress.
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APPENDIX

The calculation of more open wall structures such as
~10! orientation in 2D or the~110! orientation in 3D is more
complicated. The reason is that the crystal layers near
wall are so open that not only the first layer of the crysta
influenced by the wall but also at least the second layer.
find the minimum of the free energy one needs to minim
the position of both layers.

As an approximation, we do not minimize the volume
the Wigner-Seitz cells of the second layer. We include
s
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full volume into the calculation though. This will slightly
overestimate the free interfacial energy of the crystal-w
interface.

1. The 2D „10… orientation

For the~10! orientation in 2D we have a free volume o
~see Fig. 10!

Vw f5
Vb f

2
1S d2

1

2D S 2)a

3
1
&d

3
21D ~A1!

which gives after minimization of the free energy the d
tance of the first layer as

d5
)

2
1

1

4
2a1

1

4
A2524)216)128a2. ~A2!

For evaluating the volume change of the system induced
the wall it is necessary to include the volume occupied by
second layer Wigner-Seitz cells into the calculation. The
tal volume is therefore

V5Ngba21AS d2
a

4D ~A3!

which can be combined with Eq.~6! to obtain the surface
tension

gCT[gCT
~10!5kBT

1

2)

s

a~a2s!
~2)1125a

1A2524)216)a216a128a2! ~A4!

which can be expanded arounda5s by the leading term in
s/a(a2s) to fit the form of Eq. ~18! using a geometric
factor of gw5).

FIG. 10. Same as in Fig. 4 but now for~10! orientation. The
distance of the first layer of particles to the wall isd. It can be seen
that the effect of the second layer is not negligible.
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2. The 3D „110… orientation

In ~110! orientation we get a free volume term of

Vw f5
Vb f

2
1&S d2

1

2D ~a21!22
&

24
~a21!31

&

3 S a

2
2dD 3

.

~A5!

The minimization of the free energy results in a wall distan
of the first layer of

d5aS ca1
1

2D2ca , ~A6!

where ca5) sina2cosa and a5arctan(A231/5)/3. The
total volume is
,

J

III
ti

J.

r.

.

re
e

V5Ngba31AS d2
a

4D ~A7!

which can be combined with Eq.~6! to obtain the surface
tension as

gCT[gCT
~110!5kBT

&s

a2~a2s! S aca

s
1

a

4s
2caD . ~A8!

Again this can be expanded arounda5s by the leading term
in s/a(a2s) to fit the form of Eq.~18! by a geometric
factor of gw5&. The expressions for the CTFN can be o
tained by the same calculation by assuming the enlarged
volume cells or by inserting the geometric prefactors into E
~21!.
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