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Interfacial free energy of hard-sphere fluids and solids near a hard wall
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A hard-sphere system near a planar structureless hard wall is considered in thermodynamic equilibrium. The
associated interfacial free energies are calculated both for a bulk fluid and a bulk face-centered-cubic crystal
along(111), (110, and(100 orientation. Combining Monte Carlo simulations and thermodynamic integration,
we obtain the wall-fluid and the wall-solid interfacial free energy over the whole range of possible bulk
densities. The “exact” computer simulation data are compared to theoretical approximations. For moderate
bulk densities, the wall-fluid interfacial free energies compare reasonably well with scaled-particle theory and
density functional results. For the wall-crystal interface, we propose a simple analytical cell theory which
yields good agreement with our simulation data over the whole range of bulk crystal densities.
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[. INTRODUCTION sure tensor at the wallll] or thermodynamic integration
over a set of simulation rungl2]. Only few density func-
Most of the physical properties of a solid or liquid in tional studies are available using the weighted density ap-
contact with a substrate such as wetting, spreading, and hedroximation [13] or variants of it[14] and an analytical
erogeneous nucleation, are governed by the interfacial fregcaled-particle expression is known,15,18. In this paper
energies between the substrate and the matgialThere- ~ We revisit this problem and show that scaled particle theory
fore a microscopic theory of surface tensions is highly desir&nd density functional theory compare well with the simula-
able in order to predict the wettability of a given substrate fortion data. However, for high densities close to freezing the
different materialg2]. Clearly, since this quantity depends published density functional calculation deviates signifi-
on the microscopic interactions between the particles both ofantly from our simulation data.
the substrate and the material, such a theoretical calculation The main topic of the present paper concerns a hard-
represents a formidable task, in general. spheresolid near a hard wall where much less is known. The
A first step into this direction is performed in the presentassociated interfacial free energynow depends also on the
paper where we calculate equilibrium surface free energiegrientation of the solid with respect to the wall normal. Apart
for one specific type of microscopic interactions. We modelfrom a density functional study at the melting pofii8], no
the interaction between the particles as hard spheres and dé&sults fory have been published in the literature. We use
scribe the substrate as a hard structureless planar wall. obfonte Carlo computer simulations to investigate the inter-
motivation to study this excluded volume model is threefold:face between a hard wall and a hard-sphere crystal. In par-
First, the model has the advantage of being simple as it igcular, we obtain the wall-solid surface free energy over the
characterized by a single parameter, namely, the bulk packvhole range of bulk densities fof111), (110, and (100
ing fraction 7. If one wants to achieve a principal under- orientations. Furthermore we propose a simple solid cell
standing for the surface free energies, one should study firgfodel for this interface resulting in a simple analytical ex-
a simple model and generalize it later to more realistic interPression fory which is in good agreement with our simula-
actions. Second, the hard-sphere interaction is actually reallon data. Our simulation results can be used as benchmark
ized in suspensions of sterically stabilized collo[@. In data to test the ability of classical density functional theories
such systems with mesoscopic particles one has the furth&f freezing to predict solid interfaces such as the recently
advantage that real-space methods such as, e.g., confocal rfigveloped Rosenfeld approximatifitiz]. .
croscopy are possible to explore the structure of the bulk and The paper is organized as follows. In Sec. II, the model is
of interfaces directly, see, e.g., Refd—6]. Third, from a introduced. Our computer simulation technique is described
more theoretical point of VieW, many of the atomic interac_in Sec. lll. The case of a bulk fluid is discussed in Sec. V.
tions can be appropriately mapped onto an effective hardI'he cell theory for the solid is proposed in Sec. V and simu-
sphere systems such that a hard-sphere interaction is usefgfion results are presented in Sec. IV. We finally conclude in

as a reference ca$é,g|. Sec. VII.

The hard-spheréuid near a hard wall is a standard situ-
ation wh|ch_ has _been studied in_numerous pubhca_uons. Il. MODEL AND DEEINITION
Computer simulations for the density profiles are available OF THE INTERFACIAL EREE ENERGY

and theories, in particular density functional approximations

of inhomogeneous systen8,10], have been tested against We considerN hard spheres with diameter in a large
the simulation data. What is a bit less common is the intervolumeV at a fixed temperatur€. The finite number density
facial free energyy itself which is harder to extract from the of the spheres i =N/V which can conveniently be ex-
simulation data since it either requires evaluation of the prespressed in terms of the dimensionless packing fractjon
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=mpo’l6. For excluded volume interactions, temperature
only sets the energy scalgT (kg denoting Boltzmann'’s
constank but does not affect phase transitions or structural
correlations. Hence the bulk system is completely specified
by the packing fraction,. It is well established18] that the
bulk hard-sphere system exhibits a first order freezing tran-
sition from a fluid phase into a face-centered-culfitr)
crystal[19]. The coexisting densities are= n;=0.494 for
the fluid and»= ns=0.545 for the solid.

In detail, the center-of-mass positions of the spheres are
denoted by;=(x;,y;,z) (i=1, ... N). Two hard sphereis
andj interact via the pair potential

FIG. 1. Geometry of the hard-sphere system under consider-
ation. The simulation box has a volure=L,L,L, and contains\

Upe(f,F)= o if |ri_rJ|<U (1) particles of diametew. The total hard-sphere-system—hard-wall-
HSUT 0 elsewhere ' contact area i#\=2L,L, .
In the following we include a surfacg in the_hard sphere IF(N,V,T,A)
system. The presence of such a wall is described by an ad- y=— . (6)
ditional external potential IA NV, T
Wiz )= 0 |zi|> a2, 5  We finally note that for a hard wal( 5, T) =kgT%(%) such
(z)= w(z) elsewhere (2) that the only nontrivial dependence is on the bulk packing

fraction. A suitable reduced quantity i () =%(7)o?>. It
which acts on the centers of thgh hard sphere i( is this target quantity which we calculate and discuss in the
=1,... N). For sake of convenience the wall position is atsequel over the whole range of packing fractions both in the
z=0 in a plane parallel to the-y plane. The actual wall area fluid and crystalline bulk phase. In the nonhomogeneous
is A. Although we have a hard impenetrable wall in mind wecrystalline phase, the interfacial free energy will addi-
keep the description a bit more general by allowing alsdionally depend on the orientation of the solid with respect to
penetrable wall potentials where the functiaz) is finite.  the wall. Of course, due to thermodynamic stabili, has
For symmetry reasong(z) should be an even function, i.e., to be positive.
w(—2z)=w(2z). The bulk system is recovered for a vanishing
w(2) V\_/hile a hard wall is descri_bed by(z) — . The total IIl. COMPUTER SIMULATION TECHNIQUE
potential energy of the system is
We simulate the hard-sphere fluid and the hard-sphere

N . . . .
crystal using a rectangular simulation box of sixé

U({Fk}):izzo W(Zi)JFi j§i<l Uns(Fi,Fy) 3 =L,L,L, with periodic boundary conditions in all direc-
o tions. Moreover we can add any given wall potenii(z)
resulting in the canonical partition function according to Eq(2) to the system. The total surface area of

the simulation box is theA=2L,L since in our setup any
1 R single wall applied to the system will appear doubled at both
Q(N,V,A,T)= WJ d3r1---J d3rye YUK, (4)  ends of the simulation cell, see Fig. 1. We use standard NVT
' Monte Carlo (MC) simulation technique$20,21] keeping

where{f,} = (Fy,....7n), B=1/(kgT) andA being the(irrel- the volume and the particle number of the system fixed.
evan) thermal wavelength. The canonical free energy is fi-, NVT simulations have th_e advantage of be_lrjg easily
nally gained ag (N,V,A, T)=—kgT In Q(N,V.AT). implemented, but bear the disadvantage that artificial stress

In the bulk caseW(z)=0), there is no dependence on the is introduced in a hard-sphere crystal when inserting a wall.
area A. Hence we can, simply write F(N,V,A,T) In order to check this we have also performed constant pres-

sure simulation$NPT) [20]. In this case an external pressure

troducing a wall of ares addsA as additional thermody- is applied perpendicular to the walls which are freely moving

namical variable. In leading order, the full free energy splitsOtherWise' This allows the system to compensate internal
: ’ I stress. Within the statistical uncertainties both setups yield
into a bulk and a surface contributidiiO] F(N,V,A,T) pS Y

- ) ) the same interfacial tensions up to high densities of about
=KgTFou(7) + (7, T)A+O(L) where y(»,T) is the in-  ,~0.66 which shows posteriorithat the system size in our

terfacial free energy of the system ahds a typical edge NvT simulation was large enough. For even higher densities
length of the system. In other words, the interfacial free enthe stress introduced in the NVT simulation is responsible

=kgTFpuk(7) whereFp, is a dimensionless quantity. In-

ergy is the excess free energy per area for the slight differences and NPT simulation prove to be
~ more suitable.

F(N,V,T,A) —KgTFpui( 7) During the simulation particular attention has to be paid

v(n.T)= A ) to the equilibration time especially for dense systems. Fur-

thermore the size of the system ardirection, i.e., perpen-
and can equivalently defined via dicular to the wall has to be fairly large to avoid capillary



PRE 60 INTERFACIAL FREE ENERGY OF HARD-SPHER. .. 7059

effects and other spurious mutual influences of the two walls. 0.7 '
Moreover we need large surface areas to exclude line effects.
System sizes of about 500—2000 particles yielding surface 06 ¢ ]
areasA/2 of about 36-600? and an extension into the
direction of aboutL,=30—-400 has been used during our 05 % ]
simulations. In order to avoid lateral compressional strains in
the crystal, the length, andL, where adjusted to the given 2 041 .
crystallographic orientation such that a laterally periodic ¢

bulk crystal fits exactly into the simulation box. S oa} X ]
To get access to the interfacial free energy, there are ba-

sically two routes to follow. One can use microscopic rela- 02| % .

tions relating the pressure tensor to the interfacial free energy b

[11]. This has the advantage of needing less computer runs 01 e ]

but requires exact knowledge of the density and the one- TR

particle correlation functions at contact. Extrapolating these 0, 10 20 30 "40 E—

guantities with high precision is extremely difficult, as they A

change rapidly near contact for high densities. We therefore

choose another method namehermodynamic integration FIG. 2. IntegrandP(\) :=(dW(z;\)/dN), /(kgT) as dimension-

[12], which gives the free energy of the simulated systen{ess quantity vs\ for a hard-sphere fcc crystal gt=0.63 in(111)

with respect to that of a known reference system. From th&rientation using a triangular wall potential.

free energy difference of the system with wall compared to

the bulk system we can calculate the surface energy directiyall. A typical example of the integran@W(z;\)/J\ ), of

from Eq(S) To Computefy*’ this method requires a whole the thermOdynamical integration is shown in Flg 2 for a

set of simulations but is still applicable for high densities. triangular potential. One sees that typically 10-20 integra-
Applying the technique of thermodynamic integration, wetion points are necessary. For langethe integrand could be

start from the known bulk hard-sphere system and insert #ell fitted by an algebraic decay\ ~* which was used to

gradually increasing wall potential, i.e., we simulate a les€stimate the tail of the integrand. The integrand

and less penetrable wall. The wall potent§{z)=W(z;\) (dW(z;N\)/dN), is positive which implies that the interfacial

is parametrized with a parameterwhich is chosen to give tension for a penetrable wall is smaller than that for a hard

no wall for A =0, a less and less penetrable wall for increasWall. | ) .

ing A and finally a hard wall fon—c. Different wall po- _Using Eq.(5) the interfacial free energy of the system

tentialsw(z;\) or the details of the switching on procedure With a hard wall can be written as

do not change the final result for the free energy and inter-

facial free energy as long as a reversible integration path is 2 dW(Z;\)
followed. The details of the parametrization, however, will 0 )N \
influence the equilibration time and the accuracy of the nu- y= A . (8)

merical integration. For the fluid we found the square poten-

tial w(z;N)=N\ sufficient for the thermodynamical integra- W d diff t svst : d surf i timat
tions. A better choice of the parametrization is a triangular, € used difierent system SIz€s and suriace areas (o estimate

potentialw(z;\) =2\ (1—2|2|/) which leads to a quicker the statistical and finite size errors in the calculation. Within

equilibration and a smoother integrand especially for a bul _he different system sizes u_sed In our _smulatlons, we do not
solid. For consistency, we have checked that both parametr ind any systematic corrections. This indicates that our sys-
zations lead to the same final result. ems are large enough.

Let us now sketch the scheme of thermodynamic integra-
tion in more detail: To integrate the free energy we need its  IV. HARD-SPHERE FLUID NEAR A HARD WALL
derivative with respect to the integration parameteiThis . . . ..
guantity can be written as a statistical average and is thus The interfacial tension of a hard-sphere fluide.,

. ) . . < at a hard wall can be analytically calculated within
directly accessible by computer simulations. Consequently’gcalza)-particle theor(SPT) [7,15]. Tze ke?//quantity of SPT

is y=vy—Pg/2 (with P being the bulk pressuyrewhich is

JF 10 o .
— = BT——Q negative in general. SPT yields
2 NVAT Q 2 NVAT
9 1+7n
1 1 IW(Z;\) Yspr=—KeTs—= 7*——3 €)
- = 3. ... P S YspT— — Kg 27 7 _ 33"
~Q AN fd I fd U 270" (1—7)
XGXp*ﬁU({F};M In SPT the bulk pressure is equivalent to the bulk pressure
obtained by the Percus-Yevick compressibility equation of
_ IW(Z;\) R state[7]. Therefore remaining inside SPT one has to add
2N }\'
Poyo/2—kgT —3—1+"+"2 10
where(---), denotes a canonical average with a penetrable PYale= el 7 1 (1= ) (10
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TABLE I. Simulation results for the fluid: Given are the packing

fraction #, the interfacial free energy* with its statistical error

and numberN of particles in the simulation box as well as the

maximal surface areA/2 used in the simulation.

7 v* N Al25?
0.100 0.124-0.05 684 59.22
0.200 0.325:0.02 504-1008 49.74
0.300 0.6560.03 480-1024 50.61
0.400 1.19%0.11 1024 41.78
0.436 1.543%0.08 1024 39.42
0.472 1.726:0.07 1008 28.10
0.490 1.896:0.09 1008-2500 57.02

as bulk pressure in order to getpr. Yet a more accurate
alternative is to use the Carnahan-Starling equation of state

[22] to obtain the bulk pressure

1+ 9+ 772— 7]3

(1= 77 D

In the following we will use bulk pressure E(L1) to obtain
the interfacial free energyspr= vysprt+ Pcso/2.
Another theoretical approach to obtajnis via classical
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FIG. 4. Two-dimensional hard disk crystal {d1) orientation
near the hard wall. The Wigner-Seitz cell voluritesp. arepfor a
bulk particleV, and for a wall particlev,, is shown. Inside these
cells the free volume cell is indicated ¥g; andV,;. The distance
of the first layer of particles to the wall id and the bulk mean
particle distance is.

density functional theoryDFT) of inhomogeneous systems. equation. DFT provides good data for moderate densities but
Using different variants of the weighted-density approxima-f,j|s near freezing. We remark that the discrepancies at freez-

tion, the interfacial free energy was calculated bytfeb

ing might be due to the actual approximation used for the

mann et al. [14] for moderate densities and by Ohnesorgedensity functional.

et al. [13] near freezing.
Data for y from molecular dynamic¢MD) simulations
were known already for four different densities in Refl].

We finally remark that precrystallization on the hard wall
occurs very close to the bulk freezing transitii28]. The
thermodynamic integration method, however, is not appli-

Moreover Ref[16] uses simulation results to fit the interfa- cgpe if 4 phase transition is crossed along the integration. As

cial free energy to an empirical formula for

is common in any wetting problem, we have heesérapo-

We have applied our scheme of thermodynamic integrapateq the data from lower densities~0.49 to the freezing

tion to this problem and obtained further data foon a finer

density ;= 0.494 to extract the metastable wall-fluid surface

density grid and up to higher densities which are given ingncion at freezing. We obtainegt =1.99+0.18 which is

Table 1. All data available are summarized in Fig. 3. Thegpq.t 794 above the theoretical value predicted by scaled-
scaled-particle theory is in good agreement with the simulag;icie theory combined with the Carahan-Starling equa-

tion if the bulk pressure is taken from the Carnahan-Starlin

— SPT
bl |
* MC simulation
© MD simulation
* 2 r A DFT
Y o DFT

0 01 02 03 04 05
n

FIG. 3. Reduced interfacial free energy of the hard-sphere
fluid in contact with a hard wall vs packing fractiop Solid line:

ion of state.

V. HARD-SPHERE FCC CRYSTAL NEAR A HARD WALL:
CELL THEORY

A. General idea

The cell theory(CT) provides a simple analytical estimate
of the bulk free energy of the hard-sphere cryg2dl. It was
also applied to compute the elastic constants of the hard
sphere solid25] and the location of solid-solid transitions in
confining geometry26]. In the following we shall generalize
this concept to extract the interfacial free energy of a hard
sphere solid near a hard wall for different orientations. The
situation is schematically shown for a two-dimensional hard
disk crystal along11) orientation in Fig. 4.

As there is no major difference between the two- and
three-dimensional analysis, we do it in a general spatial di-

scaled-particle theory with Carnahan-Starling equation of statemensionD and apply the parameter for the dimensiods (

dashed line: empirical fit from Refl6];*: our simulation data;
open circle: MD simulation from Refl11]; diamonds: DFT from
Ref. [14]; triangles: DFT from Ref[13].

=2,3) later on. Let us first recapitulate the bulk theory: In a
given solid lattice, the particles have a bulk mean particle
distancea which is the distance between nearest neighbors of
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the lattice. We consider the particles to be confined in indewhereN,,= A/(g,,a° 1) is the number of particles touching
pendent Wigner-Seitzor Voronoj cells of the solid. This the wall. Equation (17) gives the desired relatiora
cell has a volume&/,=g,aP whereg, is a geometrical pref- =a(N,V,A). Finally, the interfacial tension is analytically
actor that depends on the lattice type and on dimensionalitpbtained by combining Eq13) and(6) as

D. Each center-of-mass coordinate of the hard spheres can
move within a free volumé¢27] of

o 1
v="7vcr=kgT = (9w—9p), (18
Vpi=0p(a—o)° (12 cT¥e fa=g)aP T 2g,g, O O

herea now is the bulk mean particle distance. Different
rom the bulk theory,yct does not provide an upper bound
for the exact interfacial tension. Before inserting the appro-
priate geometric factors for the different crystal orientations
we note that this model applies well for fairly close packed

without touching the neighboring spheres. Hence one obtain,
a lower bound for the bulk partition functionQ
=(V,,;/AP)N, which provides an upper bound to the bulk
free energy

gy(a—o)P surfaces, i.e., crystal orientations in 3D alofid.1) or even
Fs—NkBTIn<bT), (13) (100 orientation and in 2D along th€ll) orientation. For
looser packed orientations as tfiel0) orientation in 3D and

Thi bound b toticall ¢ f | the (10) orientation in 2D the calculation becomes more
IS upper bound becomes asymptotically exact Ior cloS€z,mpjicated as the free cells and Wigner-Seitz cells of the

packing occurring for— ncp=mv2/6=0.741--(3D) [27].  gopong layer cannot be neglected anymore. Nevertheless the
We now include a hard wall which induces an Inhomoge'principles of the cell theory can be applied as well but the

pelty in the prpblem. We assume that the 'wall will_only calculations become more tedious. We therefore refer to the
influence the first layer of the crystal. This introduces theAppendix for details of the calculations

distance of the center of-mass coordin_ates_in the first layer to Explicitly, for D=2 in (11) orientation,g,=v3/2 and
the wall as new parameteat, see again Fig. 4. All other —1. Hence Eq(18) reduces to

layers of the crystal are treated within the bulk-approach. T(?W '

be specific let us consider first a closed packed orientation,

the (111) orientation in 3D, respectively, tHd1) orientation yer= y(11>: kT — ————
in 2D. The form of the Wigner-Seitz cell of the wall particles e v3 (a—o)a
is different from the bulk. It has a volume

o

2]
5 (19

with the bulk mean particle distan@e= o\ 7/2v3 7, 7 de-
noting the area fraction. IqL0) orientation, we can expand
the exact solution given in Appendix A to first order and
obtaing,=v3/2 andg,,~V3.

whereg,, is a further geometric prefactor depending on the For D=3 in (111 orientation, on the other handy,
lattice type, the orientation and db. The free volume ac- =1AW2 andg,=Vv3/2 and Eq.(18) yields

cessible for the wall particles is

VW2

+g,daP 1, (14)

V3i—v2 o
Ycr= nglTl V= B

T 2
(a—o)P L. (15) v3v2 (a—o)a

be
waZT + 0w

(20

q o
2

H H H 1/3
Again we get an upper bound for the free energy within thisWlth the bulk mean particle distanee=o(v2/67) " In

- . - (100 orientation, we obtairg,=1#2 and g,=1 and in
approagh. If. one optimizes this bound one get§=V. (110 orientation the first order expansion of the exact solu-
[28] which yields

tion of the Appendix gives the geometric factgg=1/2
andg,,~Vv2.
d=-—(a—o)+ = (16)

B. Cell theory with fixed neighbors

resulting in the same free energy per particle as in the bulk The cell theory neglects configurations of collective ex-
case. The principal difference now, however, is that the meanursions of neighboring particles from their lattice position.
distancea=a(N,V,A) depends implicity on the particle These can be included approximately by keeping all neigh-
numberN, the physical total volum& and on the are@. bors fixed on their lattice positions. This yields a better free
The dependence is explicitly gained by splitting the totalenergy for densities away from close-packing and also lo-

volume into a bulk and a surface part cates the melting point better than the original CT. Then, of
course, the bulk theory is not any longer an upper bound to
V=(N—N)Vp+N,V, the exact free energy. This assumption can be directly trans-
ferred to the interfacial situation by assuming larger free vol-
=Ng,a°— _ %aD—g daP—! ume cells. The final result in this cell theory with fixed
gwa® 1l 2 w neighbors(CTFN) is
Ow—9b a 1 a
=Ngya®+ oA T ) ! 0 veren=keT G = )aP 1 g0, (g_2w_ ot % 5) 2y
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10 20 '
8l —— CTFN
--— CT
, 6F x simulation
Y
4 L
*
Y
2 £
o ‘ ‘ ‘
07 0.75 0.8 0.85 0.9
n

FIG. 5. Reduced interfacial free energy = yo/(kgT) of a
two-dimensional hard disk crystal in contact with a hard line vs
bulk area fractions. Both (11) and(10) orientations are shown for
the CT (dashed lingsand the CTFN(solid lines.

n

which gives forD=2 in (11) orientation FIG. 6. Reduced interfacial free energy of a hard-sphere

crystal in contact with a hard wall vs bulk packing fractignThe

(11) 2 o 1 v3 V3a dashed lines are from CT and the solid lines from CTFN. The
YCTENT kBT% (a—o)a 27 5 + 4 o (22) crosses are the simulation results. From top to bot{dri0), (100,
and (111 orientation.
and forD=3 in (111 orientation ~0.70. A more sophisticated wall insertion and longer com-

puter runs would be needed to extend the simulations beyond
these densities.
) . (23 As becomes evident from Fig. 6 there is good agreement
of the simulation data with the simple cell theory over the
_ L whole range of packing fractions. In particular, the CTFN
The results for the¢10) orientation in 2D and th€100) and  gimost perfectly reproduces the simulation data(1drl) and
(110 orientations in 3D can readily be calculated by insert-(100) orientation. The relative differences between CTFN

ing the geometric factors from above into B@D. ItiS  theory and simulation at freezing 0.545) is less than two
intuitively expected that the true interfacial free energy will percent.

be bounded by the CT and the CTFN theory and that the \jgreqver it is interesting to compare the ratio of the sur-

(111)

o 1 2 1 a
veren=KeT

N ___+__
(a—o)a’lyi v3 3o

CTEN theory will work better than the CT theory. face tension for different orientations. Simulation data yield
a ratio of 310! ¥i00: Y11= 2.2:1.4:1.0 near bulk freezing
C. Results in two dimensions (7=0.545) and a ratio ofy};o: ¥100: ¥11:=2.8:1.5:1.0 for

Results within the CT and CTFN theory are displayed forigher bulk densities of=0.63. It is appealing to compare
D=2 in Fig. 5 for (11) and (10) orientation. A crystal is these ratios with a picture of broken bonds to nearest neigh-

stable for area fractions between freezingrat=0.71[29]  bors where one getgi1: Yioo: ¥112=2.0:1.3:1.0 for all den-
and close-packing occurring ag.,=m/(2v3)=0.907--.  Sities. Indeed these ratios are very similar for the hard sphere

The whole stability region of the 2D crystal is shown in Fig. SyStem although there are actually no bonds generated by our

5. The CTFN gives higher interfacial free energies than thdnteraction potential.

simple CT. Furthermore, théll) orientation has a signifi- _ _

cantly lower interfacial free energy than thk0) orientation TABLE Il Simulation results for the crystal. Shown are the

since a linear chain of disks is better packed along a hard linBacking fractionz, the interfacial free energy™ for different ori-

than a zig-zig structure as realized for tH0) orientation entations of the crystal with its statistical error and numieof

which is rotated about an anale of 30° with respect to thé)articles in the simulation box as well as the maximal surface area
. . . 9 . P A/2 used in the simulation.

(11) orientation. Clearly, in both caseg,diverges as close

packing is approached. ” Y(111)  y*(100)  *(110) N 202
VI. HARD-SPHERE FCC CRYSTAL NEAR A HARD 0.545 1.42-0.10 2.0x0.26 3.08:0.26 504-1500 53.12
WALL: SIMULATION RESULTS 0.550 1.430.09 2.08:0.24 3.24:0.24 504-1408 33.79

0.570 1.59%0.12 2.32:0.21 3.830.21 1024-1408 32.99
0.600 1.74-0.21 2.95-0.30 5.03:0.30 1500 49.82

Results fory* for different orientations and bulk densities 0.630 2.49-0.24 3.9720.59 7.180.89 504-1408 30.86
are shown in Fig. 6 and collected in Table Il. With our 0.680 4.93 058 8.26-1.16 15.08 3.20 1024 29.33
choice of the integration parameters we are not yet able t¢ 700 7.85 1.40 1024 28.77
fully equilibrate the systems for densities larger thgh

A. The interfacial free energy in 3D
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08 T 0.06 T
—— CTFN —— CTFN
N cT =l |- cT
x simulation ooa L X x simulation
056 x,
ol ; 0.03

054 [ > -
0.02 |

0.52
0.01

05 ‘ ‘ ‘ 0 . . ‘

0.54 0.59 0.64 0.69 0.74 0.54 0.59 0.64 0.89 0.74
n |

FIG. 7. Reduced distana¥ of the first layer from the wall for
fcc (111) orientation vs bulk packing fractios. The dashed lines
are from CT and the solid lines from CTFN. The crosses are the
simulation results.

FIG. 8. Same as Fig. 7 but now for the reduced width

In cell theory the densityp(X,y,z) is assumed to be
smeared out uniformly over the free cell. Hence the moments
are directly obtained by integrating over the free cell. In the
simulation the densityp(X,y,z) is readily calculated and
used as input into Eq24).

Results for the distana#* of the first layer from the wall
are presented in Fig. ®@* varies almost linearly with the
bulk packing fractionz. The cell theory yields reasonable

B. Cumulants of the density profile in the first layer values as compared to simulation. As close packing is ap-

Another important quantity which is the output of any proached, the first layer sticks to the wall, hewde—0.5 in
density functional calculation is the inhomogeneous equilibthis limit.
rium one-particle density(F). Our simple cell theory as- In Fig. 8 we present the reduced widi of the first
sumes a homogeneous density distribution within the fredayer versus packing fractio. The presence of the wall
cells. We have tested this against computer simulation dat&ignificantly restricts the motion of the particles in the first
To be specific we introduce cumulants of the density profildayer into z direction. This becomes evident by comparing
within the first adjacent crystalline layer by defining the mo-the simulation data with the bulk Lindemann parameter at

Finally, the interfacial tensions fqd.10) and (100 orien-
tations are larger than that f¢L11) orientations. This im-
plies that a solid will pick thg111) orientation which pro-
vides most efficient packing near a planar hard wall.

ments

— JTdxf7dyfPdzZ(x,Y,2)
= 0 s} ’
JZdxf” . dyfPdzp(x,y,2)

where z, denotes the position of the first minimum in the
laterally averaged density profile. From this sequence of m
ments one can deduce several important quantities. First t
averaged distance of the first layer from the wall can b
gained byz. We normalize this quantity appropriately by
consideringd* =7Z/o. The second momer#’ is related to
the width of the density profiles in-direction. We define a
reduced second cumulant by

(29)

7272

w* = (25)

a

In the bulk system this quantity is proportional to the Linde-
mann parametet of the solid describing the root-mean-

square displacement around the lattice positions normalized

by a. In fact, w* =L/v3. Finally we define the third cumu-
lant (or the reduced skewness* via

(28— 32%z+ 27813
S* =
V272

Obviously,s* =0 in the bulk system due to inflection sym-
metry.

(26)

?éesymmetric density distribution distorted by the wall. The

ereduced skewness is practically independentyofrhe cell

bulk freezing[30]: The bulk width is 0.074 while the wall
results in a strongly reduced width @f* =0.043+0.001.
Again the cell theories yield reasonable values and correct
trends as compared to the simulation data. FHliependence
is again almost linear.

Finally, in Fig. 9, the skewness* of the first layer is

shown. It is of the order of unity indicating a significant

theories both underestimag® by a factor of one half but
also do not exhibit any; dependence. The increasing devia-
tions between cell theory and simulation as the order of the
cumulants is growing is due to the fact that the higher mo-
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FIG. 9. Same as Fig. 7 but now for the reduced skewséss
We note that the CTdashed lingand CTFN(solid line) fall onto
the same curve.



7064 MARTIN HENI AND HARTMUT LO WEN PRE 60

ments are more sensitive to the tail of the distribution. This
tail is not correctly described by a sharp-kink density profile
as assumed in cell theory. We remark that a better theoretical
description of the cumulants can be obtained by density
functional calculations. A detailed comparison with our
simulation result should provide a stringent test of the cur-
rent density functional approximations.

VII. CONCLUSIONS

We have calculated the interfacial free energy of a hard-
sphere solid near a hard wall and found good agreement with
a simple analytical cell theory. Our work demonstrates that
the thermodynamic integration method can be applied to sur-
face problems and provides benchmark data to test more
elaborate theories.

Let us finally discuss some interesting open questions.
First, the equilibrium interfacial free energy between a fluid
and a solid at coexistence should be calculated for different
orientations. There has been a discussion in the literature

- d
[31] about this number which directly influences the nucle- & . .
ation rate of sterically stabilized colloidal suspensip82—

34]. This number will also determine the occurrence of pre- FIG. 10. Same as in Fig. 4 but now f¢t0) orientation. The
crystallization[23]. The structure of the interface has beendistance of the first layer of particles to the walkdislt can be seen
extensively simulatei35—37) but the interfacial tension is that the effect of the second layer is not negligible.

still unknown. Second, a structured surface should be inves- ) ] ] o
tigated. It is expected that the interfacial free energy is refull volume into the calculation though. This will slightly
duced considerably if the microscopic surface pattern is comeVerestimate the free interfacial energy of the crystal-wall
patible with that of the adjacent solid. A peculiar wall interface.

structure is a wedge geometry where the structure of the hard

sphere fluid has been investigated recef8§]. Furthermore 1. The 2D (10) orientation

one should simulate the hard disk crystal near a hard line Fqr the(10) orientation in 2D we have a free volume of
which we did not discuss in our present work. The problemee Fig. 1p

here is that even the nature of the bulk melting transition is

controversial[29,39. Third, for very loosely packed orien- Vi 1
tations, a faceting transition towards stable vicinal orienta- wa=7 ( )
tions[40] is expected. This should be verified for hard sphere

crystals. Finally, the method of thermodynamic integration iswhich gives after minimization of the free energy the dis-
also applicable to calculate surface free energies of solidtance of the first layer as

solid interfaces such as twin boundar[éd] and interfaces

-1

3 + 3 (A1)

(2f3a v2d )

between different stacking sequeng48]. Work along these _ ﬁ 1 1 5
lines is in progress. d=—+z-a+3 V25-4v3-16/3+28a%  (A2)
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a
V=Ng,a’+A d—Z) (A3)
which can be combined with Ed6) to obtain the surface
tension
The calculation of more open wall structures such as the
(10) orientation in 2D or th€110) orientation in 3D is more

APPENDIX

complicated. The reason is that the crystal layers near the Yer= V(CITO):kBT% m(2V3+1—5a

wall are so open that not only the first layer of the crystal is

influenced by the wall but also at least the second layer. To + 25— 4v3—16/3a— 16a+ 28a?) (A4)
find the minimum of the free energy one needs to minimize

the position of both layers. which can be expanded arouae o by the leading term in

As an approximation, we do not minimize the volume of o/a(a— o) to fit the form of Eq.(18) using a geometric
the Wigner-Seitz cells of the second layer. We include itsfactor of g,,=v3.
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2. The 3D (110 orientation
In (110 orientation we get a free volume term of

R
g

V=Ngya®+A

a
d— Z) (A7)

a 3

2

which can be combined with Eq6) to obtain the surface

2_
(a-1) tension as

Vs
Vit =—+xf(d——

(AS) V2o

— (11
The minimization of the free energy results in a wall distance Yer= YCT =keT a%(a—o)
of the first layer of

ac

o
—C

+E ol (A8)

Again this can be expanded arouad o by the leading term

in o/a(a— o) to fit the form of Eq.(18) by a geometric
factor ofg,,=v2. The expressions for the CTFN can be ob-
tained by the same calculation by assuming the enlarged free
where ¢, =v3 sina—cosa and a=arctan(/231/5)/3. The volume cells or by inserting the geometric prefactors into Eq.

d=

alc,+=|—-c,, (AB)

2

total volume is (22).
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