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Exact Poisson-Boltzmann solution for the interaction of dissimilar charge-regulating surfaces
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1Center for Advanced Materials Processing, Clarkson University, Potsdam, New York 13699-5814
2Swiss Federal Institute of Technology, ETHZ-ITO, Grabenstrasse 3, 8952 Schlieren, Switzerland

~Received 26 May 1999!

An efficient method is proposed to calculate the electric double layer force between two flat surfaces of
dissimilar composition and ionization properties. The approach is based on explicit expressions for the solution
of the ~nonlinear! Poisson-Boltzmann equation and allows for boundary conditions of charge regulation, i.e.,
chemical equilibrium of both surfaces with a bulk electrolyte at all surface separations. As an illustration, we
discuss in some detail the interaction between a weakly acidic and a strongly acidic latex surface, and between
an acidic~silica! surface and an amphoteric~rutile! surface.@S1063-651X~99!16511-5#

PACS number~s!: 82.70.Dd, 82.65.2i, 68.45.2v
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I. INTRODUCTION

Understanding and manipulating the interaction
charged colloidal surfaces has always been a central tas
colloid science@1#. More recently, the accessibility of colloi
dal forces to direct measurements with the surface force
paratus@1–5# and the atomic force microscope@6–11# has
triggered an intensified search for a quantitative theoret
description of the force profiles. Whenever the radius of c
vature of the interacting surfaces is large by comparison
the decay length of the interaction, a good starting poin
the consideration of two infinite parallel plates~half-spaces,
to be precise!. The interaction in this idealized system ca
easily be transformed into the one between two bodies w
curved surfaces via the Derjaguin approximation@12#. An
important component of the interaction is typically cons
ered to be of purely electrostatic nature. In compliance w
the classical Derjaguin-Landau-Verwey-Overbeek the
@13,14#, this contribution is treated separately from the oth
components and is described on the basis of the Pois
Boltzmann equation@12#. For surfaces of very high charg
density, especially in the presence of multivalent ions, t
treatment is known to be inadequate, because it neglect
effect of ion-ion correlations@15#. For many situations of
interest, Poisson-Boltzmann predictions have been confir
experimentally, however, and this classical approach
greatly helped to develop a conceptual understanding
charged colloidal and polymeric systems@1#.

Ninham and Parsegian@16# solved the case of identica
surfaces with ionizable groups in equilibrium with a bu
electrolyte solution~charge regulation!, using exact expres
sions for the resulting interaction in terms of Jacobian ellip
functions. The charge-regulation model was then adapte
the case of amphoteric functional groups by Chan and
workers@17,18#. A first quantitative discussion of the impo
tant case of dissimilar surfaces by Prieve and Ruckens
@19# was based on a numerical treatment of the Poiss
Boltzmann equation.

Many studies have since been made on charge-regula
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surfaces@20–38#. Yet, to our knowledge, no strategy has
far been proposed that actually generalizes the exact exp
sions of Ninham and Parsegian@16# to the case of dissimilar
surfaces. The available quantitative treatments for such
faces require a numerical solution of the differential equat
@19–21,23,35# or involve further approximations like the lin
earization of the Poisson-Boltzmann equation@29,36# or the
use of simplified boundary conditions such as a constant
face charge or constant surface potential@33,34#. The present
work fills this gap by providing an exact solution to th
problem of dissimilar, charge-regulating surfaces on
Poisson-Boltzmann level.

II. ELECTROSTATIC FORCES BETWEEN DISSIMILAR
SURFACES

We consider the interaction of two infinite, homog
neously charged planar surfaces across a solution of az2z
electrolyte@39#. The electrolyte between the surfaces will b
imagined in equilibrium with a large solution bulk, and th
electrostatic potential in the interstitial region will be a
sumed to satisfy the Poisson-Boltzmann equation@12#

d2C

dx2
5k2 sinhC. ~1!

Here C5e0zc/(kBT) is the dimensionless electrostatic p
tential, c being the actual potential,e0 the protonic charge,
andkBT the thermal energy;x is the space coordinate norm
to the surfaces, andk215@««0kBT/(2e0

2z2n)#1/2 is the De-
bye screening length, which further depends on the elec
lyte concentrationn and the permittivity««0 of the bulk
solution. The bulk will also be chosen as the point of ref
ence for the electrostatic potential, i.e., we setC(bulk)50.

Our goal is an exact and efficient evaluation method
the force per unit area between the two surfaces at any
face separation. Once this force is known, the interact
energy per unit area as well as various interaction proper
of curved surfaces in the Derjaguin approximation can
obtained by straightforward integration@12,38#.

No restriction concerning the boundary conditions for E
~1! shall be imposed at this point. In particular, we will allo
the surface charge and potential to vary with the surf
ic
7040 © 1999 The American Physical Society



ul
a

a
es

tiv

se
-
in

h

ex
of

-

ci-

t
ze

a
ic
ry e

n

re

.

ation

s

os-
of
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separation in a different way for the two surfaces, as wo
be expected for surface materials of different ionization ch
acteristics.

A. A useful parametrization

First we note that the dividing pressureP we are looking
for can be written as the sum of an osmotic repulsion and
attractive Maxwell stress term; the normalized dimensionl
pressure reads@12#

P5
P

nkBT
52~coshC21!2k22S dC

dx D 2

. ~2!

Note that the value ofP does not depend on the positionx
between the surfaces at which the potential and its deriva
are evaluated. Any solutionC(x) of the Poisson-Boltzmann
equation@Eq. ~1!# has a curvature of the same sign asC
itself, i.e., it ‘‘bends away from thex axis’’ for all x. Accord-
ingly, C(x) can go through zero at most once. Three ca
can be distinguished:~i! C(x) can have a maximum or mini
mum at some point, which we will then choose as the po
of reference wherex50; in this case the functionC(x) has
no zero;~ii ! C(x) can go through zero at some point, whic
will now serve as the origin of the space coordinate; or~iii !
the curve can reach zero asymptotically.@In this case, we
will choose an arbitrary point as the origin and use an
pression forC(x) that does not depend on this choice
origin#.

SinceC(x) is fully determined by the differential equa
tion ~1! together with the value ofC and dC/dx at one
point, it is clear thatC(x) must be symmetric in case~i! and
antisymmetric in case~ii !. From Eq. ~2! ~evaluated atx
50) it follows that case~i!, depicted in Fig. 1~a!, describes a
situation of positive pressure~repulsion!, whereas case~ii !,
illustrated in Fig. 1~b!, represents a potential profile asso
ated with negative pressure~attraction!. The third case obvi-
ously represents a transition between the repulsive and
attractive case and thus corresponds to a situation of
force.

For all of these cases, the solutions of Eq.~1! are well
known @16,33#; in the present frame of reference they take
particularly simple form, which we proceed to state expl
itly. Their derivation is given in the Appendix. Since eve
pressure corresponds to just one potential profile~or its nega-
tive!, it is convenient to think of the pressure valueP as a
parameter of the solutionsC(x).

1. Repulsion

In the case of positive pressures and forC,0, x>0
~other ranges follow by symmetry!, the solutionC(x) of Eq.
~1! is given in terms of the potential

C05C~0!5arccosh~11P/2! ~3!

as

C~x!5C012ln cd~uum!, ~4!

with

u5
1

2
e2C0/2kx
d
r-

n
s

e

s

t

-
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m5e2C0,

where cd(uum) is a Jacobian elliptic function of argumentu
and parameterm @40#. For future reference, we also give th
derivative

dC

dx
5~e3C0/22e2C0/2!k

sn~uum!

cn~uum!dn~uum!
, ~5!

where sn(uum),cn(uum), and dn5cn/cd are again Jacobia
elliptic functions of the argumentu and parameterm given
above. Efficient implementations of these functions a
available from modern mathematical libraries@41#.

2. Attraction

In the attractive case, the solution~for C<0<x) ex-
pressed in terms of the pressure

P52k22S dC

dx D
x50

2

~6!

reads

FIG. 1. The solutionsC(x) of the Poisson-Boltzmann equation
For every nonzero valueP of the dimensionless pressure@Eq. ~2!#
there is exactly one solutionC(x) ~and its negative!. Any pair of
straight lines intersecting the solution curve at the positionsx1 and
x2 can be interpreted as a pair of charged surfaces with separ
distanceL5ux12x2u interacting with the pressureP and bearing the
surface potentialsC j5C(xj ), j 51,2, and surface charge densitie
s1 ,s2 given by the derivative ofC(x) in x1 andx2. ~a! Case~i!:
Whenever the pressure is positive~repulsion!, the solutionC(x)
qualitatively resembles a hyperbolic cosine. This is the only p
sible type of interaction for two surfaces with the same sign
charge@42#. ~b! Case~ii !: If the pressure is negative~attraction!,
thenC(x) qualitatively resembles the hyperbolic sine.
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C~x!5H 22 arctanhF1

2
~2P!1/2sd~kxu11P/4!G , 24<P,0

22 arctanhFsnS 1

2
~2P!1/2kxU114/PD G , P<24,

~7!

where sd5sn/dn is yet another elliptic function in standard notation@40#. Note that the solutions for pressures below a
aboveP524 match; at this transition pressure the solution isC(x)522 arctanh(sinkx).

The derivative is

dC

dx
5H 2k~2P!1/2/cn~kxu11P/4!, 24<P,0

2k~2P!1/2/cd„1
2 ~2P!1/2kxu114/P…, P<24,

~8!
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with C(x)522k/coskx for P524.

3. Configuration of zero force

The situation where the charged surfaces neither repe
attract each other (P50) is described by the familiar Gouy
Chapman theory for a single charged plate@12#. The decay
of the potential from its surface valueC1 at positionx1 is
given by

C~x!54 arctanh@e2k(x2x1) tanh~C1/4!#, ~9!

and the derivative reads

dC

dx
52

4k tanh~C1/4!e2k(x2x1)

12tanh2~C1/4!e22k(x2x1)
522k sinh~C/2!.

~10!

B. Dissimilar surfaces

For a given potential profileC(x) of the type described
by Eqs.~4!–~10!, the valuesC15C(x1) andC25C(x2) at
any two positionsx1 ,x2 can be interpreted as the surfa
potentials of a~fictive! pair of charged plates. Some arbitra
examples of such pairs of plates are indicated in Fig. 1 by
bold vertical lines. The surfaces of these plates are locate
x1 andx2, they carry a charge density given by the derivat
of C in x1 andx2, and interact across the separation dista
L5ux12x2u through the pressureP associated with the func
tion C(x). Within the Poisson-Boltzmann approximatio
two plates with an equal sign of charge can only repel e
other @42# as in the example of Fig. 1~a!.

Our previous observations suggest a simple way of ca
lating the separation distances between two~real! dissimilar
charged surfaces for a given value of the pressure. We h
noted that for every nonzero pressureP, the functionC(x)
satisfying the Poisson-Boltzmann equation@Eq. ~1!# is sym-
metric or antisymmetric with respect to the origin, whic
can, but need not, lie between the surfaces.

The basic idea is to divide the system as illustrated in F
2: we will consider the surfaces separately as if they w
interacting, not with each other, but with the plane atx50.
For each surface, we calculate the pressure at all dista
from that plane; then we combinethosedistances of both
surfaces that belong to the same pressureP in order to obtain
all the surface separationsL at which this pressure is actuall
or
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assumed by our system of dissimilar plates.

1. Boundary conditions

Clearly, the surface positionsx1 andx2 compatible with a
given pressureP will depend on the individual charging
characteristics of each surface. These charging charact
tics can be taken into account by an appropriate choice
boundary conditions for Eq.~1!. For the sake of simplicity, it
is rather common to consider either the electrostatic surf
potential or the surface charge density as constant, and
some types of materials, these assumptions are legitimat
condition of ‘‘constant charge’’ arises naturally, for instanc
if the surface charge is due to the dissociation of ve
strongly acidic or basic surface headgroups, like in the
ample of sulfate latex discussed below.

In many practical situations, however, a more realis
description considers the chemical equilibrium of partia
dissociated surface groups with the bulk electrolyte at
surface separations@16,19,36#. The implied requirement of
constant chemical potential of the charge determining
generally entails a nontrivial, material-specific relation

f j~C j ,s j !50; for j 51,2 ~11!

between the surface potential and the charge density of
surfacej. This type of boundary condition usually leads
the simultaneous variation of the charge and surface po
tial with separation known as ‘‘charge regulation’’@17,22#.
Examples of charge-regulating surfaces will also be d
cussed below.

It will be useful to define an individual distanceD j , j
51,2 of the surfacej from the origin, which has the sam
absolute value as thex coordinate at the position of the su
face (uD j u5uxj u) but will be considered as negative if th
surface j lies between the plane of origin and the seco
surface~see Fig. 2!. On the other hand, if the plane of origi
and the solution-filled gap between the two surfaces lie
the same side of the surfacej, then D j will be taken as
positive. Formally, this can be expressed as

D j5H 2uxj u, sgn~x1 /x2!.0.uxj u2ux32 j u

uxj u, else
j 51,2.

~12!
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Whatever the precise form of the boundary condition, it c
now be applied to the differential equation~1! by substituting

C j5C~x5uD j u! ~13!

and

s j5sgn~D j !
««0kBT

e0z

dC

dx U
x5uD j u

, ~14!

where the functionsC(x) anddC/dx in Eqs.~13! and ~14!
are given by Eqs.~4! and~5! for repulsive interaction and by

FIG. 2. The division into two subsystems of just one surfa
interacting with the plane of symmetry for the electrostatic poten
C(x). The hatched area indicates the space filled by the electro
solution. In order for Eqs.~4!–~8! to be applicable, the potentia
must be considered in the fourth quadrant (x.0, C,0). ~a! The
situation of two surfaces with equal sign of charge. In this case
interaction according to the Poisson-Boltzmann equation can
be repulsive.~b! Repelling surfaces with unequal sign of charg
The surface pointing away from the plane of symmetry is cons
ered to have a negative distance from that plane.~c! Attracting
surfaces with equal sign of the surface potential.~d! Attracting sur-
faces with unequal sign of the surface potential.
n

Eqs. ~7! and ~8! for attractive interaction. With the abov
substitutions, Eq.~11! is a single transcendental equatio
connecting either the pressure itself~attractive case! or the
closely related potential extremumC0 ~repulsion! to the in-
dividual distanceD j from the plane of origin. Solving this
equation for all individual distances2`,D j,` thus leads
to the functionPj of the pressure that the surfacej experi-
ences at any distanceD j .

2. Combining the two surfaces

Since at every configuration both surfaces must exp
ence the same pressure, only those pressuresP can be real-
ized that satisfy

P5P1~D1!5P2~D2! ~15!

for some individual distancesD1 and D2 ~which, however,
need not be unique!. The corresponding surface separationL
is then given by the sum of the individual distances

L~P!5D11D2, ~16!

with only positive separationsL reflecting a real situation.
At large surface separations and correspondingly w

interaction, the surfaces are always situated on both side
the plane of origin like in Figs. 2~a! or 2~d!. Moreover, the
situation is always like Fig. 2~a! as long as both surface
have the same sign of charge. Two surfaces with uneq
signs of charge at smaller separation may, however, be
cated on the same side of the plane of origin; this situatio
sketched in Fig. 2~b! for a repulsive and in Fig. 2~c! for an
attractive interaction. As the surfaces approach each ot
one of them may actually ‘‘cross’’ the origin, i.e., the pote
tial on this surface may change sign if the interaction at t
separation is attractive, or the charge of this surface may
reversed if the interaction is repulsive.

By associating each pressure that can be realized for
surfaces individually with the corresponding surface sepa
tions, we obtain the complete force profileP(L) for the sys-
tem of dissimilar surfaces. The actual surface potentials
surface charge densities as a function of surface separatiL
follow from Eqs. ~14! and ~13! as the surface propertiess j
andC j associated with the individual distancesD j from the
plane of origin.

III. EXAMPLES

As an illustration we apply the proposed method to tw
examples. First, we will consider a carboxyl latex surfa
and a sulfate latex surface interacting across a monova
electrolyte at pH 4 and an ionic strength of 1 mM . As a
second example, we will discuss the interaction betwee
silica surface and a rutile surface at the same ionic stren
and pH 6.5. The sulfate groups will be considered as fu
deprotonated at all times and the resulting surface charg
constant. All other materials will be described in the fram
work of a 1-pK-basic Stern Model@43,44#. Within this
model ~and forz51), the boundary condition for a charge
regulating surfacej reads@38#
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C j5~pKj2pH!ln 102
e0s j

kBTCj
S

1 ln
e0~G tot,j2G ref,j !2s j

e0G ref,j1s j
,

~17!

where the pK value refers to a single deprotonation react
Cj

S is the Stern capacity,G tot,j the total density of chargeabl

TABLE I. Exemplary materials.

Materiala pK G tot(nm22)b (G ref /G tot)
c CS(F/m2)d

Carboxyl latex 4.9 0.5 1 `

Sulfate latexe 0.1
Silica 7.5 8.00 1 2.9
Rutile 5.8 12.2 1/2 1.33

aThe association of the tabulated properties with the individual s
faces of different materials is marked by the subscriptj in Eq. ~17!
bTotal density of surface headgroups.
cFraction of the total number of sites that are protonated in the z
charge configuration.
dStern capacity.
eFor this surface, a boundary condition of constant charges
5e0G tot has always been used.
n,

surface headgroups, andG ref,j the ~reference! density of pro-
tonated headgroups at which the surfacej is uncharged@38#.
The parameters used are summarized in Table I.

A. Carboxyl latex — sulfate latex

Both latex surfaces can only be negatively charged, wh
implies that only repulsive interaction is possible, and th
the plane of symmetry for the electrostatic potentialC(x)
always lies between the surfaces, thus only positive distan
DCarboxyl andDSulfate from this plane have to be considere
@In other words, the scenario shown in Fig. 2~a! applies at all
separations.#

The resulting pressure as a function of the surface se
ration L is shown on the left hand side of Fig. 3~a!, along
with the corresponding curves for boundary conditions
constant charge~cc! or constant electrostatic potential~cp!
on both surfaces. In the same representation, the left h
side of Figs. 3~b!–~e! shows the variation of the surface po
tentials and charge densities with separation.

The dividing pressure in this system is seen to incre
monotonically with decreasing surface separation; at con
it diverges. The potential on both surfaces is negative
diverges forL→0 as well. The carboxylic surface loses i
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FIG. 3. The interaction be-
tween a carboxyl latex and a su
fate latex surface~left! at pH 4
and between a silica surface and
rutile surface~right! at pH 6.5. For
both systems, an ionic strength o
1 mM ~1-1-electrolyte, k21

59.6 nm) has been used.~a! The
force per unit area for boundar
conditions of charge regulation
~reg!, constant charge on both su
faces ~cc!, and constant electro
static potential on both surface
~cp!. Inset: A semilogarithmic
representation on a larger scale r
veals qualitative differences be
tween the silica-rutile interaction
at constant potential and charg
regulation.~b! and ~c! The corre-
sponding electrostatic surface po
tentials. ~d! and ~e! The surface
charge densities. Broken vertica
lines in the silica-rutile indicate
the separation of zero force~3.8
nm! and the separation of charg
reversal on the regulating rutile
surface~8.8 nm!. Above the latter
separation the system resembl
the one sketched in 2~a!, for
3.8 nm,L,8.8 nm it looks like
2~b!, at even smaller separation
~left of both vertical lines!, the
situation looks like in 2~c!.
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charge in this limit, whereas the charge on the sulfate s
face remains unchanged. Apart from the decharging of
carboxyl groups at small separations, this system of
dissimilar surfaces behaves in a rather similar way as
system whereboth surfaces are subject to boundary con
tions of constant charge—even though carboxylic surfa
are known to regulate their charge rather well for the giv
parameters of the electrolyte solution@38#.

If the potential on both surfaces is fixed, the behavior
very different. At large separations, it is qualitatively th
same, but at a separation of 14 nm, the pressure and
charge on the carboxylic surface go through a maximu
while the charge on the sulfate surface goes through zero
a separation of 7.8 nm the force is zero and the carbox
surface resumes its charge of the large separation limit,
cause it does not feel the presence of the sulfate surface
even shorter separations the force at constant potenti
attractive; it diverges in the limit of contact.

B. Silica – rutile

The charge-regulating silica surface, like the latex s
faces, can only be negatively charged. The rutile surface
the other hand, though negatively charged in isolation at
chosen pH, can undergo a charge reversal, and there
negative distancesDRutile have to be considered as well. As
turns out, the system actually passes the situations sket
in Figs. 2~a!, 2~b!, and 2~c!, in this order, as the two surface
approach each other.

Results for the silica-rutile system are presented on r
hand side of Fig. 3. At large separation, both surfaces beh
qualitatively as they would in a perfectly symmetric syste
@38#: as they approach each other, a repulsive pressure
the absolute surface potentials are enhanced, whereas th
solute charge density is reduced. At a separation of 8.8
the rutile surface reaches its Nernst potential~pK2pH!
(ln 10)kBT/e0541.4 mV and undergoes a charge reversal
maximum pressure of 8.0 kPa is reached atL58.2 nm.
Upon further approach the pressure drops again, passes
at L53.8 nm~at which point the silica surface resumes t
surface properties of an isolated surface!, and eventually
reaches a finite contact value@of 2121 kPa, see the inset o
Fig. 3~a!#. The potential at contact is252.4 mV for both
surfaces, while the charge density goes to113.7 mC/m2 for
the rutile surface and213.7 mC/m2 for the silica surface.
This behavior is different from the one observed when b
surfaces are subject to either constant charge or constan
tential conditions. Under these simplified boundary con
tions, no qualitative differences are resolved between the
different systems presented in Fig. 3: whether in the lat
latex system or in the silica-rutile example, both times
requirement of constant charge causes a monotonically
creasing repulsion between approaching surfaces, and
stant potential causes an electrostatic attraction at short s
rations. Also note that for the silica surface, the regula
surface potential curve crosses the constant potential cu
and the charge curves for different boundary conditions
have crossing points as well. In this sense, charge regula
in a system of dissimilar surfaces does not lead to an in
mediate behavior between the cases of constant charge
constant potential as it does in systems of identical surfa
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Moreover, the regulation behavior of this system is rath
similar, at most separations, to the case of constant poten
even though the silica surface would not behave like a c
stant potential surface when interacting with another sil
surface, given the same parameters for the electrolyte@38#.

Our discussion of the silica-rutile system only serves
illustrate the proposed computational technique, and we
not try to model any particular experiment. Nevertheless
should be mentioned that the force between a SiO2 sphere
and a TiO2 crystal has been measured under conditions co
parable to the ones of Fig. 3. The experiment seems to i
cate a rather more constant-charge-like behavior@8#. Since,
however, the measured force does not only contain the p
electrostatic component but also dispersion forces and m
likely an additional short-range repulsion, conclusions ab
the ‘‘true regulation behavior’’ must be drawn with cautio

IV. CONCLUSION

We have presented an exact method to calculate
double layer force between charge-regulating plates of
similar composition and charging behavior on the level
the ~nonlinear! Poisson-Boltzmann theory. The propos
strategy is computationally straightforward and does not
quire a numerical solution of the differential equation.

We have applied this strategy to the exemplary case
carboxylic latex surface and a sulfate latex surface as we
to the system of a silica and a rutile surface interacting acr
a monovalent electrolyte. The amphoteric behavior of
rutile gives rise to a rather complex force profile, including
transition from repulsion at large separations to attraction
short separations for a pH at which theisolatedsurfaces are
both negatively charged. This behavior is very different fro
the interaction in systems of two identical surfaces. A d
scription based on the assumption of constant charge or
stant potential on both~dissimilarly charged! surfaces misses
qualitative features of the true interaction profile under co
ditions of charge regulation.
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APPENDIX

Equation~2! already states the result of a first integrati
of the Poisson-Boltzmann equation

S dC

dx D 2

52k2 coshC2k2~P12!. ~A1!

Expressed in terms of

V~x!5exp@C~x!2C0# ~A2!

and

j5exp~C0!, ~A3!
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Eq. ~A1! reads

S 1

V

dV

dx D 2

5k2FjV1
1

jV
2~P12!G . ~A4!

For C<0 and x>0, dV/dx is negative, and separation o
variables leads to

E
1

V dV8

AV8@j2V822~P12!jV811#
52

kx

Aj
. ~A5!

Further manipulation of the elliptic integral on the left ha
side of Eq.~A5! is greatly facilitated by using the propertie
of the so-called Jacobian elliptic functions@40#. The func-
tions sn(uum), cn(uum), and dn(uum) of argumentu and
parameterm (0<m<1) are defined as the inverse of th
following integrals:

u5E
0

sn(uum) dt

A~12t2!~12mt2!
, ~A6!

u5E
1

cn(uum) dt

A~12t2!~12m1mt2!
, ~A7!

u5E
1

dn(uum) dt

A~12t2!~ t2211m!
. ~A8!

Further elliptic functions are defined as

cd~uum!5cn~uum!/dn~uum! ~A9!

and

sd~uum!5sn~uum!/dn~uum!. ~A10!

We will make use of their periodicity properties

sn„K~m!2uum…5cd~uum! ~A11!

and

cn„u2K~m!um…5A12m sd~uum!, ~A12!

where

K~m!5E
0

1 dt

A~12t2!~12mt2!
5E

0

1 dt

A~12t2!~12m1mt2!
~A13!

is the quarter period of the elliptic functions along the re
axis, also called the complete elliptic integral of the first ki
@40#.

The derivatives of the elliptic functions needed to dedu
the the expressions fordC/dx in Eqs.~5! and ~8! are

d

du
sn~uum!5cn~uum! dn~uum!, ~A14!

d

du
cn~uum!52sn~uum! dn~uum!, ~A15!
l

e

d

du
dn~uum!52m sn~uum! cn~uum!. ~A16!

1. Repulsive case„P>0…

According to Eqs.~2! and ~A3! positive pressures can b
expressed as

P5j11/j22. ~A17!

Inserting Eq.~A17! into Eq. ~A5! yields

kx

Aj
52E

1

V dV8

AV8~12V8!~12j2V8!

52E
1

AV 2dt

A~12t2!~12j2t2!
~A18!

or

kx

2Aj
5u52E

1

0 dt

A~12t2!~12j2t2!

2E
0

AV(x) dt

A~12t2!~12j2t2!

5K~j2!2sn21~AV!, ~A19!

where the last equality uses the defining Eqs.~A13! and
~A6!, and sn21 denotes the inverse function of sn(uum). Ac-
cording to Eq.~A11!

V~x!5sn2~K~j2!2uuj2!5cd2~uuj2!, ~A20!

which is the result cited in Eq.~4!.

2. Attractive case„P<0…

In the attractive casej51, and with the substitution

v5
12V

11V
, ~A21!

Eq. ~A5! takes the form

kx5E
0

v dv8

A~12v82!@2P/41~11P/4!v82#
. ~A22!

If 21<P/4<0, then after splitting the integration domain
Eq. ~A22!,

E
0

v

f ~v8! dv85E
0

1

f ~v8! dv81E
1

v

f ~v8! dv8,

~A23!

Eqs.~A13! and ~A7! can be applied to give

kx5K~11P/4!1cn21~vu11P/4!, ~A24!

and according to Eq.~A12!

v5A2P/4 sd~kxu11P/4!. ~A25!
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If, on the other hand,P/4<21, then after multiplication of
Eq. ~A22! by A2P/4, it follows from Eq.~A6! that

v5sn@ 1
2 ~2P!1/2kxu114/P#. ~A26!

Equstions~A25! and ~A26! are the results cited in Eq.~7!.

3. Limits of parameter values

Equations.~A19! and ~A24! imply that

0<
kx

2Aj
<K~j2! for P.0 ~A27!

and

0<kx<K~11P/4! for 24,P,0, ~A28!

which, in principle, limits the range ofx for which the de-
rived expressions forC(x) are valid. The quarter period
however, diverges in the limit of zero pressure~then the
parameterm goes to 1); therefore, at large surface sepa
tions, whenC(x) must be evaluated at largex, the given
formulas are also valid for a large range ofx. We found that
the above mentioned conditions@Eqs.~A27! and~A28!# were
satisfied automatically for all positionsx relevant in this
study.

4. The linearized case

When the electrostatic potential is small@i.e., uC(x)u<1
between the surfaces# then Eq.~1! can be linearized, and th
solution of the Debye Hu¨ckel equation,

d2C

dx2
2k2C50, ~A29!
rg

, J

d

ng
-

corresponding to Eqs.~4!, ~7!, and~9! reads

C~x!5H 2arccosh~11P/2! coshk x, P.0

2uPu1/2 sinhkx, P,0

C1e2k(x2x1), P50.
~A30!

5. Superposition

If PÞ0 and ukx1u,ukx2u@1, then Eq.~A30! is well ap-
proximated by the linear superposition result

C~x!5H 22uC j
`ue2kuxj u coshkx, P.0

22uC j
`ue2kuxj u sinhkx, P,0,

~A31!

whereC j
` , j 5 1 or 2, is the potential of either one of th

surfaces in isolation. If these surface potentials are too h
for Eq. ~1! to be linearized (C j

`>1), then Eq.~A31! will
still be a good approximation for smallx ~but largex1 ,x2)
when the surface potential is replaced by the ‘‘effective p
tential’’

C j
`→C j ,eff

` 54tanh~C j
`/4!, ~A32!

which in the linear theory yields the same potential decay
away from the isolated surface as the true, ‘‘bare’’ poten
does in the nonlinear treatment@Eq. ~9!# @12#. Obviously,
C j ,eff

` →4 in the limit of high bare potentialsC j
` and the

corresponding effective charge density saturates for h
bare charges j to the valueseff→4««0kkBT/e0, known as
the condensation limit@45,46#.
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