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Exact Poisson-Boltzmann solution for the interaction of dissimilar charge-regulating surfaces
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An efficient method is proposed to calculate the electric double layer force between two flat surfaces of
dissimilar composition and ionization properties. The approach is based on explicit expressions for the solution
of the (nonlineaj Poisson-Boltzmann equation and allows for boundary conditions of charge regulation, i.e.,
chemical equilibrium of both surfaces with a bulk electrolyte at all surface separations. As an illustration, we
discuss in some detail the interaction between a weakly acidic and a strongly acidic latex surface, and between
an acidic(silica) surface and an amphoteiiitile) surface[S1063-651X99)16511-5

PACS numbes): 82.70.Dd, 82.65-i, 68.45~v

I. INTRODUCTION surfaced20—38. Yet, to our knowledge, no strategy has so
far been proposed that actually generalizes the exact expres-

Understanding and manipulating the interaction ofsions of Ninham and Parsegigt6] to the case of dissimilar
charged colloidal surfaces has always been a central task Burfaces. The available quantitative treatments for such sur-
colloid sciencd 1]. More recently, the accessibility of colloi- faces require a numerical solution of the differential equation
dal forces to direct measurements with the surface force ag19-21,23,3%or involve further approximations like the lin-
paratus[1-5] and the atomic force microscofj—11] has e€arization of the Poisson-Boltzmann equati@n,3q or the
triggered an intensified search for a quantitative theoreticalise of simplified boundary conditions such as a constant sur-
description of the force profiles. Whenever the radius of curface charge or constant surface poteri@®,34. The present
vature of the interacting surfaces is large by comparison tavork fills this gap by providing an exact solution to the
the decay length of the interaction, a good starting point igroblem of dissimilar, charge-regulating surfaces on the
the consideration of two infinite parallel platésalf-spaces, Poisson-Boltzmann level.
to be precisg The interaction in this idealized system can
easily be transformed into the one between two bodies with Il. ELECTROSTATIC FORCES BETWEEN DISSIMILAR
curved surfaces via the Derjaguin approximat{d2]. An SURFACES
important component of the interaction is typically consid-

ered to be of purely electrostatic nature. In compliance with We consider the interaction of two infinite, homoge-

the classical Derjaguin-Landau-Verwey-Overbeek theor eously charged planar surfaces across a SOIL"‘iOHZGJF;Zi
129 y )Qlectrolyte[Sg]. The electrolyte between the surfaces will be

13,14, this contribution is treated separately from the other. . ! S . )
L 4 P y . Hpagmed in equilibrium with a large solution bulk, and the
electrostatic potential in the interstitial region will be as-

Boltzmann equatiol2]. For surfaces of very high charge ! .
z quatiof12] . very nig 9 Ssumed to satisfy the Poisson-Boltzmann equafit]

density, especially in the presence of multivalent ions, thi
treatment is known to be inadequate, because it neglects the 42w
effect of ion-ion correlationg15]. For many situations of . 2sinhV. 1)
interest, Poisson-Boltzmann predictions have been confirmed dx?
experimentally, however, and this classical approach has
greatly helped to develop a conceptual understanding oflere ¥ =eyzy/(kgT) is the dimensionless electrostatic po-
charged colloidal and polymeric systeiiid. tential, s being the actual potentiag, the protonic charge,

Ninham and Parsegiali6] solved the case of identical andkgT the thermal energy is the space coordinate normal
surfaces with ionizable groups in equilibrium with a bulk to the surfaces, and™*=[seokgT/(2€32°n) ]2 is the De-
electrolyte solution(charge regulation using exact expres- bye screening length, which further depends on the electro-
sions for the resulting interaction in terms of Jacobian ellipticlyte concentrationn and the permittivityeeo of the bulk
functions. The charge-regulation model was then adapted tsolution. The bulk will also be chosen as the point of refer-
the case of amphoteric functional groups by Chan and coence for the electrostatic potential, i.e., we $gtulk)=0.
workers[17,18. A first quantitative discussion of the impor- ~ Our goal is an exact and efficient evaluation method for
tant case of dissimilar surfaces by Prieve and Ruckensteithe force per unit area between the two surfaces at any sur-
[19] was based on a numerical treatment of the Poissorface separation. Once this force is known, the interaction
Boltzmann equation. energy per unit area as well as various interaction properties

Many studies have since been made on charge-regulatingf curved surfaces in the Derjaguin approximation can be

obtained by straightforward integrati¢h2,38|.
No restriction concerning the boundary conditions for Eg.
* Author to whom correspondence should be addressed. Electronid) shall be imposed at this point. In particular, we will allow

address: behrenss@clarkson.edu the surface charge and potential to vary with the surface
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separation in a different way for the two surfaces, as would A 'L CASE G)'I P>0 (a)
be expected for surface materials of different ionization char-2 w.>0" e
L. = 1 4
acteristics. = 01>0 [» ’
= Py>0 ’
O N ~ 02< 0 e
. g 2
A. A useful parametrization o ~_———
. - . EO0 } >
First we note that the dividing pressurewe are looking & 0 —Jw,<0 X
for can be written as the sum of an osmotic repulsion and an§ w,<0 / 02<0
attractive Maxwell stress term; the normalized dimensionless 01<0
pressure readd 2] o
dw)? : LT
P= =2(cosh¥ —1)— k2| —| . 2
nkgT ( )= ( dx) @
t CASE (i) P<0 (b)
Note that the value oP does not depend on the positien 2 @:
between the surfaces at yvh|ch the potent!al and its denvatlve% ¢ L s|
are evaluated. Any solutioW (x) of the Poisson-Boltzmann g w50
equation[Eq. (1)] has a curvature of the same sign \Hs 2 _-7 | e2>0
itself, i.e., it “bends away from thg axis” for all x. Accord- = ~ >
ingly, ¥(x) can go through zero at most once. Three casesa w<0{1” O X
can be distinguishedi) ¥ (x) can have a maximum or mini- @ ,"1 <0
mum at some point, which we will then choose as the pointg ’ W, <0 W,<0
. . . ] 4 1 2
of reference wherg=0; in this case the functiod (x) has T ’ 61>0 02<0
no zero;(ii) ¥(x) can go through zero at some point, which )
will now serve as the origin of the space coordinate(iiby _ _ _

will choose an arbitrary point as the origin and use an exfor every nonzero valug of the dimensionless pressueq. (2)]

pression for¥(x) that does not depend on this choice of there is exactly one solutioW (x) (and its negative Any pair of
origin] straight lines intersecting the solution curve at the positignand

Since W (x) is fully determined by the differential equa- X, can be interpreted as a pair of charged surfaces with separation

tion (1) together with the value off and dW/dx at one diStanCd‘zlxl._X2| Tteractinngith the pressufeand bearing th?
L . . surface potential¥; =V (x;), j=1,2, and surface charge densities
p0|_nt, Itis Clgar_thatlf(x_)_ must be symmetric in ca¢® and 041,05 given by the derivative of’(x) in x; andx,. (a) Case(i):
antlsymmetrlc n Casd'_')' Frqm Eq (2,) (evaluated- a Whenever the pressure is positiepulsion, the solutionW(x)
=0) it follows that casei), depicted in Fig. (a), describes a g ajitatively resembles a hyperbolic cosine. This is the only pos-
situation of positive pressur@epulsion, whereas caséii),  siple type of interaction for two surfaces with the same sign of
illustrated in Fig. 1b), represents a potential profile associ- charge[42]. (b) Casel(ii): If the pressure is negativttraction,
ated with negative preSSUfﬂttraCtiOf). The third case obvi- then\ll(x) qua|itative|y resembles the hyperbo”c sine.
ously represents a transition between the repulsive and the
attractive case and thus corresponds to a situation of zergnd
force.
For all of these cases, the solutions of Ef). are well
known[16,33; in the present frame of reference they take a

particularly simple form, which we proceed to state (::xplic—\"’h(;ere cdym) is joJalgob:‘an eIIiptifc function of ?rgur_netmth
itly. Their derivation is given in the Appendix. Since every and parametem [40]. For future reference, we also give the

m= ez‘l’o,

pressure corresponds to just one potential préditéts nega- derivative
tive), it is convenient to think of the pressure valBeas a dw w2 e sn(u|m)

i _— oe—a@  *o e —
parameter of the solution® (x). ax (e e ) K cnulmyan(alm)’ %)

1. Repulsion where sn@|m),cn(u/m), and dn=cn/cd are again Jacobian

In the case of positive pressures and fB<0, x=0 elliptic functions of the argumeni and parametem given
(other ranges follow by symmetrythe solution®(x) of Eq.  above. Efficient implementations of these functions are

(1) is given in terms of the potential available from modern mathematical librariekl].
¥ o="V(0)=arccosil+ P/2) (€) 2. Attraction
as In the attractive case, the solutidfor ¥<0<x) ex-
pressed in terms of the pressure
W (x)=Wy+2Incdu|m), (4)
. dw)?2
with P=—k"?— (6)
dx /) _
x=0

1
_ —Wn/2
u=—e "0°kX
2 reads
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1
-2 arctan{uz(— P)Y2sd kx| 1+ P/4)}, —4<P<0

(7)
}, P<-4,

where sésn/dn is yet another elliptic function in standard notatid]. Note that the solutions for pressures below and
aboveP = —4 match; at this transition pressure the solutiofisx) = — 2 arctanh(sinx).
The derivative is

P (x)=
1+4/P

1
-2 arctan%sr( (= P)Y2kx

dw [ — k(—P)Ycn(kx|1+Pl4), —4<P<0
dx 8

dx | —k(=P)Y¥cd (- P)V2kx|1+4/P), P<-4,

with ¥ (x) = —2«/coskx for P=—4. assumed by our system of dissimilar plates.

3. Configuration of zero force 1. Boundary conditions

The situation where the charged surfaces neither repel nor Clearly, the surface positiong andx, compatible with a
attract each othed[=0) is described by the familiar Gouy- given pressureP will depend on the individual charging
Chapman theory for a single charged plgt&]. The decay characteristics of each surface. These charging characteris-
of the potential from its surface valu¥, at positionx, is  tics can be taken into account by an appropriate choice of
given by boundary conditions for Eq1). For the sake of simplicity, it

is rather common to consider either the electrostatic surface

¥ (x)=4 arctanfe™ “*~*V tanh(¥',/4)], 9 potential or the surface charge density as constant, and for

some types of materials, these assumptions are legitimate. A
and the derivative reads condition of “constant charge” arises naturally, for instance,
if the surface charge is due to the dissociation of very

dv Ak tanH W /4)e™ <X . strongly acidic or basic surface headgroups, like in the ex-

ax 1—tant(W /4o 2<0x) =~ 2k sinh(¥/2). ample of sulfate latex discussed below. o

(10) In many prac.tlcal snuauons,_howevgr_, a more real_lstlc
description considers the chemical equilibrium of partially
S dissociated surface groups with the bulk electrolyte at all
B. Dissimilar surfaces surface separation€6,19,34. The implied requirement of

For a given potential profile(x) of the type described constant chemical potential of the charge determining ion
by Egs.(4)—(10), the values¥ ;=¥ (x,) and¥,=W(x,) at generally entails a nontrivial, material-specific relation
any two positionsx;,X, can be interpreted as the surface
potentials of fictive) pair of charged plates. Some arbitrary (. o N—(- .
examples of such pairs of plates are indicated in Fig. 1 by the f(Fy,0)=0; for j=12 (D
bold vertical lines. The surfaces of these plates are located in
X1 andxs, they carry a charge density given by the derivativebetween the surface potential and the charge density of the
of ¥ in x; andx,, and interact across the separation distanceurfacej. This type of boundary condition usually leads to
L =|x;—X,| through the pressure associated with the func- the simultaneous variation of the charge and surface poten-
tion ¥ (x). Within the Poisson-Boltzmann approximation, tial with separation known as “charge regulatiof17,22.
two plates with an equal sign of charge can only repel eaclExamples of charge-regulating surfaces will also be dis-

other[42] as in the example of Fig.(4). cussed below.
Our previous observations suggest a simple way of calcu- It will be useful to define an individual distandg;,j
lating the separation distances between {vea) dissimilar  =1,2 of the surfacg from the origin, which has the same

charged surfaces for a given value of the pressure. We haabsolute value as thecoordinate at the position of the sur-

noted that for every nonzero pressiethe functionW(x)  face (D;|=|x;|) but will be considered as negative if the

satisfying the Poisson-Boltzmann equat[&y. (1)] is sym-  surfacej lies between the plane of origin and the second

metric or antisymmetric with respect to the origin, which surface(see Fig. 2 On the other hand, if the plane of origin

can, but need not, lie between the surfaces. and the solution-filled gap between the two surfaces lie on
The basic idea is to divide the system as illustrated in Figthe same side of the surfage then D; will be taken as

2: we will consider the surfaces separately as if they wergositive. Formally, this can be expressed as

interacting, not with each other, but with the planexatO.

For each surface, we calculate the pressure at all distances

from that plane; then we combirntosedistances of both :

surfaces that belong to the same pres$uireorder to obtain PolIxl,  else

all the surface separatiohsat which this pressure is actually (12

—Ixjl,  sgrixy/x)>0>[xj| = [x3_j] .
j=1,2.
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Egs. (7) and (8) for attractive interaction. With the above
substitutions, Eq(11) is a single transcendental equation
connecting either the pressure itsédttractive caseor the
closely related potential extremu, (repulsion to the in-
dividual distanceD; from the plane of origin. Solving this
equation for all individual distances «<D;< thus leads
to the functionP; of the pressure that the surfagexperi-

ences at any distand®; .

2. Combining the two surfaces

Since at every configuration both surfaces must experi-
ence the same pressure, only those presdRirean be real-
ized that satisfy

P=P1(D1)=P2(D) (15

for some individual distance®; and D, (which, however,
need not be unigueThe corresponding surface separation
is then given by the sum of the individual distances

L(P)=D;+D,, (16)

with only positive separationks reflecting a real situation.

At large surface separations and correspondingly weak
interaction, the surfaces are always situated on both sides of
the plane of origin like in Figs. @) or 2(d). Moreover, the
situation is always like Fig. @) as long as both surfaces
have the same sign of charge. Two surfaces with unequal
signs of charge at smaller separation may, however, be lo-
cated on the same side of the plane of origin; this situation is
sketched in Fig. @) for a repulsive and in Fig.(2) for an
attractive interaction. As the surfaces approach each other,
one of them may actually “cross” the origin, i.e., the poten-
tial on this surface may change sign if the interaction at this
separation is attractive, or the charge of this surface may be

FIG. 2. The division into two subsystems of just one surfacereyersed if the interaction is repulsive.

interacting with the plane of symmetry for the electrostatic potential
V¥ (x). The hatched area indicates the space filled by the electrolyt,
solution. In order for Eqs(4)—(8) to be applicable, the potential

must be considered in the fourth quadrart=Q, ¥<0). (a) The

situation of two surfaces with equal sign of charge. In this case the
interaction according to the Poisson-Boltzmann equation can onl
be repulsive.(b) Repelling surfaces with unequal sign of charge.

By associating each pressure that can be realized for both
Surfaces individually with the corresponding surface separa-
tions, we obtain the complete force proffi€L) for the sys-
tem of dissimilar surfaces. The actual surface potentials and
urface charge densities as a function of surface sepatation
ollow from Eqgs.(14) and (13) as the surface properties

The surface pointing away from the plane of symmetry is consid-2nd ¥ associated with the individual distandgs from the

ered to have a negative distance from that plaieg.Attracting
surfaces with equal sign of the surface potentidl.Attracting sur-
faces with unequal sign of the surface potential.

plane of origin.

Ill. EXAMPLES

Whatever the precise form of the boundary condition, it can As an illustration we apply the proposed method to two

now be applied to the differential equati@ by substituting

and
eeokgT dW
UJZSQY(D]—)?W ) (14)
0 x=|Dj|

where the functiona(x) andd¥/dx in Egs.(13) and (14)

are given by Eqsi4) and(5) for repulsive interaction and by

examples. First, we will consider a carboxyl latex surface
and a sulfate latex surface interacting across a monovalent
electrolyte at pH 4 and an ionic strength of 1IMmAs a
second example, we will discuss the interaction between a
silica surface and a rutile surface at the same ionic strength
and pH 6.5. The sulfate groups will be considered as fully
deprotonated at all times and the resulting surface charge as
constant. All other materials will be described in the frame-
work of a 1-pK-basic Stern Mode43,44. Within this
model (and forz=1), the boundary condition for a charge-
regulating surfac¢ reads38]
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TABLE |I. Exemplary materials.

Materiaf PK  Tnm™ )P (Tef/Ti)®  C(F/nP)Y
Carboxyl latex 4.9 0.5 1 o
Sulfate lateX 0.1

Silica 7.5 8.00 1 29
Rutile 5.8 12.2 1/2 1.33

SVEN HOLGER BEHRENS AND MICHAL BORKOVEC
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surface headgroups, ahg; the (reference density of pro-
tonated headgroups at which the surfaée uncharged38].
The parameters used are summarized in Table I.

A. Carboxyl latex — sulfate latex

Both latex surfaces can only be negatively charged, which
implies that only repulsive interaction is possible, and that

2The association of the tabulated properties with the individual surthe plane of symmetry for the electrostatic potentig(x)

faces of different materials is marked by the subsgriptEqg. (17)
bTotal density of surface headgroups.

always lies between the surfaces, thus only positive distances
D carboxy @Nd D gyitate from this plane have to be considered.

“Fraction of the total number of sites that are protonated in the zerbln other words, the scenario shown in Figaapplies at all

charge configuration.

dStern capacity.

®For this surface, a boundary condition of constant chasge
=gyl it has always been used.

€y en(l —Tati)— o
Vi =(PK;=pH)In 10— - 0T ot~ Lrerj) ~

+In
eorre”‘ + g;j

S
B' i

17

separationg.

The resulting pressure as a function of the surface sepa-
ration L is shown on the left hand side of Fig(a, along
with the corresponding curves for boundary conditions of
constant chargécc) or constant electrostatic potentiap)
on both surfaces. In the same representation, the left hand
side of Figs. 8b)—(e) shows the variation of the surface po-
tentials and charge densities with separation.

The dividing pressure in this system is seen to increase
monotonically with decreasing surface separation; at contact

where the pK value refers to a single deprotonation reactiorit diverges. The potential on both surfaces is negative and
st is the Stern capacityl,,; the total density of chargeable diverges forL—0 as well. The carboxylic surface loses its

CARBOXYL LATEX - SULFATE LATEX

SILICA - RUTILE

cc
reg

10

&

PRESSURE II (kPa)
PRESSURE II (kPa)

(a)

FIG. 3. The interaction be-
tween a carboxyl latex and a sul-
fate latex surfacdleft) at pH 4
and between a silica surface and a

reg
cp

001 01 1 10
L (o)

rutile surfaceright) at pH 6.5. For

-60 1\reg

both systems, an ionic strength of
1 mM (1-1-electrolyte, «~ !
=9.6 nm) has been use@) The

(b)

cl
-80 - P

CARBOXYL ITATEX 120 4

force per unit area for boundary
conditions of charge regulation
(reg), constant charge on both sur-
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static potential on both surfaces
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representation on a larger scale re-
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charge in this limit, whereas the charge on the sulfate surMoreover, the regulation behavior of this system is rather
face remains unchanged. Apart from the decharging of theimilar, at most separations, to the case of constant potential,
carboxyl groups at small separations, this system of tweven though the silica surface would not behave like a con-
dissimilar surfaces behaves in a rather similar way as th&tant potential surface when interacting with another silica
system whereboth surfaces are subject to boundary condi-surface, given the same parameters for the electro8gg

tions of constant charge—even though carboxylic surfaces Our discussion of the silica-rutile system only serves to
are known to regulate their charge rather well for the giver!lustrate the proposed computational technique, and we did
parameters of the electrolyte solutifBs]. not try to model any particular experiment. Nevertheless, it

If the potential on both surfaces is fixed, the behavior isShould be mentioned that the force between a,3ifthere

very different. At large separations, it is qualitatively the 31d @ TiQ crystal has been measured under conditions com-

same, but at a separation of 14 nm, the pressure and tr;Pé;alrable to the ones of Fig. 3. The experiment seems to indi-
charge on the carboxylic surface go through a maximumCate a rather more constant-charge-like behaj8gr Since,

: owever, the measured force does not only contain the pure
while the charge on the sulfate surface goes through zero. : . .
: . .electrostatic component but also dispersion forces and most
a separation of 7.8 nm the force is zero and the carboxyli

fikely an additional short-range repulsion, conclusions about
surface resumes its charge of the large separation limit, b y ge rep '

i She “true regulation behavior” must be drawn with caution.
cause it does not feel the presence of the sulfate surface. At

even ehort_er ‘separations th_e _force at constant potential is IV. CONCLUSION
attractive; it diverges in the limit of contact.

We have presented an exact method to calculate the

B. Silica — rutile double layer force between charge-regulating plates of dis-

The ch lati i f like the lat similar composition and charging behavior on the level of
€ charge-reguiating stica surface, fike the fatex sury,, (nonlineaj Poisson-Boltzmann theory. The proposed
faces, can only be negatively charged. The rutile surface o

the other hand, though negatively charged in isolation at thQtrategy is computationally straightforward and does not re-

h H g h | d theref uire a numerical solution of the differential equation.
chosen pr, can undergo a charge reversal, an Eretore \we have applied this strategy to the exemplary case of a
negative distancddg ;e have to be considered as well. As it

L carboxylic latex surface and a sulfate latex surface as well as
turns out, the system actually passes the situations sketcheﬁ

in Fi (b d in this ord the 1 ; the system of a silica and a rutile surface interacting across
in Figs. 2a), 2(b), and Zc), in this order, as the two surfaces a monovalent electrolyte. The amphoteric behavior of the
approach each other.

Results for the sil il N ted _ hrutile gives rise to a rather complex force profile, including a
esults for the silica-rutile system are presented on rghtyyngition from repulsion at large separations to attraction at
hand side of Fig. 3. At large separation, both surfaces behay, ort separations for a pH at which tiselatedsurfaces are

qualitatively as they would in a perfectly symmetric systemy, o negatively charged. This behavior is very different from
528]' SS tlhey ap]f)roachteatt:_hlother, ar:epuls;ve rp])ressurti aMfle interaction in systems of two identical surfaces. A de-
€ absolute surface potentials are ennhanced, whereas the é§{3Fipti0n based on the assumption of constant charge or con-

solute charge density is reduced. At a separation of 8.8 MBtant potential on bottdissimilarly chargedisurfaces misses

the rutile surface reaches its Nernst poteniipK—pH) qualitative features of the true interaction profile under con-
(In10)kgT/eg=41.4 mV and undergoes a charge reversal. Ajiions of charge regulation.

maximum pressure of 8.0 kPa is reachedlLat8.2 nm.
Upon further approach the pressure drops again, passes zero
atL=3.8 nm(at which point the silica surface resumes the ACKNOWLEDGMENTS

surface properties of an isolated surfacand eventually We would like to thank Hans Sticher for his support. This

reaches a finite contact valfief —121 kPa, see the inset of i \as financed by the Swiss National Science Founda-

Fig. 3@]. The potential at contact is'52.4 mV for both o and by the US National Science Foundati@rant No.
surfaces, while the charge density goes+b3.7 mC/n? for CTS-982079%

the rutile surface and-13.7 mC/n? for the silica surface.
This behavior is different from the one observed when both

surfaces are subject to either constant charge or constant po- APPENDIX

tential conditions. Under these simplified boundary condi-  Equation(2) already states the result of a first integration
tions, no qualitative differences are resolved between the twgf the Poisson-Boltzmann equation

different systems presented in Fig. 3: whether in the latex-

latex system or in the silica-rutile example, both times the dw\ 2
requirement of constant charge causes a monotonically in- (—) =2k? cosh¥ — k?(P+2). (A1)
creasing repulsion between approaching surfaces, and con- dx

stant potential causes an electrostatic attraction at short sepa- )

rations. Also note that for the silica surface, the regulated=XPressed in terms of

surface potential curve crosses the constant potential curve,

and the charge curves for different boundary conditions all Q(x)=exd ¥(x)—¥o] (A2)
have crossing points as well. In this sense, charge regulation

in a system of dissimilar surfaces does not lead to an interand

mediate behavior between the cases of constant charge and

constant potential as it does in systems of identical surfaces. E=exp V), (A3)



7046

Eq. (Al) reads

1
—(P+2)|.

EQ+ ) (A4)

1 dQ)\?
__) _ e

For <0 andx=0, dQ/dx is negative, and separation of
variables leads to

do’ KX
—(P+2)eQ'+1] V&

Further manipulation of the elliptic integral on the left hand
side of Eq.(A5) is greatly facilitated by using the properties
of the so-called Jacobian elliptic functiof40]. The func-
tions sn@|m), cn(u|m), and dn@|m) of argumentu and
parameterm (0=m=1) are defined as the inverse of the
following integrals:

KX

(A5)

J’Q
1 \/Qr[é_—ZQrZ

sn(u|m) dt (A6)
u: b
0 (1-t%)(1-mtd)
fcn(UIm) dt (A7)
u: 7
1 V(1—1t?)(1—m+mt?)
jdn(ulm) dt A8)
u= )
1 VA—t2)(t?—1+m)
Further elliptic functions are defined as
cd(u|m)=cn(u|m)/dn(ulm) (A9)
and
sdulm)=sn(u|m)/dn(ulm). (A10)
We will make use of their periodicity properties
sn(K(m)—u|m)=cd(ulm) (A11)
and
cn(u—K(m)|m)=+1—msdu|m), (A12)
where
K(m) Jl dt fl dt
m = =
oV(1-t2)(1-mt?) JoJ(1-t?)(1-m+mb)
(A13)
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d
ﬁdn(u|m)=—msr(u|m) cn(ulm). (A16)

1. Repulsive casdP>0)

According to Eqs(2) and (A3) positive pressures can be

expressed as
P=¢+1/6-2. (A17)
Inserting Eq.(A17) into Eq. (A5) yields

KX Q

KX dQ’
Ve 10 (1-0")(1-£Q")

:_fm 2dt
1 \J(1-t3)(1- €27

(A18)

or

mu=- |’ at
2 Lja-oa-eo
dt
(1-t%)(1- &%
=K(&)—sn (),

where the last equality uses the defining E¢513) and
(A6), and sn'! denotes the inverse function of smfn). Ac-
cording to Eq.(A11)

VO(X)

0

(A19)

Q) =sm(K(&)—u|&®)=cd(u|¢’),  (A20)

which is the result cited in Eq4).

2. Attractive case(P<0)

In the attractive casé=1, and with the substitution

_1-0 )
©=1ra; (A21)
Eq. (A5) takes the form
fw do’ (A22)
X= .
“ 0 J(1—w'?)[—Pl4+(1+Pld)w'?]

If —1<P/4=<0, then after splitting the integration domain in

Eq. (A22),

is the quarter period of the elliptic functions along the real

axis, also called the complete elliptic integral of the first kind

[40].

The derivatives of the elliptic functions needed to deduce

the the expressions faW/dx in Egs.(5) and(8) are

%sr(u|m)=cn(u|m)dn(u|m), (A14)

%cn(ulm)=—sr(u|m)dn(u|m), (A15)

[t dor= [ oo+ [ "o o,

(A23)
Egs.(A13) and (A7) can be applied to give
kx=K(1+P/4)+cn Y w|1+ P/4), (A24)
and according to EqA12)
w= - Pl4sd kx|1+P/4). (A25)
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If, on the other handP/4< —1, then after multiplication of
Eq. (A22) by — P/4, it follows from Eq.(A6) that

w=sr 3(—P)Y2%kx|1+4/P]. (A26)

Equstions(A25) and (A26) are the results cited in Eq7).

3. Limits of parameter values
Equations(A19) and (A24) imply that

KX

—K( 2
5 <K(£9)

for P>0

0=

(A27)

|

and

O=skx<sK(1+P/4) for —4<P<O, (A28)

which, in principle, limits the range of for which the de-
rived expressions fol(x) are valid. The quarter period,
however, diverges in the limit of zero pressuteen the

parametem goes to 1); therefore, at large surface separa

tions, whenW(x) must be evaluated at large the given
formulas are also valid for a large rangexofWe found that
the above mentioned conditiofi§gs.(A27) and(A28)] were
satisfied automatically for all positions relevant in this
study.

4. The linearized case

When the electrostatic potential is smgle., | (x)|<1
between the surfacgthen Eq.(1) can be linearized, and the
solution of the Debye Htkel equation,

d>w
— —k?¥=0,

2 (A29)
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corresponding to Eqgs4), (7), and(9) reads
—arccoslil+P/2) coshk x, P>0
W (x)= —|P|¥2 sinhkx, P<0
Yo KX, P=0.
(A30)

5. Superposition

If P#0 and|xxy|,|kXo|>1, then Eq.(A30) is well ap-
proximated by the linear superposition result

—2|¥{|e Xl coshwx, P>0

¥ (x)=
(x) —2|‘I'j°°|e*K|Xi‘ sinhkx, P<O0,

(A31)

where\If]-”, j= 1 or 2, is the potential of either one of the
surfaces in isolation. If these surface potentials are too high
for Eq. (1) to be linearized ¥"=1), then Eq.(A31) will

still be a good approximation for small (but largex; ,x,)
when the surface potential is replaced by the “effective po-

tential”

W7 W7 = Atank ¥ 7/4), (A32)

which in the linear theory yields the same potential decay far
away from the isolated surface as the true, “bare” potential
does in the nonlinear treatmefq. (9)] [12]. Obviously,
V4 in the limit of high bare potential®;" and the
corresponding effective charge density saturates for high
bare charger; to the valueo— 4eeqkkgT/eg, known as
the condensation limit45,46).
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