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The hydrodynamic effects on the late stage kinetics of phase separation in liquid mixtures is studied using
the modelH. Mass and momentum transport are coupled via a nonequilibrium body force, which is propor-
tional to the Peclet numbet, i.e., the ratio between convective and diffusive molar fluxes. Numerical simu-
lations based on this theoretical model show that phase separation in low viscosity, liquid binary mixtures is
mostly driven by convection, thereby explaining the experimental findings that the process is fast, with the
typical size of single-phase domains increasing linearly with time. However, as soon as sharp interfaces form,
the linear growth regime reaches an end, and the process appears to be driven by diffusion, although the
condition of local equilibrium is not reached. During this stage, the typical size of the nucleating drops
increases liket", where 3<n<3, depending on the value of the Peclet number. As the Peclet number
increases, the transition between convection- and diffusion-driven regimes occurs at larger times, and therefore
for larger sizes of the nucleating drop$1063-651X99)10611-1

PACS numbe(s): 64.70.Ja, 64.60.Cn, 64.60.Ht, 64.79.

[. INTRODUCTION work, we intend to study the behavior of phase separating
systems at later times, that is when the typical size of the
The main objective of this work is to determine whethersingle-phase domains is @(1 uwm). Therefore, we must
the linear growth regime of phase separating liquid mixturesise the third numerical approach that is generally applied to
can continue indefinitely with time or if it reaches an end,study the phase separation of liquid mixtures, namely, nu-
finding the connection between the morphology of the sysmerical integration of the coarse-grained conservation equa-
tem and its growth rate. When a binary mixture is quenchedion, generally referred to as modkl, in the taxonomy of
from its single-phase region to a temperature below thédalperin and Hohenberdl0].
composition-dependent spinodal curve, it phase separates Model H is based on the Ginzburg-Landau theory of
[1]. This process, called spinodal decomposition, is charagphase transitiofil1], which was applied to model the phase
terized by the spontaneous formation of single-phase doseparation of mixtures by Cahn and Hilliakdi2] and later
mains which then proceed to grow and coalesce. Unlikegeneralized to include hydrodynamics by Kawaddid]. In
nucleation, where an activation energy is required to initiatehis model, the equations of conservation of mass and mo-
the separation, spinodal decomposition involves the growtlmentum are coupled via the convective term of the
of any fluctuations whose wavelength exceeds a criticatonvection-diffusion equation, which is driven by a
value. Experimentally, the typical domain size is describedcomposition-dependent body force. As noted by Jasnow and
by a power-law time dependend® wheren~1/3 when Vinals[14], when the system is composed of single-phase
diffusion is the dominant mechanism of material transportdomains separated by sharp interfaces, this force incorpo-
while n~1 when hydrodynamic, long-range interactions be-rates capillary effects, and plays the role of a Marangoni
come importanf2—4]. force. ModelH shows that during the early stages of the
Dimensionally, all possible scaling of the process werephase separation proce@., spinodal decompositidnini-
summarized by Furukaw5], showing in particular that tial instabilities grow exponentially, forming, at the end,
when hydrodynamic forces are taken into account, thesingle-phase microdomains whose size corresponds to the
growth laws R(t)~(o/ %)t and R(t)~(a/p)*3?? can be fastest-growing mode, of the linear regimg15]. During
obtained, depending on whether the surface tensigmbal-  the late stages of the process, i.e., for tim93r0=)\(2)/D,
anced by viscous or inertial forces, with and p denoting  whereD is the molecular diffusivity, the system consists of
the typical viscosity and density of the mixture, respectively.well-defined patches in which the average concentration is
A growth exponenh~5/3 is also associated with inertia, but not too far from(albeit not equal tpits equilibrium value
it seems less relevant, as it has never been observed in €46]. At this point, material transport can occur either by
periments or in numerical simulations. diffusion or by convection. In cases where diffusion is the
In previous large scale molecular dynamics simulationsonly transport mechanism, both analytical calculatifhig|
[6,5], it was shown that the late time dynamics of spinodaland dimensional analysigl8] predict a growth lawR(t)
decomposition reaches a viscous scaling regime with a-t3 due to the Brownian coagulation of droplets. On the
growth exponenh=1, while n=2/3 is obtained in the iner- other hand, when hydrodynamic interactions among droplets
tial regime[7,8]. Similar results were obtained using lattice- become important, the effect of convective mass flow result-
Boltzmann simulation§9]. Molecular dynamics and lattice- ing from surface tension effects can no longer be neglected.
Boltzmann simulations, however, can only model systems ofn this case, both dimensional analygi8,19 and numerical
very small sizes and/or for very short times, while in this simulation[19—-27 indicate that viscous forces determine a
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growth law R(t)~t. On the other hand, when inertia is g=geq+%RTa2(V¢)2, ®)

dominant, the growth rate is described in terms of an expo-

nent n~2/3 [23-29. Recently, Tanaka and ArakKi26] = wherea represents the typical length of spatial inhomogene-

showed that the scaling exponent for the domain growth igties in the composition. As shown by van der Wag84],

not universal, and depends on the relative importance of hysince the surface tensian is the energy stored in the unit

drodynamic flow and diffusion. area of the interface separating two phases at local equilib-
In this work we continue to explore the influence of con-rium, we obtain

vection upon phase segregation in fluid mixtures, applying 1 RT RT

an extension of moddfl which leads to an easily integrable _tprl 2q . PRTa 2 5

set of equations. Adopting a larger system than that of pre- 772 Mw a f (V)= My (Apleg¥ =2, (4)

vious investigators’[19—22, we showed that the linear

growth regime does not continuad infinitumin time: as ~ Where A ¢)cq=($1— ¢2)eqis the concentration drop across

soon as sharp interfaces form, the system reaches a methe interface, while we have considered that the width of the

stable state, where diffusion is the driving force, characterinterfacel equals the wavelength corresponding to the fastest

ized by a much slower growth rate. In addition, the morphol-growing mode of the linear reginié5|, | ~a/y¥—2. For a

ogy of the system appears to change drastically when theypical liquid mixture near its miscibility curve we obtaan

Peclet number increases from?1@ 10¢. ~0.1 wm.
Below a certain critical temperatufie,, corresponding to
IIl. GOVERNING EQUATIONS valuesW=2, the molar free energy given by E®) is a
double-well potential, and therefore a first-order phase tran-
A. Binary mixture at equilibrium sition will take place. Now it is well known that the molar

Consider a homogeneous mixture of two spediemdB '€ energy can be written 428
with molar fractionsx,=¢ and xg=1— ¢, respectively, IRT=1u6b )
kept at temperaturé@ and pressur®. For the sake of sim- Yeq K
plicity, in our model we assume that the molecular weights,,ere w=(ua—pug) denotes the difference between the
specific volumes, and viscosities Afare equal to those &, chemical potential of specie& and B in solution, respec-
namely,Ma=Mg=My,, Vo=Vg=V, andp=ng= 17, re-  tively. This result can be extend¢i?] defining the general-
spectively, so that molar, volumetric, and mass fractions arg,eq chemical potentié&,
all equal to each other, and the mixture viscosity is compo-
sition independent. The equilibrium state of this system is ~ S8(g/RT) 9(g/RT) J(g/RT)
described by the “coarse-grained” free energy functional, Y Y A L R (6)
that is the molar Gibbs energy of mixinggeq,

and substituting Egqg1)—(3) into Eq. (6), we obtain
Ageq:geq_(gA)(A_|'gB)(B)v (1) 9 EqsD-() a6

wherege, is the energy of the mixture at equilibrium, while M=M0+|n%+‘l'(l—2¢)—azv2¢, (7)
ga andgg are the molar free energy of pure spediesndB,

respectively, at temperatuieand pressur®. The free en-  \herep,=(gg—ga)/RT.

ergy Ageqis the sum of an ideal, entropic part and an enthal-

pic part, B. Equations of motion
Age=RT ¢ INp+(1—¢)IN(1— )]+ RTY 4(1— o), Imposing that the number of particles of each species is
2) conserved, we obtain the continuity equati¢8g]
whereR is the gas constant, whil¥ is a function ofT and &JFV.(CAVA):Q (8)
P. This expression, which is generally referred to as either at

the Flory-Huggins free-energy densif27] or the one-

parameter Margules correlati¢@8], is generally derived by dCg v —0 9

considering the molecular interactions between nearest 7+ +(Cgve) =0, ©)

neighbors [29], or summing all pairwise interactions

throughout the whole systef30]. Equation(2) can also be wherec, andcg are the concentrations, whilg, andvg are

derived from first principles, assuming that theA andB-B ~ the mean velocities of speciésandB, respectively. For an

intermolecular forces are equal to each other and larger thancompressible mixture composed of species with equal

the A-B intermolecular forces, i.eE a=Fgg>Fag, Obtain-  physical properties, Eq$8) and (9) lead to the following

ing an expression fow which depends onRaa-Fag) [15].  continuity equations in terms of the mass fractiprof the A

In the following, we shall assume thRtis fixed, so that the specieswhich is equal to its mole fraction

physical state of the mixture at equilibrium depends only on

Tand¢. X V= 1v.] (10
In order to take into account the effects of spatial inho- at p )

mogeneities, Cahn and Hilliafd 2] introduced the general-

ized specific free energy, which is given by the expression V.-v=0, (11
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where p is the mixture mass density,=pp(1l— @)(Va ) pRT ~

—vp) is the diffusive mass flux, andis the average velocity nVV=Vp'=| T ¢Vu, (18)

of the mixture y=xaVa+XgVg . The velocities/, andvg are W

the sums of a convective partand a diffusive part, with p’=p— (pRT/My) . Equations(10), (1), and(18)
VA=V-DVu,, Vg=v—DVpug, (12) constitute the so-called model [10].

Now we restrict our analysis to two-dimensional systems,
whereD is a composition-independent diffusion coefficient, SO that the velocity can be expressed in terms of a stream
and we have assumed that the diffusive party,ofindvg ~ function ¢, i.e., vi=dyldr, and vo=—dy/dr,;. Conse-
are proportional to the gradients of the chemical potential§iuently, substituting Eq16) into Eq. (15), we obtain

(see Refs[33,34 for a justification of this assumptign

Consequently, the diffusive flux becomes % — VXV p+ %V i, (19
j==pd(1-¢)DVp. (13 ,
PV =V uxVe, (20
Finally, substituting(7) into (13), we obtain

_ where

]

;=—DV¢+D¢(1—¢)[a2VV2¢+2‘I’V¢ AXB=A;B,—A,B;.

+(2¢—1)VV¥]. (14) Since the main mechanism of mass transport at the begin-

ning of phase segregation is diffusion, the length scale of the

This expression foj coincides with that used in Reff15]. process is the microscopic length Therefore, using the
The termDV ¢ in Eq. (14) represents the regular diffusion scaling
flux, while the last term vanishes for small concentrations of
either solvents $§—0 or ¢—1) and for ideal mixturesg ~ 1 ~ D ~ 1
=¥ =0). Note that the? term is always stabilizing, and is r=3n t= gta =D (21)
relevant only at small length scales, whie is a known
function of the temperature, and near the critical temperaturgng supstituting Eq(14) into Eqg. (19), we obtain
T it is proportional toT,—T.

If the flow is slow enough that the dynamic terms in the o o
Navier-Stokes equation can be neglected, conservation of ==aVyxVep+V . (Vop—p(1— )2V +V?]V ),
momentum leads to the Stokes equation at

(22)
7V —Vp=—F,, (15) . B

VA=-V(V2¢)xV ¢, (23)
wheren is the mixture viscosity, which, we assume, is com-
position independent, whilg,, is a body force, which equals where
the gradient of the free enerd$0], and therefore is driven 5
by the concentration gradients within the mixt(igs,14,5 o= a®p RT (24)

p pRT\ ~
F¢ZWV9:<W)MV¢' (16 The nondimensional number is the ratio between thermal

and viscous forces, and can be interpreted as the Peclet num-
The assumption of small Reynolds number is supported bper, that is the ratio between convective and diffusive mass
the experimental observatidB5] that during phase separa- fluxes in the convection-diffusion equatiof22), i.e., «

tion of liquid mixtures with waterlike viscosity 1um drops =Va/D. HereV is a characteristic velocity, which can be
move at speeds exceeding 2@0m/s. At equilibrium, where estimated through Eqs(15 and (16) as V~F¢a2/77
the free energy is uniform, the body forée, is zero, and =aD/a, where F,~pRT/(aMy). A similar, so called

therefore there cannot be any convection. In addition, whefifluidity” parameter was also defined by Tanaka and Araki
the mixture is composed of well-defined single-phase dof26]. For systems with very large viscositg, is small, so
mains separated by a thin interface located=at, the body that the model describes the diffusion-driven separation pro-
force F, can be interpreted as a capillary forcerat i.e.  cess of polymer melts and alloyd45]. For most liquids,
[14], however,« is very large, with typical values ranging from
R . R 10° to 1. Therefore, it appears that diffusion is important
Fg(r)=[nok+(1—nn)-Volo(n-(r—rs)), a7 only at the very beginning of the separation process, in that it
R creates a nonuniform concentration field. Then the
where o is the surface tension, while and « are the unit  concentration-gradient-dependent capillary force induces the
vector perpendicular to the interface and the curvaturg,at convective material flux which is the dominant mechanism
respectively. PhysicallyF, tends to minimize the energy for mass transport. At no time, however, can the diffusive
stored at the interface, and therefore it drives, Jayich  term in Eq.(15 be neglected, as it stabilizes the interface
drops towardA-rich regions, enhancing coalescence. Noteand saturates the initial exponential growth. In addition, it
that Eqg.(15) can also be written as should be stressed that the stream functipriepends on
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high order derivatives of the concentration and therefore it isSnequality is satisfied11], the background noise does not
very sensitive to the concentration profile within the inter-affect the behavior of the system, and only determines the
face. instant of time when the system departs from its initial uni-
form state(see Fig. 7 in Vladimiroveet al. [16]): once the
linear regime is reached, the presence of the noise becomes
irrelevant.

The governing equation®2) and (23) were solved on a Both critical and off-critical quenches were considered,
uniform two-dimensional square grid with constant width with uniform initial concentration fieldgpo=0.5 and 0.45,
[(xi,y;)=(iAx,jAy),i=1N,j=1N], whereN=500, and respectively. The boundary conditions were no flux for the
time discretizatioft=nAt,n=0,1,2 .. .]. The physical di- concentration field and no slip for the velocity field. In most
mensions of the grid were chosen such that/a,Ay/a  of our simulations we use¥ =2.1, because this is the Mar-
=2, while the time step At satisfies At/(a?/D) gules parameter of the water-acetonitrile-toluene mixture
~0.1-0.001. The choice of the time st&p was determined Wwith 20 °C temperature quench that we used in our experi-
semiempirically in order to maintain the stability of the nu- mental study35]. However, simulations with different val-
merical scheme. Note that the nonlinearity of the equationsies of¥ were also performed, obtaining very similar results.
prevents a rigorous derivation of the stability constraints orlNote that, for¥ =2.1, at equilibrium the two phases have
At, but one can roughly estimate that the sizeAdf will compositions¢§q= 0.685 and¢§q= 0.315. Time was mea-
scale a®O(Ax* Ay*), which is the order of the highest op- sured ag=(10°a%/D)r, wherer is a nondimensional time.
erator in the discretized system. The space discretization we&ince typical values ofD and a are 10° cn?/s and
based on a cell-centered approximation of both the concert0® cm, respectively, them~t/(1s).
tration variable¢{}(t) and of the stream functiogy. The First, we solved Eqgs(22) and (23) for a system with
spatial derivatives in the right-hand side of E¢82) and critical uniform initial mole fractiong,=0.5 and for differ-
(23) were discretized using a straightforward second-ordeent values of the Peclet number The first row of images in
accurate approximation. The time integration frofe nAt Fig. 1 represents the results fer=0, e.g., for the case when
to t"*'=(n+1)At was achieved in two steps. First, we diffusion is the only mechanism of mass transfer, showing
computed the stream functian by solving the biharmonic that, soon after the first drops appear, they coalesce into den-
equation (23) with the source term evaluated at tim&  droidlike structures. The mean composition withjand
=nAt. The biharmonic equations was solved using thewithout) these structures changes rapidly, as at time
DBIHAR routine from netlib[36]. Second, Eq(22) was ad- =0.05 we already see two clearly distinguishable phases
vanced in time, using the velocity field computed from thewith almost uniform concentrations equal to 0.59 and 0.41.
updated stream function and a straightforward explicit EuleAfter this early stage, the structures start to grow, increasing
rian step. This makes the entire sche@@\t) accurate in  their thickness and reducing the total interface area, while at
time, which is acceptable for our problem, since the size othe same time the composition within the domains ap-
the time step is kept very small anyway by the stability con-proaches its equilibrium value. This, however, is a slow pro-
straints. The boundary conditions were no flux for the con-<ess, driven only by diffusion, and at time=0.1 the phase
centration field and no slip for the velocity field. The dis- domains still have a dendroidlike geometry with a character-
cretization of the derivatives near the boundaries wagstic width which is just twice as large as its initial value. In
modified to use only interior points. In general, our resultsthe following, we will denote these slow-changing configu-
are not very sensitive to the precise treatment of boundaryations as metastable states, referring to REf8,37 for
conditions, since the gradients remain close to zero near thrther informations on their evolution.
boundaries. For nonzero convection, i.e., fag#0, dendritic struc-

Since we did not incorporate thermal noise into our simu-ures thicken faster, but up te~ 10> domain growth still
lation, we introduced some amount of randomness into théollows the same pattern as far=0: first, single-phase do-
system through a background noise in the concentratiomains start to appear, separated from each other by sharp
field, 8¢, with (5¢)=0 and{(8¢)2)Y?=0.01, which was interfaces, and only later these structures start to grow, with
uncorrelated both in space and in time. That means that ancreasing growth rate for larger. Whena>10?, however,
each time step a spatially uncorrelated noise was added to tipdase separation occurs simultaneously with the growth pro-
concentration field, and was then subtracted at the next timeess. For example, whem=10*, we see the formation of
step, only to be replaced with another spatially uncorrelatedsolated drops of both phases, surrounded by the bulk of the
background noise of the same amplitide]. This proce- fluid mixture, which is still not separated. In addition, drops
dure which is equivalent to adding noise to the flusn the  appear to move fast and randomly while they grow, absorb-
right hand side of Eq(10), is fully conservative in the sense ing material from the bulk, colliding with each other and
that the volume integral of the compositi@his not altered coalescing, so that single-phase domains grow much faster
by addition of thead hocnoise (numerically we have veri- than when molecular diffusion is the only transport mecha-
fied that the composition is indeed conserved to machin@ism. Consider, for example, the morphology of the system
accuracy. In a separate set of numerical simulations, thermaht time 7=0.1 for «=10* and 0: in the first case, single-
fluctuations were included in the initial conditions only, as inphase domains have already reached a size comparable to
Furukawa[5], obtaining identical results. In other simula- that of the container’s, while, in the absence of convection,
tions, the physical thermal noise was used, satisfying théhe dendroid domains have an approximate width cd.20
fluctuation-dissipation theoref25], again obtaining identi- Clearly, since the motion of the interface is too quick for the
cal results. In fact, since for deep quenches the Ginzburgoncentration diffusion to establish a metastable state within

IIl. NUMERICAL RESULTS
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FIG. 1. Composition of a binary mixture at different timeafter an instantaneous quenching with=2.1 and¢,=0.5, when the Peclet
numbere is 0, 1¢, 10°, and 10. The size of the system is 488 400a, with no flux boundary conditions. The snapshots correspond to
7=0.04, 0.05, and 0.10, expressed irrd¥D units. The gray level varies linearly between black and white, corresponding to concentra-
tions ¢= s, and ¢ = g, respectively.

the microdomains, double, or multiple, phase separation imostly driven by convection, for very short times the con-

observed, in agreement with previous numerj@#,14 and  vective driving forceF , is negligible, as composition gradi-

experimenta[ 35,38 results. ents did not develop yet, and therefore diffusion is the only
Although the dynamics of phase separation in fluids ismechanism of mass transport. In fact, the two pictures in Fig.
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tures. The data points represented in these figures were ob-
tained using a domain size=1000; however, identical
results were obtained with=400a, indicating that they do

not depend on the size of the domain nor on the averaging
procedure.

As we see in Fig. 4, after a critical quench no detectable
phase separation takes place untit0.02, when the first
spinodal decomposition pattern is formed. Then phase sepa-
ration can take place in two different ways, depending on
whethera<10? or a>10°. For smallera’s, single-phase
domains develop very rapidly, until, at-0.06, they appear
to be separated by sharp interfaces. From that point on, sepa-

FIG. 2. Concentration field after an instantaneous quenchingation proceeds much more slowly, as the concentration gra-
with W =2.1 and¢,=0.5 at timet=0.02< 10°a°/D, when the Pe-  djents within the single-phase domains are very small, while
clet numbera is 0 and 10. The size of the system is 480 the concentrations of the two phases across any interface
X 400a, with no flux boundary cgnditions. Black pixels correspond change only slowly in timésee the discussion in RéfL6]).
to concentrationgh< ¢, and white ones t@> ¢,. Although Tanakd38] denoted these states as ones of local

_ _ . equilibrium, here we prefer to use the term “metastable
2 show that at timer=0.02 the concentration fields faf  gtates " considering that at stable equilibrium we should
=0 and 10 are almost indistinguishable from each Other’haves:l, while here we have<0.8. In the case of larger
with pattern; having a.charac.teristic p(_arilndequal tg th(_a a, with a>10%, the growth of the separation depth is more
fastest growing mode in the linear regime for a diffusion- graqual, revealing that separation and growth occur simulta-

driven proces$15], i.e., neously and with no detectable metastable states, although
obviously, at some later stage, sharp interfaces will eventu-
= 2ma (25) ally appear even in this case. Therefore, we may conclude

v—2' that(a) the largera is, the longer it takes for sharp interfaces

to form, and(b) local equilibrium (with s=1) is probably

A similar behavior was observed for an off-critical phasenever achieved for low-viscosity liquid mixtures. In this
separating mixture withp,=0.45 (see Fig. 3 As in the case, in facta~10"°> cm, and consequently our domain
critical case, the system tends to form larger single-phassize corresponds to 10@m, while drops start sedimenting
domains as the convection coefficienisincreases. Again, when they reach 1-mm sizes, so that the system will become
while for smallera the processes of separation and growthgravity driven and rapidly separate before reaching the scal-
occur successively in time, for larger they occur simulta- ing regime, withs=1.
neously. However, while for critical mixtures the separating For off-critical mixtures, as shown in Fig. 5, the onset of
phases tend to form interconnected domains, for off-criticaphase separation occurs at later times than in the critical
mixtures we observe the formation of isolated, mostly circu-case. In particular, the closek, is to the spinodal concen-
lar drops, with no detectable double phase separation. Thieation ¢ (in our case, with =2.1, ¢,=0.388), the longer
larger « is, the shorter the relaxation time of a drop after ait takes for the onset of phase separation. In addition, for
collision, so that fora>10? we practically do not observe off-critical mixtures the processes of separation and growth
any noncircular drops. tend to occur successively in time, even at high values of the

As a quantitative characterization of the influence of thePeclet number. For example, comparing Figs. 4 and 5, we
convection parametes on the average phase composition see that, forw=10?, the two processes occur simultaneously
within the phase domains, we define the separation dgpth in the critical case, and sequentially in the off-critical one.
measuring the “distance” of the single-phase domains fromTlhat means that off-critical mixtures are more likely to reach
their equilibrium state, i.e., a metastable state, after which single-phase domains grow

much more slowly.
_< d(r)— oo The behavior of a phase-separating system depends as
bed )~ do

much on the driving forcé=, as on the Peclet number.

Consider, for example, the behavior of two systems with
where g, is the initial composition, and the bracket indicates Peclet numbers=0 and 18. In Fig. 4 we see that, at time
volume and ensemble average. Helig, is the steady state 7=0.08 and with the samg=0.6, the system witlw=0 is
composition of theA-rich phase,¢>eAq, or the B-rich phase, in a metastable state, while that with=10? is still in the

>, with 0=s=<1, (26)

qSSq, depending on the local compositi@t(r), domain forming, separating stage. In fact, although the cap-
illary driving force F, is the same in the two caséas it is a
¢eq(r)=¢>2q, d(r)> g, (27)  function of the separation dep#), it can induce a strong
convection only for systems with small viscositiég., large
bed 1) = ¢§q, d(r)< o, (28) a’s), while for very viscous systems it has hardly any effect.

Finally, the equivalent average radius of the drdpsis
so thats=1 indicates that the system is a condition of localplotted in Fig. 6 as a function of time, with
equilibrium. In Figs. 4 and 5 the separation depth plotted
as a function of time for both critical and off-critical mix- R=(A) m, (29
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FIG. 3. Composition of a binary mixture at different timesfter an instantaneous quenching with=2.1 and¢,=0.45, when the
Peclet numbew is 0, 1%, 10°, and 10. The size of the system is 488 400a, with no flux boundary conditions. The snapshots correspond
to times7=0.04, 0.05, and 0.10, expressed irrdD units. The gray level varies linearly between black and white, corresponding to
concentrationsh= ¢4, and ¢= g, respectively.
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FIG. 4. Separation depthas a function of timer for ¥=2.1 FIG. 6. Equivalent average raditsas a function of timer for
and ¢,=0.5, and with different values of the Peclet numeer ¥=2.1 and¢,=0.45, and with different values of the Peclet num-
Results were obtained using 1@00100G simulations. ber a. Results were obtained using 1@001000 simulations.

where A is the area of a single-phase domain, while thestable state, the dominant termjois the antidiffusive term
bracket indicates, as before, volume and ensemble averaga. Eq. (14), that is |j|~p(A¢)[24(1— @)V —1](a/
The error bars have smaller widths at short times, where thg)(D/a), whereA ¢ is the concentration drop across the in-
averages were performed over500 drops, than at longer terface, whilel ~a/ ¥ —2 denotes the characteristic thick-

times, when drops were larger and the averages were pefiess of the interfacgl5]. Therefore, we obtain
formed over~50 drops. Again, our results are robust, since

identical data points were obtained using 180ind 40@& dR/dt~pB(D/a), (30

size domains. For a given value af<10*, the equivalent ) ) _

radius grows linearly with time, until it reaches a saturationWith 8~(¥ —2)%, where we have considered thak ¢).q

value, corresponding to the above-mentioned metastable V¥ —2. Equation(30) is in agreement with both experi-

state, after which it grows more slowly. In particular, when ments and numerical simulations, whe¥e=2.1.

a< 102’ we saw that metastable states grow ﬂk’éy while The above dimensional analysis can be rewritten substi-

for larger a’s they grow more rapidly a", with 1<n<i  tuting Egs.(24) and(4) into Eg. (30), obtaining

(we do not have enough data to be more spgcifin the

other hand, whemr>10%, the equivalent radius appears to d_R= g

grow linearly until it attains a value which is comparable to dt = ™y’

the size of the systerf89]. The linear growth follows the

curveR~ 10%ar=10"2Dt/a, and appears to be independentWherek,= y¥ —2/a. Equation(31) was obtained by Siggia

of a. Note that forD~10"5 cm?/s anda~10"5 cm, we [18] and San Miguekt al. [40], although their predictions,

obtaindR/dt~100 u/s, in excellent agreement with the ex- Kb=0.6 andk,=0.25, respectively, far overestimate our

perimental result§35]. growth rate results, due to the fact that their analysis is valid
The growth rate of single-phase domains can be easilfor shallow quenches, while ours assumes deep quenches.

estimated using our theoretical model, d&/dt=|j|/p,

(31)

wherej is the mass flux at the interface. Far from the meta- IV. CONCLUSIONS AND DISCUSSION
1.0 , , In this work we simulated the phase separation occurring
o= 0 when an initially homogeneous liquid binary mixture is
o= 1 deeply quenched into its two-phase region. Our theoretical
081 o=10 scheme followed the standard modielwhere mass and mo-
_______ mentum transport are coupled via a nonequilibrium body
06 | . ] force, expressing the tendency of the demixing system to
® minimize its free energy. This driving force, which for sharp
04l | interfaces reduces to capillary interaction, induces a convec-
tive material flux much larger than its diffusive counterpart,
=10 as in a typical case the Peclet numheris of order 16.
02 r a=10° ] However, as sharp interfaces form delimiting single-phase
o= 10 domains, a condition of metastable equilibrium is reached,
0.0 s s the nonequilibrium driving forcgalmos} vanishes, and the
0.05 0.10 015 0.20 process becomes diffusion driven.

T

The set of equations that we used depend on four physi-
FIG. 5. Separation depthas a function of timer for ¥=2.1  cal, measurable quantities: the typical interfacial thickreess

and ¢,=0.45, and with different values of the Peclet numher  (proportional to the surface tensipthe diffusion coefficient

Results were obtained using 1@001000 simulations. D, the kinematic viscosity;/p, and the Margules coefficient
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of the mixture, V. After rescaling velocity, time scales, and does not vanish even at such late stage of the separation
length scales, we obtain a set of two equatifrfsEqgs.(22)  process.

and(23)], that can be solved numerically using finite differ- ~Compared to previous numerical integration of moHel
ence techniques. These equations are expressed in termsegfuationg19—-22, our main contribution is to point out that
two independent parameters, namely, the Margules coeffthe I!neargrowth regime cannot co_ntinue indefinitely in time,
cient and the Peclet number; expressing the ratio between but it reaches an end as sharp interfaces are formed and

convective and diffusive molar fluxes. Our main conclusionsdiffusion becomes the dominant transport mechanism. That
can be summarized as follows. shows that the asymptotic scaling regime is not linear, but

(1) For critical quenching, the formation of sharp inter- instead corresponds to the later diffusion-driven stage, thus
faces and the growth of single-phase domains are two su(ggasolving the apparent contradiction recgntly pothd out by
cessive stages of the phase segregation process when Crant and Eldef41], who Sh_OWEdn that if there exists an
<107, while for a>10° they occur simultaneously. For off- asymptotic scaling regime witR~t", then the growth ex-

critical quenching, the transition between the two stages odlonentn must .bes'llz, In order' to prevent' the Reynolds
curs at largem’s. number from diverging at long times. Practically, however,

(2) Before the formation of sharp interfaces, the equiva-°' [arge values ofx the diffusion-driven regime might never
lent average radiuR grows linearly, withdR/dt~0.01D/a t_)e reacheq, as the nucleating drops would continue to grow
for ¥=2.1 and for alla’s, in agreement with both experi- linearly until they bgcome large enough th"?‘t buoyancy domi-
ments and a first-order dimensional analysis. This lineaP2€S surface tension effects, and the mixture separates by

growth regime ends as sharp interfaces form and the systeprfa\’ity' This occurs when the size of the domains becomes

reaches a metastable state, where diffusion is the dominafflu@! t© the capillary lengttRma=0(a/9Ap), where o is
the surface tensiorg the gravity field, andAp the density

mechanism of mass transport. As the Peclet number in-_ﬁc b h X h hich
creases, the transition from a convection-driven to af' erence between the two separating phases, which,

diffusion-driven process occurs at larger times and largefor @ typical low-viscosity liquid mixture, correspond to
sizes of the nucleating domains. Rimax=O(1 mm) [35].

(3) After the formation of sharp interfaces, the equivalent
average radiuR grows in time liket'® whena< 107, while
it grows somewhat fastefalbeit still slower thant*?) for During this work, N.V. and R.M. were supported in part
larger a’s. The condition of local equilibrium, however, is by the National Science Foundation, Grant No. CTS-
never reached, showing that the nonequilibrium body forcé634324.
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