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Two-dimensional model of phase segregation in liquid binary mixtures
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The hydrodynamic effects on the late stage kinetics of phase separation in liquid mixtures is studied using
the modelH. Mass and momentum transport are coupled via a nonequilibrium body force, which is propor-
tional to the Peclet numbera, i.e., the ratio between convective and diffusive molar fluxes. Numerical simu-
lations based on this theoretical model show that phase separation in low viscosity, liquid binary mixtures is
mostly driven by convection, thereby explaining the experimental findings that the process is fast, with the
typical size of single-phase domains increasing linearly with time. However, as soon as sharp interfaces form,
the linear growth regime reaches an end, and the process appears to be driven by diffusion, although the
condition of local equilibrium is not reached. During this stage, the typical size of the nucleating drops
increases liketn, where 1

3 ,n,
1
2 , depending on the value of the Peclet number. As the Peclet number

increases, the transition between convection- and diffusion-driven regimes occurs at larger times, and therefore
for larger sizes of the nucleating drops.@S1063-651X~99!10611-1#

PACS number~s!: 64.70.Ja, 64.60.Cn, 64.60.Ht, 64.75.1g
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I. INTRODUCTION

The main objective of this work is to determine wheth
the linear growth regime of phase separating liquid mixtu
can continue indefinitely with time or if it reaches an en
finding the connection between the morphology of the s
tem and its growth rate. When a binary mixture is quench
from its single-phase region to a temperature below
composition-dependent spinodal curve, it phase separ
@1#. This process, called spinodal decomposition, is cha
terized by the spontaneous formation of single-phase
mains which then proceed to grow and coalesce. Un
nucleation, where an activation energy is required to initi
the separation, spinodal decomposition involves the gro
of any fluctuations whose wavelength exceeds a crit
value. Experimentally, the typical domain size is describ
by a power-law time dependencetn, where n'1/3 when
diffusion is the dominant mechanism of material transpo
while n'1 when hydrodynamic, long-range interactions b
come important@2–4#.

Dimensionally, all possible scaling of the process we
summarized by Furukawa@5#, showing in particular that
when hydrodynamic forces are taken into account,
growth laws R(t);(s/h)t and R(t);(s/r)1/3t2/3 can be
obtained, depending on whether the surface tensions is bal-
anced by viscous or inertial forces, withh and r denoting
the typical viscosity and density of the mixture, respective
A growth exponentn;5/3 is also associated with inertia, b
it seems less relevant, as it has never been observed in
periments or in numerical simulations.

In previous large scale molecular dynamics simulatio
@6,5#, it was shown that the late time dynamics of spinod
decomposition reaches a viscous scaling regime with
growth exponentn51, while n52/3 is obtained in the iner
tial regime@7,8#. Similar results were obtained using lattic
Boltzmann simulations@9#. Molecular dynamics and lattice
Boltzmann simulations, however, can only model system
very small sizes and/or for very short times, while in th
PRE 601063-651X/99/60~6!/6968~10!/$15.00
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work, we intend to study the behavior of phase separa
systems at later times, that is when the typical size of
single-phase domains is ofO(1 mm). Therefore, we mus
use the third numerical approach that is generally applied
study the phase separation of liquid mixtures, namely,
merical integration of the coarse-grained conservation eq
tion, generally referred to as modelH, in the taxonomy of
Halperin and Hohenberg@10#.

Model H is based on the Ginzburg-Landau theory
phase transition@11#, which was applied to model the phas
separation of mixtures by Cahn and Hilliard@12# and later
generalized to include hydrodynamics by Kawasaki@13#. In
this model, the equations of conservation of mass and
mentum are coupled via the convective term of t
convection-diffusion equation, which is driven by
composition-dependent body force. As noted by Jasnow
Viñals @14#, when the system is composed of single-pha
domains separated by sharp interfaces, this force inco
rates capillary effects, and plays the role of a Marang
force. Model H shows that during the early stages of t
phase separation process~i.e., spinodal decomposition!, ini-
tial instabilities grow exponentially, forming, at the en
single-phase microdomains whose size corresponds to
fastest-growing model0 of the linear regime@15#. During
the late stages of the process, i.e., for timest.t05l0

2/D,
whereD is the molecular diffusivity, the system consists
well-defined patches in which the average concentration
not too far from~albeit not equal to! its equilibrium value
@16#. At this point, material transport can occur either
diffusion or by convection. In cases where diffusion is t
only transport mechanism, both analytical calculations@17#
and dimensional analysis@18# predict a growth lawR(t)
;t1/3, due to the Brownian coagulation of droplets. On t
other hand, when hydrodynamic interactions among drop
become important, the effect of convective mass flow res
ing from surface tension effects can no longer be neglec
In this case, both dimensional analysis@18,19# and numerical
simulation@19–22# indicate that viscous forces determine
6968 © 1999 The American Physical Society
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PRE 60 6969TWO-DIMENSIONAL MODEL OF PHASE SEGREGATION . . .
growth law R(t);t. On the other hand, when inertia
dominant, the growth rate is described in terms of an ex
nent n'2/3 @23–25#. Recently, Tanaka and Araki@26#
showed that the scaling exponent for the domain growth
not universal, and depends on the relative importance of
drodynamic flow and diffusion.

In this work we continue to explore the influence of co
vection upon phase segregation in fluid mixtures, apply
an extension of modelH which leads to an easily integrab
set of equations. Adopting a larger system than that of p
vious investigators’@19–22#, we showed that the linea
growth regime does not continuead infinitum in time: as
soon as sharp interfaces form, the system reaches a m
stable state, where diffusion is the driving force, charac
ized by a much slower growth rate. In addition, the morph
ogy of the system appears to change drastically when
Peclet number increases from 102 to 104.

II. GOVERNING EQUATIONS

A. Binary mixture at equilibrium

Consider a homogeneous mixture of two speciesA andB
with molar fractionsxA5f and xB512f, respectively,
kept at temperatureT and pressureP. For the sake of sim-
plicity, in our model we assume that the molecular weigh
specific volumes, and viscosities ofA are equal to those ofB,
namely,MA5MB5MW , V̄A5V̄B5V̄, andhA5hB5h, re-
spectively, so that molar, volumetric, and mass fractions
all equal to each other, and the mixture viscosity is com
sition independent. The equilibrium state of this system
described by the ‘‘coarse-grained’’ free energy function
that is the molar Gibbs energy of mixing,Dgeq,

Dgeq5geq2~gAxA1gBxB!, ~1!

wheregeq is the energy of the mixture at equilibrium, whil
gA andgB are the molar free energy of pure speciesA andB,
respectively, at temperatureT and pressureP. The free en-
ergyDgeq is the sum of an ideal, entropic part and an enth
pic part,

Dgeq5RT@f ln f1~12f!ln~12f!#1RTCf~12f!,
~2!

whereR is the gas constant, whileC is a function ofT and
P. This expression, which is generally referred to as eit
the Flory-Huggins free-energy density@27# or the one-
parameter Margules correlation@28#, is generally derived by
considering the molecular interactions between nea
neighbors @29#, or summing all pairwise interaction
throughout the whole system@30#. Equation~2! can also be
derived from first principles, assuming that theA-A andB-B
intermolecular forces are equal to each other and larger
theA-B intermolecular forces, i.e.,FAA5FBB.FAB , obtain-
ing an expression forC which depends on (FAA-FAB) @15#.
In the following, we shall assume thatP is fixed, so that the
physical state of the mixture at equilibrium depends only
T andf.

In order to take into account the effects of spatial inh
mogeneities, Cahn and Hilliard@12# introduced the general
ized specific free energyg, which is given by the expressio
-

is
y-

g

e-

ta-
r-
-
e

,

re
-
s
l,

l-

r

st

an

n

-

g5geq1
1
2 RTa2~¹f!2, ~3!

wherea represents the typical length of spatial inhomoge
ities in the composition. As shown by van der Waals@31#,
since the surface tensions is the energy stored in the un
area of the interface separating two phases at local equ
rium, we obtain

s5
1

2

rRT

MW
a2E ~“f!2dl;

rRTa

MW
~Df!eq

2 AC22, ~4!

where (Df)eq5(f12f2)eq is the concentration drop acros
the interface, while we have considered that the width of
interfacel equals the wavelength corresponding to the fas
growing mode of the linear regime@15#, l;a/AC22. For a
typical liquid mixture near its miscibility curve we obtaina
;0.1 mm.

Below a certain critical temperatureTc , corresponding to
valuesC>2, the molar free energy given by Eq.~2! is a
double-well potential, and therefore a first-order phase tr
sition will take place. Now it is well known that the mola
free energy can be written as@28#

geq/RT5mf, ~5!

where m5(mA2mB) denotes the difference between th
chemical potential of speciesA and B in solution, respec-
tively. This result can be extended@12# defining the general-
ized chemical potentialm̃,

m̃5
d~g/RT!

df
5

]~g/RT!

]f
2“•

]~g/RT!

]~“f!
, ~6!

and substituting Eqs.~1!–~3! into Eq. ~6!, we obtain

m̃5mo1 ln
f

12f
1C~122f!2a2¹2f, ~7!

wheremo5(gB2gA)/RT.

B. Equations of motion

Imposing that the number of particles of each specie
conserved, we obtain the continuity equations@32#

]cA

]t
1“•~cAvA!50, ~8!

]cB

]t
1“•~cBvB!50, ~9!

wherecA andcB are the concentrations, whilevA andvB are
the mean velocities of speciesA andB, respectively. For an
incompressible mixture composed of species with eq
physical properties, Eqs.~8! and ~9! lead to the following
continuity equations in terms of the mass fractionf of theA
species~which is equal to its mole fraction!:

]f

]t
1v•“f52

1

r
“• j , ~10!

“•v50, ~11!
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where r is the mixture mass density,j5rf(12f)(vA
2vB) is the diffusive mass flux, andv is the average velocity
of the mixture,v5xAvA1xBvB . The velocitiesvA andvB are
the sums of a convective partv and a diffusive part,

vA5v2D“mA , vB5v2D“mB , ~12!

whereD is a composition-independent diffusion coefficien
and we have assumed that the diffusive parts ofvA and vB
are proportional to the gradients of the chemical potent
~see Refs.@33,34# for a justification of this assumption!.
Consequently, the diffusive flux becomes

j52rf~12f!D“m̃. ~13!

Finally, substituting~7! into ~13!, we obtain

j

r
52D“f1Df~12f!@a2

““

2f12C“f

1~2f21!“C#. ~14!

This expression forj coincides with that used in Ref.@15#.
The termD“f in Eq. ~14! represents the regular diffusio
flux, while the last term vanishes for small concentrations
either solvents (f→0 or f→1) and for ideal mixtures (a
5C50). Note that thea2 term is always stabilizing, and i
relevant only at small length scales, whileC is a known
function of the temperature, and near the critical tempera
Tc it is proportional toTc2T.

If the flow is slow enough that the dynamic terms in t
Navier-Stokes equation can be neglected, conservatio
momentum leads to the Stokes equation

h“2v2“p52Ff , ~15!

whereh is the mixture viscosity, which, we assume, is co
position independent, whileFf is a body force, which equal
the gradient of the free energy@10#, and therefore is driven
by the concentration gradients within the mixture@25,14,5#

Ff5
r

MW
“g5S rRT

MW
D m̃“f. ~16!

The assumption of small Reynolds number is supported
the experimental observation@35# that during phase separa
tion of liquid mixtures with waterlike viscosity 10mm drops
move at speeds exceeding 200mm/s. At equilibrium, where
the free energy is uniform, the body forceFf is zero, and
therefore there cannot be any convection. In addition, w
the mixture is composed of well-defined single-phase
mains separated by a thin interface located atr5r s , the body
force Ff can be interpreted as a capillary force atr s , i.e.
@14#,

Ff~r !5@ n̂sk1~ I2n̂n̂!•“s#d„n̂•~r2r s!…, ~17!

wheres is the surface tension, whilen̂ and k are the unit
vector perpendicular to the interface and the curvature atr s ,
respectively. Physically,Ff tends to minimize the energ
stored at the interface, and therefore it drives, say,A-rich
drops towardA-rich regions, enhancing coalescence. N
that Eq.~15! can also be written as
,
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h“2v2“p85S rRT

MW
Df“m̃, ~18!

with p85p2(rRT/MW)m̃f. Equations~10!, ~11!, and~18!
constitute the so-called modelH @10#.

Now we restrict our analysis to two-dimensional system
so that the velocityv can be expressed in terms of a strea
function c, i.e., v15]c/]r 2 and v252]c/]r 1. Conse-
quently, substituting Eq.~16! into Eq. ~15!, we obtain

]f

]t
5“c3“f1

1

r
“• j , ~19!

h¹4c5“m3“f, ~20!

where

A3B5A1B22A2B1 .

Since the main mechanism of mass transport at the be
ning of phase segregation is diffusion, the length scale of
process is the microscopic lengtha. Therefore, using the
scaling

r̃ 5
1

a
r , t̃ 5

D

a2
t, c̃5

1

aD
c, ~21!

and substituting Eq.~14! into Eq. ~19!, we obtain

]f

] t̃
5a“̃c̃3“̃f1“̃•~“̃f2f~12f!@2C1“̃

2#“̃f!,

~22!

“̃

4c̃52“̃~“̃2f!3“̃f, ~23!

where

a5
a2

D

r

h

RT

MW
. ~24!

The nondimensional numbera is the ratio between therma
and viscous forces, and can be interpreted as the Peclet n
ber, that is the ratio between convective and diffusive m
fluxes in the convection-diffusion equation~22!, i.e., a
5Va/D. Here V is a characteristic velocity, which can b
estimated through Eqs.~15! and ~16! as V;Ffa2/h
5aD/a, where Ff;rRT/(aMW). A similar, so called
‘‘fluidity’’ parameter was also defined by Tanaka and Ara
@26#. For systems with very large viscosity,a is small, so
that the model describes the diffusion-driven separation p
cess of polymer melts and alloys@15#. For most liquids,
however,a is very large, with typical values ranging from
103 to 105. Therefore, it appears that diffusion is importa
only at the very beginning of the separation process, in th
creates a nonuniform concentration field. Then t
concentration-gradient-dependent capillary force induces
convective material flux which is the dominant mechani
for mass transport. At no time, however, can the diffus
term in Eq. ~15! be neglected, as it stabilizes the interfa
and saturates the initial exponential growth. In addition
should be stressed that the stream functionc depends on
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PRE 60 6971TWO-DIMENSIONAL MODEL OF PHASE SEGREGATION . . .
high order derivatives of the concentration and therefore
very sensitive to the concentration profile within the inte
face.

III. NUMERICAL RESULTS

The governing equations~22! and ~23! were solved on a
uniform two-dimensional square grid with constant wid
@(xi ,yj )5( iDx, j Dy),i 51,N, j 51,N#, where N5500, and
time discretization@ t5nDt,n50,1,2, . . . #. The physical di-
mensions of the grid were chosen such thatDx/a,Dy/a
52, while the time step Dt satisfies Dt/(a2/D)
'0.1–0.001. The choice of the time stepDt was determined
semiempirically in order to maintain the stability of the n
merical scheme. Note that the nonlinearity of the equati
prevents a rigorous derivation of the stability constraints
Dt, but one can roughly estimate that the size ofDt will
scale asO(Dx4,Dy4), which is the order of the highest op
erator in the discretized system. The space discretization
based on a cell-centered approximation of both the conc
tration variablef i j

n (t) and of the stream functionc. The
spatial derivatives in the right-hand side of Eqs.~22! and
~23! were discretized using a straightforward second-or
accurate approximation. The time integration fromtn5nDt
to tn115(n11)Dt was achieved in two steps. First, w
computed the stream functionc by solving the biharmonic
equation ~23! with the source term evaluated at timetn

5nDt. The biharmonic equations was solved using
DBIHAR routine from netlib@36#. Second, Eq.~22! was ad-
vanced in time, using the velocity field computed from t
updated stream function and a straightforward explicit Eu
rian step. This makes the entire schemeO(Dt) accurate in
time, which is acceptable for our problem, since the size
the time step is kept very small anyway by the stability co
straints. The boundary conditions were no flux for the co
centration field and no slip for the velocity field. The di
cretization of the derivatives near the boundaries w
modified to use only interior points. In general, our resu
are not very sensitive to the precise treatment of bound
conditions, since the gradients remain close to zero near
boundaries.

Since we did not incorporate thermal noise into our sim
lation, we introduced some amount of randomness into
system through a background noise in the concentra
field, df, with ^df&50 and ^(df)2&1/250.01, which was
uncorrelated both in space and in time. That means tha
each time step a spatially uncorrelated noise was added t
concentration field, and was then subtracted at the next
step, only to be replaced with another spatially uncorrela
background noise of the same amplitude@16#. This proce-
dure which is equivalent to adding noise to the fluxj on the
right hand side of Eq.~10!, is fully conservative in the sens
that the volume integral of the compositionf is not altered
by addition of thead hocnoise~numerically we have veri-
fied that the composition is indeed conserved to mach
accuracy!. In a separate set of numerical simulations, therm
fluctuations were included in the initial conditions only, as
Furukawa@5#, obtaining identical results. In other simula
tions, the physical thermal noise was used, satisfying
fluctuation-dissipation theorem@25#, again obtaining identi-
cal results. In fact, since for deep quenches the Ginzb
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inequality is satisfied@11#, the background noise does n
affect the behavior of the system, and only determines
instant of time when the system departs from its initial u
form state~see Fig. 7 in Vladimirovaet al. @16#!: once the
linear regime is reached, the presence of the noise beco
irrelevant.

Both critical and off-critical quenches were considere
with uniform initial concentration fieldsf050.5 and 0.45,
respectively. The boundary conditions were no flux for t
concentration field and no slip for the velocity field. In mo
of our simulations we usedC52.1, because this is the Mar
gules parameter of the water-acetonitrile-toluene mixt
with 20 °C temperature quench that we used in our exp
mental study@35#. However, simulations with different val
ues ofC were also performed, obtaining very similar resul
Note that, forC52.1, at equilibrium the two phases hav
compositionsfeq

A 50.685 andfeq
B 50.315. Time was mea

sured ast5(105a2/D)t, wheret is a nondimensional time
Since typical values ofD and a are 1025 cm2/s and
1025 cm, respectively, thent;t/(1s).

First, we solved Eqs.~22! and ~23! for a system with
critical uniform initial mole fractionf050.5 and for differ-
ent values of the Peclet numbera. The first row of images in
Fig. 1 represents the results fora50, e.g., for the case whe
diffusion is the only mechanism of mass transfer, show
that, soon after the first drops appear, they coalesce into
droidlike structures. The mean composition within~and
without! these structures changes rapidly, as at timet
50.05 we already see two clearly distinguishable pha
with almost uniform concentrations equal to 0.59 and 0.
After this early stage, the structures start to grow, increas
their thickness and reducing the total interface area, whil
the same time the composition within the domains a
proaches its equilibrium value. This, however, is a slow p
cess, driven only by diffusion, and at timet50.1 the phase
domains still have a dendroidlike geometry with a charac
istic width which is just twice as large as its initial value.
the following, we will denote these slow-changing config
rations as metastable states, referring to Refs.@16,37# for
further informations on their evolution.

For nonzero convection, i.e., foraÞ0, dendritic struc-
tures thicken faster, but up toa'102 domain growth still
follows the same pattern as fora50: first, single-phase do
mains start to appear, separated from each other by s
interfaces, and only later these structures start to grow, w
increasing growth rate for largera. Whena.102, however,
phase separation occurs simultaneously with the growth
cess. For example, whena5104, we see the formation o
isolated drops of both phases, surrounded by the bulk of
fluid mixture, which is still not separated. In addition, dro
appear to move fast and randomly while they grow, abso
ing material from the bulk, colliding with each other an
coalescing, so that single-phase domains grow much fa
than when molecular diffusion is the only transport mech
nism. Consider, for example, the morphology of the syst
at time t50.1 for a5104 and 0: in the first case, single
phase domains have already reached a size comparab
that of the container’s, while, in the absence of convecti
the dendroid domains have an approximate width of 20a.
Clearly, since the motion of the interface is too quick for t
concentration diffusion to establish a metastable state wi
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FIG. 1. Composition of a binary mixture at different timest after an instantaneous quenching withC52.1 andf050.5, when the Pecle
numbera is 0, 102, 103, and 104. The size of the system is 400a3400a, with no flux boundary conditions. The snapshots correspon
t50.04, 0.05, and 0.10, expressed in 105a2/D units. The gray level varies linearly between black and white, corresponding to conce
tions f5feq

A andf5feq
B , respectively.
n

i

n-
-
nly
ig.
the microdomains, double, or multiple, phase separatio
observed, in agreement with previous numerical@26,14# and
experimental@35,38# results.

Although the dynamics of phase separation in fluids
is

s

mostly driven by convection, for very short times the co
vective driving forceFf is negligible, as composition gradi
ents did not develop yet, and therefore diffusion is the o
mechanism of mass transport. In fact, the two pictures in F
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2 show that at timet50.02 the concentration fields fora
50 and 104 are almost indistinguishable from each oth
with patterns having a characteristic periodl equal to the
fastest growing mode in the linear regime for a diffusio
driven process@15#, i.e.,

l5
2pa

AC22
. ~25!

A similar behavior was observed for an off-critical pha
separating mixture withf050.45 ~see Fig. 3!. As in the
critical case, the system tends to form larger single-ph
domains as the convection coefficientsa increases. Again
while for smallera the processes of separation and grow
occur successively in time, for largera they occur simulta-
neously. However, while for critical mixtures the separati
phases tend to form interconnected domains, for off-criti
mixtures we observe the formation of isolated, mostly circ
lar drops, with no detectable double phase separation.
largera is, the shorter the relaxation time of a drop afte
collision, so that fora.102 we practically do not observe
any noncircular drops.

As a quantitative characterization of the influence of
convection parametera on the average phase compositi
within the phase domains, we define the separation deps,
measuring the ‘‘distance’’ of the single-phase domains fr
their equilibrium state, i.e.,

s5 K f~r !2f0

feq~r !2f0
L , with 0<s<1, ~26!

wheref0 is the initial composition, and the bracket indicat
volume and ensemble average. Herefeq is the steady state
composition of theA-rich phase,feq

A , or the B-rich phase,
feq

B , depending on the local compositionf(r ),

feq~r !5feq
A , f~r !.f0 , ~27!

feq~r !5feq
B , f~r !,f0 , ~28!

so thats51 indicates that the system is a condition of loc
equilibrium. In Figs. 4 and 5 the separation depths is plotted
as a function of time for both critical and off-critical mix

FIG. 2. Concentration field after an instantaneous quench
with C52.1 andf050.5 at timet50.023105a2/D, when the Pe-
clet numbera is 0 and 104. The size of the system is 400a
3400a, with no flux boundary conditions. Black pixels correspo
to concentrationsf,f0, and white ones tof.f0.
,

-

se

l
-
he

e

l

tures. The data points represented in these figures were
tained using a domain sizeL51000a; however, identical
results were obtained withL5400a, indicating that they do
not depend on the size of the domain nor on the averag
procedure.

As we see in Fig. 4, after a critical quench no detecta
phase separation takes place untilt;0.02, when the first
spinodal decomposition pattern is formed. Then phase s
ration can take place in two different ways, depending
whethera,102 or a.103. For smallera ’s, single-phase
domains develop very rapidly, until, att;0.06, they appear
to be separated by sharp interfaces. From that point on, s
ration proceeds much more slowly, as the concentration
dients within the single-phase domains are very small, wh
the concentrations of the two phases across any inter
change only slowly in time~see the discussion in Ref.@16#!.
Although Tanaka@38# denoted these states as ones of lo
equilibrium, here we prefer to use the term ‘‘metastab
states,’’ considering that at stable equilibrium we shou
haves51, while here we haves<0.8. In the case of large
a, with a.103, the growth of the separation depth is mo
gradual, revealing that separation and growth occur simu
neously and with no detectable metastable states, altho
obviously, at some later stage, sharp interfaces will even
ally appear even in this case. Therefore, we may concl
that ~a! the largera is, the longer it takes for sharp interface
to form, and~b! local equilibrium ~with s51) is probably
never achieved for low-viscosity liquid mixtures. In th
case, in fact,a;1025 cm, and consequently our doma
size corresponds to 100mm, while drops start sedimentin
when they reach 1-mm sizes, so that the system will beco
gravity driven and rapidly separate before reaching the s
ing regime, withs51.

For off-critical mixtures, as shown in Fig. 5, the onset
phase separation occurs at later times than in the crit
case. In particular, the closerf0 is to the spinodal concen
trationfs ~in our case, withC52.1, fs50.388), the longer
it takes for the onset of phase separation. In addition,
off-critical mixtures the processes of separation and gro
tend to occur successively in time, even at high values of
Peclet number. For example, comparing Figs. 4 and 5,
see that, fora5103, the two processes occur simultaneous
in the critical case, and sequentially in the off-critical on
That means that off-critical mixtures are more likely to rea
a metastable state, after which single-phase domains g
much more slowly.

The behavior of a phase-separating system depend
much on the driving forceFf as on the Peclet numbera.
Consider, for example, the behavior of two systems w
Peclet numbersa50 and 103. In Fig. 4 we see that, at time
t50.08 and with the sames50.6, the system witha50 is
in a metastable state, while that witha5103 is still in the
domain forming, separating stage. In fact, although the c
illary driving forceFf is the same in the two cases~as it is a
function of the separation depths), it can induce a strong
convection only for systems with small viscosities~i.e., large
a ’s!, while for very viscous systems it has hardly any effe

Finally, the equivalent average radius of the drops,R, is
plotted in Fig. 6 as a function of time, with

R5A^A&/p, ~29!

g
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FIG. 3. Composition of a binary mixture at different timest after an instantaneous quenching withC52.1 andf050.45, when the
Peclet numbera is 0, 102, 103, and 104. The size of the system is 400a3400a, with no flux boundary conditions. The snapshots corresp
to timest50.04, 0.05, and 0.10, expressed in 105a2/D units. The gray level varies linearly between black and white, correspondin
concentrationsf5feq

A andf5feq
B , respectively.
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where A is the area of a single-phase domain, while t
bracket indicates, as before, volume and ensemble ave
The error bars have smaller widths at short times, where
averages were performed over;500 drops, than at longe
times, when drops were larger and the averages were
formed over;50 drops. Again, our results are robust, sin
identical data points were obtained using 1000a and 400a
size domains. For a given value ofa,104, the equivalent
radius grows linearly with time, until it reaches a saturati
value, corresponding to the above-mentioned metast
state, after which it grows more slowly. In particular, wh
a<102, we saw that metastable states grow liket1/3, while
for larger a ’s they grow more rapidly astn, with 1

3 ,n, 1
2

~we do not have enough data to be more specific!. On the
other hand, whena.104, the equivalent radius appears
grow linearly until it attains a value which is comparable
the size of the system@39#. The linear growth follows the
curveR;103at51022Dt/a, and appears to be independe
of a. Note that forD;1025 cm2/s anda;1025 cm, we
obtaindR/dt;100 m/s, in excellent agreement with the e
perimental results@35#.

The growth rate of single-phase domains can be ea
estimated using our theoretical model, asdR/dt5u j u/r,
wherej is the mass flux at the interface. Far from the me

FIG. 4. Separation depths as a function of timet for C52.1
and f050.5, and with different values of the Peclet numbera.
Results were obtained using 1000a31000a simulations.

FIG. 5. Separation depths as a function of timet for C52.1
and f050.45, and with different values of the Peclet numbera.
Results were obtained using 1000a31000a simulations.
e
ge.
e
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stable state, the dominant term ofj is the antidiffusive term
in Eq. ~14!, that is u j u;r(Df)@2f(12f)C21#(a/
l )(D/a), whereDf is the concentration drop across the i
terface, whilel;a/AC22 denotes the characteristic thick
ness of the interface@15#. Therefore, we obtain

dR/dt;b~D/a!, ~30!

with b;(C22)2, where we have considered that (Df)eq

;AC22. Equation~30! is in agreement with both experi
ments and numerical simulations, whereC52.1.

The above dimensional analysis can be rewritten sub
tuting Eqs.~24! and ~4! into Eq. ~30!, obtaining

dR

dt
5kb

s

h
, ~31!

wherekb5AC22/a. Equation~31! was obtained by Siggia
@18# and San Miguelet al. @40#, although their predictions
kb50.6 and kb50.25, respectively, far overestimate o
growth rate results, due to the fact that their analysis is va
for shallow quenches, while ours assumes deep quench

IV. CONCLUSIONS AND DISCUSSION

In this work we simulated the phase separation occurr
when an initially homogeneous liquid binary mixture
deeply quenched into its two-phase region. Our theoret
scheme followed the standard modelH, where mass and mo
mentum transport are coupled via a nonequilibrium bo
force, expressing the tendency of the demixing system
minimize its free energy. This driving force, which for sha
interfaces reduces to capillary interaction, induces a conv
tive material flux much larger than its diffusive counterpa
as in a typical case the Peclet numbera is of order 105.
However, as sharp interfaces form delimiting single-pha
domains, a condition of metastable equilibrium is reach
the nonequilibrium driving force~almost! vanishes, and the
process becomes diffusion driven.

The set of equations that we used depend on four ph
cal, measurable quantities: the typical interfacial thicknesa
~proportional to the surface tension!, the diffusion coefficient
D, the kinematic viscosityh/r, and the Margules coefficien

FIG. 6. Equivalent average radiusR as a function of timet for
C52.1 andf050.45, and with different values of the Peclet num
ber a. Results were obtained using 1000a31000a simulations.
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of the mixture,C. After rescaling velocity, time scales, an
length scales, we obtain a set of two equations@cf. Eqs.~22!
and~23!#, that can be solved numerically using finite diffe
ence techniques. These equations are expressed in term
two independent parameters, namely, the Margules co
cient and the Peclet numbera, expressing the ratio betwee
convective and diffusive molar fluxes. Our main conclusio
can be summarized as follows.

~1! For critical quenching, the formation of sharp inte
faces and the growth of single-phase domains are two
cessive stages of the phase segregation process wha
,102, while for a.103 they occur simultaneously. For off
critical quenching, the transition between the two stages
curs at largera ’s.

~2! Before the formation of sharp interfaces, the equiv
lent average radiusR grows linearly, withdR/dt;0.01D/a
for C52.1 and for alla ’s, in agreement with both experi
ments and a first-order dimensional analysis. This lin
growth regime ends as sharp interfaces form and the sys
reaches a metastable state, where diffusion is the domi
mechanism of mass transport. As the Peclet number
creases, the transition from a convection-driven to
diffusion-driven process occurs at larger times and lar
sizes of the nucleating domains.

~3! After the formation of sharp interfaces, the equivale
average radiusR grows in time liket1/3 whena,102, while
it grows somewhat faster~albeit still slower thant1/2) for
larger a ’s. The condition of local equilibrium, however, i
never reached, showing that the nonequilibrium body fo
.

m

,
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ett

ev

tt
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of
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does not vanish even at such late stage of the separa
process.

Compared to previous numerical integration of modelH
equations@19–22#, our main contribution is to point out tha
the linear growth regime cannot continue indefinitely in tim
but it reaches an end as sharp interfaces are formed
diffusion becomes the dominant transport mechanism. T
shows that the asymptotic scaling regime is not linear,
instead corresponds to the later diffusion-driven stage, t
resolving the apparent contradiction recently pointed out
Grant and Elder@41#, who showed that if there exists a
asymptotic scaling regime withR;tn, then the growth ex-
ponentn must be<1/2, in order to prevent the Reynold
number from diverging at long times. Practically, howev
for large values ofa the diffusion-driven regime might neve
be reached, as the nucleating drops would continue to g
linearly until they become large enough that buoyancy do
nates surface tension effects, and the mixture separate
gravity. This occurs when the size of the domains becom
equal to the capillary length,Rmax5O(s/gDr), wheres is
the surface tension,g the gravity field, andDr the density
difference between the two separating phases@18#, which,
for a typical low-viscosity liquid mixture, correspond t
Rmax5O(1 mm) @35#.
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