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Stress propagation through frictionless granular material

Alexei V. Tkachenko and Thomas A. Witten
The James Franck Institute, The University of Chicago, Chicago, Illinois 60637

~Received 16 November 1998!

We examine the network of forces to be expected in a static assembly of hard, frictionless spherical beads
of random sizes, such as a colloidal glass. Such an assembly is minimally connected: the ratio of constraint
equations to contact forces approaches unity for a large assembly. However, the bead positions in a finite
subregion of the assembly are underdetermined. Thus to maintain equilibrium, half of the exterior contact
forces are determined by the other half. We argue that the transmission of force may be regarded as unidirec-
tional, in contrast to the transmission of force in an elastic material. Specializing to sequentially deposited
beads, we show that forces on a given buried bead can be uniquely specified in terms of forces involving more
recently added beads. We derive equations for the transmission of stress averaged over scales much larger than
a single bead. This derivation requires the ansatz that statistical fluctuations of the forces are independent of
fluctuations of the contact geometry. Under this ansatz, thed(d11)/2-component stress field can be expressed
in terms of ad-component vector field. The procedure may be generalized to nonsequential packings. In two
dimensions, the stress propagates according to a wave equation, as postulated in recent work elsewhere. We
demonstrate similar wavelike propagation in higher dimensions, assuming that the packing geometry has
uniaxial symmetry. In macroscopic granular materials we argue that our approach may be useful even though
grains have friction and are not packed sequentially.@S1063-651X~99!02007-3#

PACS number~s!: 45.05.1x, 83.70.Fn
a
a

he
ta
-
th
o

th
ce
n
ar
he
h
ith
t

he
o
p
a
e
e
f
r
os
o
an
t.
le

t,

o

f

a
p-
is

in
by

on
al
ear
try.

or
is
of

ion,
the
ys
e

rce

c-
c-

be
in

the

il-
ip-
in
el

es
I. INTRODUCTION

The nature of the forces within a static pile of grains h
proven more subtle than one might expect. Such a pile is
assembly of many hard, spheroidal bodies that maintain t
positions via a balance of gravitational forces and con
forces with their neighbors@1,2#. On the one hand, determin
ing these forces is a prosaic equilibrium problem. Since
number of grains is large, the long-established notions
continuum solid mechanics appear applicable. On the o
hand, a pile of grains or beads is not a solid. The for
between beads are more problematic than those betwee
atoms of a conventional solid. These latter forces
smoothly varying on the scale of the separation and t
arise from a potential energy that includes attraction. T
forces on a grain are different. First, they vary sharply w
interparticle distance, and there is no attraction. Second,
frictional part of a contact force is not determined by t
macroscopic positions of the grains. Rather, it depends
how each contact was formed. The resulting macrosco
behavior of the pile is also clearly different from that of
conventional solid. Arbitrarily slight forces can disturb th
pile, so that the notion of stable equilibrium is suspect. D
spite these complexities, we expect the mechanics o
granular pile to be universal. Hard, round grains appea
form piles of the same nature independent of their comp
tion or detailed shape. We are led to think of these as n
deformable objects that exert normal forces of constraint
transverse forces limited by Coulomb’s static friction limi

Recently, a puzzling discovery has underlined the subt
of the forces in a conical heap of poured sand@3#. The sup-
porting force under the center, where the pile is deepes
not maximal. Instead, the maximal force occurs along
circle lying between the edge and the center of the pile. Fr
this circle the force decreases to aminimumat the center. In
PRE 601063-651X/99/60~1!/687~10!/$15.00
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order to explain this puzzling ‘‘central dip,’’ a number o
inventive approaches have been taken. Some@4# seek to ac-
count for the minimum qualitatively by viewing the pile as
stack of concentric ‘‘wigwams,’’ whose sloping sides su
port the load. Others@5# have shown that the central dip
compatible with the conventional continuum mechanics,
which the pile is viewed as a central elastic zone flanked
an outer plastic zone which is at the Coulomb static fricti
limit. A third group @6–8# has argued that granular materi
requires a new constitutive law, a homogeneous, local, lin
constraint on the stress arising from the packing geome
We shall call it a ‘‘null stress’’ law. Their proposed law
gives a continuum mechanics as simple as that of a liquid
a solid, yet different from either. The hallmark of this law
the hyperbolic equations governing the transmission
forces. Hyperbolic equations, such as the wave equat
obey causality. The wave at the present is unaffected by
future. In the null-stress picture, the vertical direction pla
the role of time. Accordingly, forces at a given point in th
pile are only influenced by forces above that point. Fo
propagatesas in a traveling wave. The transmission isuni-
directional, in contrast with conventional continuum elasti
ity. The equations of continuum mechanics are elliptical. A
cording to these, a contact within the pile should
influenced by all the forces above or below it, as sketched
Fig. 1.

A separate approach has given indirect evidence for
unidirectional transmission of forces. Coppersmith’s@9# heu-
ristic q model aims to account for the point-to-point variab
ity of the contact forces. It imposes a unidirectional prescr
tion for determining the downward forces from one grain
terms of the forces acting on it from above. Both this mod
and refinements@10,11# of it yield an exponential falloff of
probability for large forces. This exponential falloff agre
well with measured distributions@9,12,13#. This exponential
687 ©1999 The American Physical Society
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688 PRE 60ALEXEI V. TKACHENKO AND THOMAS A. WITTEN
falloff contrasts with the Gaussian falloff expected for a h
erogeneous elastic solid.

In this paper we grapple with the relationship between
conventional elastic view and the newer null-stress pictu
Our work builds on several recent studies of the relations
between the connectivity of a structure and the force tra
mission in it. Alexander’s recent review@14# has explored
the nature of unconstrained degrees of freedom in a m
mally connected or isostatic@1# network. Ball and Edwards
@15# have explored force transmission through minima
connected networks, assuming a fixed coordination num
for all particles. They have shown that such lattices can h
constitutive equations of the null-stress form. Our main a
here is to broaden the class of systems that must show
directional force transmission, as required by the null-str
picture.

We present the discussion of the problem of stress tra
mission in a granular packing on several levels of genera
In Secs. II–IV we focus on properties of the system of fr
tionless, spherical beads. Possible experimental realiza
are hard-sphere colloidal dispersions@16,17# or weakly de-
formed droplet emulsions@18#. First, in Sec. II we use gen
eral counting arguments to show that such a packing is m
mally coupled. We then relate this fact to the inadequacy
elastic description for such a system. For a small subsys
within the pile a counting of equations and unknowns sho
that approximately half of the surface forces transmit
from outside the subsystem are redundant. In equilibri
these cannot be independently specified, but have a fi
relation to the other half of the forces. This requirement
balance amongst many forces implies the existence of
modes—infinitesimal deformations with no restoring forc
In the continuum limit, the soft modes impose conditions
the stress field of the null-stress form.

In order to obtain the particular form of such macrosco
description, we limit further discussion to so-called sequ
tial packing specified in Sec. III. In Sec. IV we give a m
croscopic prescription for determining the contact forces i

FIG. 1. Contrast between elastic~elliptical! and unidirectional
~hyperbolic! force propagation in a sand-pile shaped object.~a!
Elastic response to an imposed local downward force. Pictured
of force represent the current of vertical force, i.e., the stress c
tracted into a downward unit vector. Near the source, this field
symmetric about a horizontal plane through the object@32#; part of
the force is transmitted through points above the source.~b! Unidi-
rectional response to an imposed local downward force. The
posed force is transmitted to neighbors below the source, an
further transmitted to neighbors below these. No force is trans
ted to points above the source.
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unidirectional way, and develop a Green’s-function form
ism for determining the forces in thed-dimensional sequen
tial packing. This picture allows one to decouple the geom
ric features of the packing from the pattern of transmitt
forces. In Sec. IV we also explore the macroscopic con
quences of these force laws, leading to an expression for
stress tensor withd variables rather than thed(d11)/2 vari-
ables of a general stress tensor. In two dimensions, our
malism places a constraint on the stress, whose form ag
with the null stress law of Wittmeret al. @6#. In higher di-
mensions, the constraints on the stress also lead to a u
rectional equation for the transmission of stress in the fo
of a wave equation. In Sec. VI we consider the relevance
our findings for real granular piles, which are not seque
tially packed and which have friction. Friction can alter th
transmission of forces qualitatively, restoring the elas
transmission of stress.

II. UNDERDETERMINATION
WITHIN A FRICTIONLESS PACK

In this section we consider how the constraints inheren
the packing of impenetrable, frictionless beads determine
contact forces between the beads. Forces in frictionless p
have been studied by simulation@19–22#. Theoretical prop-
erties of the forces have been established for simplified s
tems @15,23,24#. We begin with a summary of the well
recognized enumeration of equations and unknowns,
discussed, e.g., by Alexander@14# and by the Cambridge
group@15#. We then consider the role of external forces a
ing on a subregion of the pack, and show that a subse
these suffices to determine the others.

For definiteness we consider a system of rigid spher
beads whose sizes are chosen randomly from some con
ous distribution. We suppose that the diameters of all
spheres are specified and the topology of their packing
given. That is, all the pairs of contacting beads are specifi
The topology can be characterized by the average coord
tion number, i.e., the average number of nearest neighb
Z̄52Nc /M ~hereNc is the total number of contacts, andM
is the number of beads!. The necessary condition for th
packing of a given topology to be realizable in a space
dimensionalityd is that the coordinates of the bead cente
xa satisfy the following equations, one for each pair of co
tacting beadsa andb:

~xa2xb!25~Ra1Rb!2. ~1!

Here Ra ,Rb are the radii of the beads. There areNc such
equations~one for each contact!, and Md variables (d for
each bead!. The number of equations should not exceed
number of variables; otherwise, the coordinatesxa are over-
determined. Thus, the coordination number of a geome
cally realizable packing should not exceed the critical va
of 2d: Z̄<2d. We assume all the equations imposed by
topological constraints to be independent. If they were
independent, they would become so upon infinitesimal va
tion of the bead sizes. For instance, the hexagonal packin
two dimensions has the coordination number 6 which
higher than the critical value,^Z&54; but the extra contacts
are eliminated by an infinitesimal variation of the bead
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PRE 60 689STRESS PROPAGATION THROUGH FRICTIONLESS . . .
ameters. In other words, the creation of a contact netw
with coordination number higher than 2d occurs with prob-
ability zero in an ensemble of spheres with a continuo
distribution of diameters. We shall ignore such zero-meas
situations henceforth.

The above consideration gives the upper limit on the
erage coordination numberZ̄. The lower limit can be ob-
tained from the analysis of mechanical stability of the pa
ing: it gives a complementary inequality:Z̄>2d. We will
consider a packing to be mechanically stable if there i
nonzero measure set of external forces which can be
anced by interbead ones. The packing of frictionless sph
is always characterized bŷZ&52d, as we now show. Sta
bility requires that the net force on each bead be zero; th
are Md such equations. The forces in theseMd equations
are theNc contact forces. TheMd equilibrium conditions
determine the magnitudes of theNc contact forces.~Their
directions are determined by the geometry of the packin!
The number of equilibrium equationsMd should not exceed
the number of force variablesNc ; otherwise these force
would be overdetermined. ThusMd<Nc , or Z̄>2d. To
avoid both overdetermined co-ordinates and overdeterm
forces, we must thus haveZ̄52d.

Similar counting arguments have been discussed pr
ously @14,23#. A subset of them has been applied to granu
packs with friction@15#. Here we emphasize a further featu
of a frictionless bead pack that has not been well apprecia
the coordinates and forces within a subregion of a large b
pack are necessarilyunderdetermined. Quantifying this inde-
terminacy will play an important role in our reasoning b
low. To exhibit the indeterminacy, we consider some co
pact region within the packing, containingM 8 beads. This
unbiased selection of beads must have the same averag
ordination numberZ̄ as the system as a whole:Z̄852d. Let
Next be the number of contacts of this sub-system with
ternal beads, andNint be the number of the internal contact
The average coordination numberZ̄8 can be expressedZ̄8
5(Next12Nint)/M 8 ~any internal contact should be counte
twice!. Since there areM 8d equations of force balance fo
these beads, one is able to determine allNext1Nint contact
forces in the system, wheneverM 8d5Next1Nint . Evidently,
if the forces on theNext contacts are not specified, the inte
nal forces cannot be computed: the system is underde
mined. The number of external forcesN0 required is given
by N05M 8d2Nint . This N0 may be related to the averag
coordination numberZ̄8:

N05M 8Fd2
Z̄8

2
G1

Next

2
. ~2!

We now observe that the quantity in@•••# vanishes on
average. This is because the average ofZ̄8 for any subset of
particles is the same as the overall average. There is no
tematic change ofZ̄8 with M 8. Thus if one-half~on average!
of mutually independent external forces is known~let us call
them ‘‘incoming’’ ones!, the analysis of force balance in th
region enables one to determine all the remaining forc
including the other half of external ones~‘‘outgoing’’ !. We
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are free to choose the incoming contacts at will, provid
these give independent constraint equations.

This observation supports the unidirectional, propagat
stress picture, discussed in the Introduction. Indeed, one
apply the above arguments to the slabs of the packing
ated by cutting it with horizontal surfaces. In a given slab
material, we choose the forces from the slab above as
incoming forces. According to the preceding argument, th
should determine the outgoing forces transmitted to the s
beneath. This must be true provided that the constraints f
the upper slab are independent.

Such force transmission contrasts with that of a so
body, as emphasized in the Introduction. If a given set
forces is applied to the top of a slab of elastic solid, t
forces on the bottom are free to vary, provided the total fo
and torque on the slab are zero. Yet in our bead pack, wh
appears equally solid, we have just concluded that stab
conditions determine all the bottom forces individually.
deducing this peculiar behavior, we did not exclude tens
forces; we may replace all the contacts by stiff springs t
can exert strong positive or negative force, without alter
our reasoning. In this sense our result is different from
recent similar result of Moukarzel@23#. The origin of the
peculiar behavior lies in the minimal connectivity of th
beads.

In a subregion of the minimal network, the constraints c
be satisfied with no internal forces. Moreover, numero
~roughlyNext/2) small external displacements can be appl
to the subregion without generating proportional restor
forces. We call these motions with no restoring force ‘‘so
modes.’’ If we replace these external displacements with
ternal forces and require no motion, compensating for
must be applied elsewhere to prevent motion of the s
modes. If the applied forces perturb all the soft modes, th
must be one compensating force for each applied force
prevent them from moving—on averageNext/2 of them. The
subregion is ‘‘transparent’’ to external forces, allowing the
to propagate individually through the region.

This transparent behavior would be lost if further sprin
were added to the minimal network, increasingZ̄. Then the
forces on a subregion would be determined even with
external contacts. The addition of external displaceme
would deform the springs, and produce proportional res
ing forces. There would be no soft modes, and no trans
ency to external forces.

A simple square lattice of springs provides a concr
example of the multiple soft modes predicted above. Its e
tic energy has the form

H5KE dx dy@~uxx!21~uyy!2#. ~3!

This functional does not depend onuxy, thus there are shea
deformations (uxx5uyy50) which cost no elastic energy
This means that the stress field should be orthogonal to
such mode, i.e.,

s i j uo
i j 50, ~4!

whereuo
xx5uo

yy50, anduo
xy is an arbitrary function of (x;y).

The above equation implies thatsxy50, i.e., the principal
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690 PRE 60ALEXEI V. TKACHENKO AND THOMAS A. WITTEN
axes of the stress tensor are fixed and directed alongx andy.
This provides a necessary closure for the standard ma
scopic equation of force balance,

] is i j 5 f ext
j ; ~5!

herefext is an external force. Sincesxy50 the two unknown
components of the stress field,sxx andsyy propagate inde-
pendently along the corresponding characteristics,x5const
andy5const:

]xsxx5 f ext
x , ~6!

]ysyy5 f ext
y . ~7!

The propagation of the solution along characteristics
property of hyperbolic problems such as wave equation.
above equations without external force imply that each co
ponent of the stress tensorŝ satisfies a wave equation of th
form

S ]2

]t2 2
]2

]s2D ŝ50, ~8!

wheret[x1y ands[x2y. Thus, the fact that the origina
elastic energy has the soft modes results in hyperbolic, ra
than elliptic equations for the stress field. One has now
specify the surface forces~or displacements! at a single non-
characteristic surface—a line not parallel tox or y— in order
to determine the stress field in all the sample.

A frictionless granular packing behaves similar to this e
ample: they both are minimally coupled, they both have s
modes, they both have unidirectional propagation. In b
examples only the surface of the sample stabilizes the
modes. The above consideration of regular lattice can
easily extended to the case of arbitrary angle between
characteristic directionsx and y. Instead of starting with a
square lattice, we could have applied a uniformx-y shear,
altering the angle between the horizontal and verti
springs. The reasoning above holds for this lattice just as
the original square one.

The nature of the soft modes in a disordered bead pac
less obvious than in this lattice example. We have
proven, for instance, that all the forces acting on the top o
slab correspond to independent soft modes, which determ
the forces at the bottom. Otherwise stated, we have
shown that the soft modes seen in the microscopic displ
ments have continuum counterparts in the displacement
of the region. However, the following construction, as in t
lattice example above, suggests that the soft modes sur
in the continuum limit.

To construct the pack, we place circular disks one a
time into a two-dimensional vertical channel of widthL.
~Such sequential packings will figure prominently in the ne
section.! Since the disks are of different sizes, the pack
will be disordered. We place each successive disk at
lowest available point until the packed disks have reache
height of orderL, as shown in Fig. 2. We now construct
second packing, starting from a channel of slightly grea
width L1d. We reproduce the packing constructed in t
o-
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first channel as far as possible. We use an identical sequ
of disks and place each at the lowest point, as before. Th
must be a nonvanishing range ofd for which the contact
topology is identical. The motion of the wall over this rang
is thus a soft mode. As the side wall moves, the top surf
will move by some amounte, proportional tod. Now, in-
stead of holding the side wall fixed, we exert a given forcef x

on it. Likewise, we place a lid on the top, remove gravi
and exert another forcef y. Evidently unlessf x/ f y5e/d, a
motion of the soft mode would result in work, and the sy
tem would move. Thusf y plus the condition of no motion
determinesf x. This condition translates into an imposed pr
portionality between the stressessyy andsxx, as in the lat-
tice example above. The soft modes have continuum co
quences.

III. SEQUENTIAL PACKING UNDER GRAVITY

In the previous section we have shown that a packing
frictionless spherical beads is an anomalous solid from
point of view of classical elastic theory. The fact that t
average coordination number in such a packing is exactlyd
for the infinite system supports unidirectional, propagat
stress. Now we elaborate this concept in more detail, by
riving particular laws for microscopic and macroscopic for
transfer adopting a particular packing procedure. We supp
that the beads are deposited one by one in the presenc
gravity. The weight of any new sphere added to the exist
packing must be balanced by the reactions of the suppor
beads. This is possible only if the number of such support
contacts is equal to the dimensionalityd. Any larger number
of contacts requires a specific relationship between the s
and coordinates of the supporting beads, and thus oc
with vanishing probability. As a result, the eventual packi
has an average coordination number 2d, similar to any
stable, frictionless pack. In addition, it has a further proper
a partial timelike ordering. Namely, among any two conta
ing beads there is always one which has found its place
lier than the other~the supporting one!, and any bead has
exactly d such supporting neighbors. Note that the suppo
ing bead is not necessarily situated below the supported

FIG. 2. A sequential packing in a channel. When the left wal
displaced outward by a small amountd, the beads shift to the po
sitions shown by dashed lines, and the top of the pile shifts by
amounte.
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PRE 60 691STRESS PROPAGATION THROUGH FRICTIONLESS . . .
in the geometrical sense. The discussed ordering is topo
cal rather than spatial.

One could expect that although any bead has exactd
supporters at the moment of deposition, this may cha
later. Specifically, adding an extra bead to the packing m
result in the violation of positivity of some contact force
the bulk @7#. This will lead to a rearrangement of the ne
work. For the moment we assume that the topology of
sequential packing is preserved in the final state of the
tem, and return to the effect of rearrangements in Sec. V

The partial ordering of the sequential packing consid
ably simplifies the calculation of the force distribution. I
deed, any force applied to a bead can be uniquely dec
posed into thed forces on the supporting contacts. Th
means that the force balance enables us to determine a
‘‘outcoming’’ ~downward! forces if the ‘‘incoming’’ ones
are known. Therefore, there is a simple unidirectional pro
dure of determination of all the forces in the system. Belo
we use this observation to construct a theory of stress pr
gation on the macroscopic scale.

IV. MEAN-FIELD STRESS

We will characterize any interbead contact in a sequen
packing with a unit vector directed from the center of su
ported beada toward the supporting oneb,

nab5
xb2xa

uxb2xau
. ~9!

The stress distribution in the frictionless packing is given i
non-negative magnitude of the force acting along any of
above contact unit vector is specified. We denote such sc
contact force asf ab.

The total force to be transmitted from some beada to its
supporting neighbors is the sum of all the incoming and
ternal ~e.g., gravitational! forces:

Fa5~ fext!a1 (
b(→a)

nba f ba . ~10!

Hereb(→a) denotes all the beads supported bya. Since
there are exactlyd supporting contacts for any bead in
sequential packing, the above force can be uniquely dec
posed onto the correspondingd components, directed alon
the outcoming vectorsnag . This gives the values of the ou
coming forces. Thef ’s may be compactly expressed in term
of a generalized scalar product^•••u•••&a :

f ag5^Faunag&a . ~11!

The scalar product^•••u•••&a is defined such tha
^nagunag8&a5dgg8 ~all the Greek indices count beads, n
spatial dimensions!. In general, it does not coincide with th
conventional scalar product. If now some force is applied
certain bead in the packing, the above projective proced
allows one to determine the response of the system, i.e.
change of the contact forces between all the beads below
given one. In other words one can follow how the perturb
tion propagates downward. Since the equations of mech
cal equilibrium are linear, and beads are assumed to be
gi-
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enough to preserve their sizes, the response of the syste
the applied force is also linear. This linearity can be d
stroyed only by violating the condition of positivity of th
contact forces, which implies the rearrangement of the pa
ing. While the topology~and geometry! of the network is
preserved, one can introduce the Green’s function to desc
the response of the system to the applied forces. Nam
force fl applied to certain beadl results in the following
additional force acting on another beadm ~lying below l):

fm5Ĝml•fl . ~12!

HereĜlm is a tensor Green function, which can be calcula
as the superposition of all the projection sequences~i.e., tra-
jectories!, which lead froml to m.

The stress fields i j in the system of frictionless spherica
beads can be introduced in the following way@25#:

s i j ~x!5(
a

(
b(←a)

f abnab
i nab

j Rabd~xa2x!. ~13!

HereRab5uxa2xbu. As we have just shown, the magn
tude of the forcef ab transmitted along the contact unit ve
tor nab can be expressed as an appropriate projection of
total forceFa acting on the beada from above. This allows
one to express the stress tensor in terms of the vector
Fa :

s i j ~x!5(
a

(
b(←a)

^Faunab&anab
i nab

j Rabd~xa2x!.

~14!

In order to obtain the continuous macroscopic descript
of the system, one has to perform the averaging of the st
field over a region much larger than a bead. At this stage
make a mean-field approximation for the forceFa acting on
a given bead from above: we replaceFa by its averageF̄
over the region. To be valid, this assumption requires tha

(
ab

^~Fa2F̄!unab&anab
i nab

j Rab!(
ab

^F̄unab&anab
i nab

j Rab .

~15!

For certain simple geometries, the mean-field approxim
tion is exact. One example is the simple square lattice trea
in Sec. II. In any regular lattice with one bead per unit ce
all the Fa’s must be equal under any uniform applied stre
Thus replacingFa by its average changes nothing. If th
lattice is distorted by displacing its soft modes, theFa are no
longer equal and the validity of the mean-field approxim
tion can be tested. Figure 3 shows a periodic distortion w
fourbeads per unit cell. For example, under an applied ve
cal force, the bottom forces oscillate to the left and rig
Nevertheless, the stress crossing the bottom row, simila
that crossing the row above it, is the average force times
length. One may verify that theFa may also be replaced b
its average when the applied force is horizontal. Though
mean-field approximation is exact in these cases, it is cle
not exact in all. In the lattice of Fig. 3 the mean field a
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proximation may be inexact if one considers a region
equal to a whole number of unit cells.

A disordered packing may be viewed as a superposi
of periodic soft modes such as those of Fig. 3. Each s
mode produces fluctuating forces, such as those of the
ample. But after averaging over an integer number of u
cells, the stress may depend on only the average forceF̄. A
disordered packing need not have a fixed coordination n
ber as our example does. This is another possible sourc
departure from the mean-field result.

Now, it becomes an easy task to perform a local aver
ing of Eq. ~14! for the stress field in the vicinity of a give
point x, replacingFa by its average

s i j̄ ~x!5rFk̄~x!tki j~x!. ~16!

Here r is the bead density,F̄(x) is the forceFa averaged
over the beadsa in the vicinity of the pointx, and the third-
order tensort̂ characterizes the local geometry of the pac
ing:

tki j~x!5unab&a
k nab

i nab
j Rab . ~17!

This equation is similar in spirit to one derived by Edwar
for the case of ad11 coordinated packing of spheres wi
friction @26#. Our geometric tensort plays a role analogou
to that of the fabric tensor in that treatment.

The stress field satisfies the force balance equation,
~5!. Since this is a vector equation, it normally fails to give
complete description of the tensor stress field. In our ca
however, the stress field has been expressed in terms o
vector fieldF. This creates a necessary closure for the fo
balance equation. It is important to note that the propo
macroscopic formalism is complete for a system of arbitr
dimensionality: there is a single vector equation and a sin
vector variable. We now discuss the application of the ab
macroscopic formalism in two special cases. First we c
sider the equations of stress propagation in two dimensi
Then we discuss a packing of arbitrary dimensionality
with uniaxial symmetry. It is assumed to have no prefer
direction other than that of gravity.

A. Two-dimensional packing

In two dimensions, according to Eq.~16!, the stress tenso
ŝ can be written as a linear combination of twot tensors

ŝ5F1ŝ11F2ŝ2 , ~18!

FIG. 3. A buckled square lattice illustrating the propagation
inhomogeneous forces. Bottom row of sites has alternating w
and narrow spacing. Arrows indicate the unequal forces on th
sites.
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where@ŝ1# i j 5t1i j and@ŝ2# i j 5t2i j . Since theŝ1 andŝ2 are
properties of the medium and are presumed known, the p
lem of finding the stress profileŝ(x) becomes that of finding
F1 and F2 under a given external load. Rather than det
mining theseF ’s directly, we may view Eq.~18! as a con-
straint onŝ. The form~18! constrainsŝ to lie in a subspace
of the three-dimensional space of stress componentsW
[(sxx,syy,sxy). It must lie in the two-dimensional sub
space spanned bysW 1 andsW 2. This constraint amounts to on
linear constraint on the components ofs, of the form

s i j ui j 50, ~19!

where theû tensor is determined byŝ1 andŝ2. Specifically,
û may be found by observing that the determinant of
vectorssW , sW 1 , sW 2 must vanish. Expanding the determina
by minors to obtain the coefficients of thes i j , one finds

û5S Us1
yy s2

yy

s1
xy s2

xyU Us1
xx s2

xx

s1
yy s2

yyU
Us1

xx s2
xx

s1
yy s2

yyU Us1
xy s2

xy

s1
xx s2

xxU D . ~20!

Equation ~19! has the same ‘‘null-stress’’ form as tha
introduced by Wittmeret al. @6#, whose original arguments
were based on a qualitative analysis of the problem. By
appropriate choice of the local coordinates (j,h), the û ten-
sor can be transformed into coordinates such thatujj5uhh

50. Then the null stress condition becomessjh5shj50.
This implies that, according to force balance equation~5!,
the nonzero diagonal components of the stress ten
‘‘propagate’’ independently along the corresponding char
teristics,j5const andh5const:

]jsjj5 f ext
j , ]hshh5 f ext

h . ~21!

Our microscopic approach gives an alternative foundat
for the null-stress condition, Eq.~19!, and allows one to re-
late the tensorû in this equation to the local geometry of th
packing. Our general formalism is not limited to the tw
dimensional case, and in this sense, is a generalization o
null-stress approach.

B. Axially symmetric packing

Generally, there are two preferred directions in the
quential packing: that of the gravitational force,g, and that
of the growth surfacen. In the case when these two dire
tions coincide, the form of the third-order tensort̂, Eq. ~17!,
should be consistent with the axial symmetry associated w
the single preferred direction,n. Sincetki j is symmetric with
respect toi↔ j permutation, it can be only a linear combin
tion of three tensors:nkninj , nkd i j , and dkinj1dk jni , for
general spatial dimensiond.

Let s i j be the stress tensor in thed-dimensional space
( i , j 50, . . . ,d21, and index 0 corresponds to the vertic
direction!. From the point of view of rotation around th
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PRE 60 693STRESS PROPAGATION THROUGH FRICTIONLESS . . .
vertical axis the stress splits into scalars00,
(d21)-dimensional vector s0a (a51, . . . ,d21)
(d21)-dimensional tensorsab. According to our constitu-
tive Eq. ~16!, the stress should be linear in vectorF, which
itself splits into a scalarF0 and a vectorFa with respect to
horizontal rotations. Since the material tensort is by hypoth-
esis axially symmetric, the only way that the ‘‘scalar’’s00

may depend onF is to be proportional to ‘‘scalar’’F0. Like-
wise, the only way ‘‘tensor’’sab can be linear inF is to be
proportional todabF0. Therefore, in the axially symmetri
case

sab5ldabs00, ~22!

where the constantl is, e.g., t011/t000. This constitutive
equation allows one to convert the force balance equation~5!
to the following form:

]0s001]asa05 f ext
0 , ]0sa01l]as005 f ext

a . ~23!

In the case of no external force, we may take]0 of the first
equation and combine with the second to yield a wave eq
tion for s00. Evidently sab, being a fixed multiple ofs00,
obeys the same equation. Similar manipulation yields
same wave equation fors0a andsa0. Thus every componen
of stress satisfies the wave equation with vertical direct
playing the role of time andAl being the propagation veloc
ity.

V. DISCUSSION

In this section we consider how well our model shou
describe real systems of rigid, packed units. As stated ab
our model is most relevant for emulsions or dense colloi
suspensions, whose elementary units are well describe
frictionless spheres. Under very weak compression the fo
between such units match our model assumptions. Howe
our artificial procedure of sequential packing bears no ob
ous resemblance to the arrangements in real suspension
argue below that our model may well have value even w
the packing is not sequential. More broadly we may consi
the connection between our frictionless model and r
granular materials with friction. The qualitative effect
adding friction to our sequential packing is to add constra
so that the network of contacts is no longer minimally co
nected. Thus the basis for a null-stress description of
force transmission is compromised. We argue below t
friction should cause forces to propagate as in an elastic
dium, not via null-stress behavior.

A. Sequential packing

We first consider the consequences of our sequen
packing assumption. One consequence is that each bea
exactlyd supporting contacts. These lead successively to
lier particles, forming a treelike connectivity from support
beads to supporters. Although the counting arguments
Sec. II show that the propagating stress approach shoul
applicable to a wide class of frictionless systems, the c
tinuum description of Sec. IV depends strongly on the
sumed sequential order. Now, most packings are not seq
tial, and even when beads are deposited in sequence,
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may undergo rearrangements that alter the network of c
nections. However, it is possible to modify our arguments
take account of such rearrangements. Our reasoning dep
on the existence ofd supporting contacts for each bead. Fu
ther, every sequence of supporting contacts starting a
given bead must reach the boundary of the system with
passing through the starting bead: there must be no clo
loops in the sequence.

Even in a nonsequential packing we may define a netw
of supporting contacts. First we define a downward directi
Then, for any given bead in the pack, wedefinethe support-
ing contacts to be thed lowest contacts. With probability 1
each bead has at leastd contacts. Otherwise it is not stable
Typically a supporting bead lies lower than the given be
Thus the typical sequence of supporting contacts leads
dominantly downward, away from the given bead, and
turns only rarely to the original height. A return to the orig
nal bead must be even more rare. One may estimate
probability that there is a loop path of supporting conta
under simple assumptions about the packing. As an exam
we suppose the contacts on a given bead to be rando
distributed amongst the 12 sites of a randomly orien
close-packed lattice. We further imagine that these sites
chosen independently for each bead, with at least one be
the horizontal. Then the paths are biased random walks w
a mean steplength of 0.51 diameters and a root-mean-sq
steplength of about 1.2 times the mean. The probability o
net upward displacement of 1 or more diameter is about 1
It appears that our neglect of loop paths is not unreasona

B. Friction

The introduction of friction strongly affects most of ou
arguments. Friction creates transverse as well as nor
forces at the contacts. The problem is to determine positi
and orientations of the beads that lead to balanced forces
torques on each. If the contact network is minimally co
nected, the forces can be determined without referenc
deformations of the particle. But if the network has ad
tional constraints, it is impossible to satisfy these witho
considering deformation. This is no less true if the beads
presumed very rigid. We first give an example to show t
in a generic packing the deformability alters the force dis
bution substantially. We then give a prescription for defini
the deformation and hence the contact forces unamb
ously.

In our example we imagine a two-dimensional sequen
packing and focus on a particular bead, labeled 0, as pictu
in Fig. 4. We presume that the beads are deposited gently
that each contact forms without tangential force. Thus wh
the bead is deposited, it is minimally connected: its weig
determines the two~normal! supporting forces, labeled 1 an
2. Thenceforth no slipping is allowed at the contact. La
during the construction of the pack bead 0 must support
force from some subsequent bead. This new force is norm
since it too arises from an initial contact. But the new for
creates tangential forces on the supporting contacts 1 an
To gauge their magnitude, we first suppose that there is
friction at contacts 1 and 2, while the supporting beads
main immobile. Then the added forceF leads to a compres
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sion. We denote the compression of the contact 1 asd. With
no friction, the contact 2 would undergo a slipping displac
ment by an amount of orderd. Friction forbids this slipping
and decrees deformation of the contact instead. The orig
displacement there would create an elastic restoring forc
the same order as the originalF. Thus the imposition of
friction creates new forces whose strength is comparabl
those without friction. The frictional forces are not neg
gible, even if the beads are rigid. Increasing the rigidity le
ens the displacementsd associated with the given forceF,
but it does not alter the ratio of frictional to normal force
Neither are the frictional forces large compared to the nor
forces. Thus a coefficient of frictionm of order unity should
be sufficient to generate enough frictional force to prev
slipping of a substantial fraction of the contacts.

The contact forcesT1 and T2 cannot be determined b
force balance alone, as they could in the frictionless ca
Now the actual contact forces are those which minimize
elastic energy of deformation near the two contacts. T
argument holds not just for spheres but for general roun
objects.

Though the new tangential forces complicate the deter
nation of the forces, the determination need not be amb
ous. We illustrate this point for a sequential packing on
bumpy surface with perfect friction. We choose a placem
of the successive beads so that no contact rearrangem
occur. If only a few beads have been deposited in the c
tainer, the forces are clearly well determined. Further, if
forces are presumed well determined up to theM th bead,
they remain so upon addition of the (M11)st bead. We
presume as before that the new bead exerts only no
forces on its immediate supporters. Each supporter thus
periences a well-defined force, as shown in Sec. II. But
hypothesis, these supporting beads are part of a w
connected, solid object, whose contacts may be regarde
fastened together. Thus the displacements and rotation
each bead are a well-defined function of any small app
load. Once the (M11)st bead has been added, its support
contacts also support tangential force, so that it respond
future loads as part of the elastic body.

FIG. 4. The effect of friction on a triad of beads. In the absen
of friction, the applied forceF is transmitted entirely to contact 1
causing a displacementd. This would result in a sliding displace
ment of contact 2 by an amountd. With friction, contact 2 cannot
slide; it must deform the contact region by an amount of orderd.
Thus the applied forceF is shared between contacts 1 and 2. T
force is distributed so as to minimize the total elastic energy
contacts 1 and 2.
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We conclude that a sequential packing with perfect fr
tion, under conditions that prevent contact rearrangeme
transmits forces as a solid body. Small changes in stressds i j

in a region give rise to proportional changes in the str
dgkl . This proportionality is summarized by an elastici
tensorKi jk l : ds i j 5Ki jk l dgkl . The elastic tensorK should
depend in general on how the pack was formed; thus it m
well be anisotropic.

This elastic picture is compromised when the limitatio
of friction are taken into account. As new beads are add
underlying contacts such as contacts 1 and 2 of Fig. 4 m
slip if the tangential force becomes too great. Each slipp
contact relaxes so as to satisfy a fixed relationship betw
its normal force N and its tangential forceT: viz., uTu
5muNu. If m were very small, virtually all the contact
would slip until their tangential force was nearly zero. Th
the amount of stress associated with the redundant c
straints must become small and the corresponding ela
moduli must become weak. Moreover, asm approaches 0,
the material on any given scale must become difficult
distinguish from a frictionless material with unidirection
stress propagation. Still, redundant constraints remain on
average and thus the ultimate behavior at large length sc
~for a given m) must be elastic, provided the material r
mains homogeneous.

C. Force-generated contacts

Throughout the discussion of frictionless packs we ha
ignored geometric configurations with probability zero, su
as beads with redundant contacts. Such contacts occur
close-packed lattice of identical disks, for example. Thou
such configurations are arbitrarily rare in principle, they m
nevertheless play a role in real bead packs. Real bead p
have a finite compressibility; compression of beads can
ate redundant contacts. Thus for example a close-packed
tice of identical spheres has six contacts per bead, but if th
is a slight variability in size, the number of contacts drops
4. The remaining two beads adjacent to a given bead do
quite touch. These remaining beads can be made to to
again if sufficient compressive stress is applied. Such str
induced redundant contacts must occur in a real bead
some nonzero density under any nonzero load. These e
contacts serve to stabilize the pack, removing the indeter
nate forces discussed in Sec. II. To estimate the importa
of this effect, we consider a large bead pack compressed
a small factorg. This overall strain compresses a typic
contact by a factor of orderg as well. The number of new
contacts may be inferred from the pair correlation functi
g(r ). Data on thisg(r ) is available for some computer
generated sequential packings of identical spheres of ra
R @27#. These data show thatg(r ) has a finite value near 1 a
r 52R. Thus the number of additional contacts per bead t
form under a slight compression by an amountdr is given by
dZ̄56fg(2R)dr /R.4g. Here f.0.6 is the volume frac-
tion of the beads. These extra contacts impose constra
that reduce the number of undetermined boundary forces
compact region containingM 8 beads and roughlyM 82/3 sur-
face beads. The remaining number of undetermined bou
ary forces now averages12 Next2M 8dZ̄. The first term is of
orderM 82/3, and must thus be smaller than the second te

e
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for M 81/3.(dZ̄)21. For M 8 larger than this amount, ther
are no further undetermined forces and the region beco
mechanically stable. Moukarzel@23# reaches a similar con
clusion by a somewhat different route.

If the pack is compressed by a factor ofg, stability occurs
for M 81/3*1/g—a region roughly 1/g beads across. In a
typical experiment@28# the contact compressiong is 1024 or
less, and the system size is far smaller than 104 beads. Thus
compression-induced stability should be a minor effect he
Still, this compression-induced stability might well play
significant role for large and highly compressed bead pa
such as compressed emulsions@20#. In some of the large
packs of Ref.@3#, compression-induced stability may also
important.

D. Experimental evidence

We have argued above that undeformed, frictionl
beads should show unidirectional, propagating forces w
beads with friction should show elastic spreading of forc
The most direct test of these contrasting behaviors is to m
sure the response to a local perturbing force@7#. Thus, e.g., if
the pile of Fig. 1 is a null-stress medium, the local perturb
force should propagate along a light cone and should thu
concentrated in a ringlike region at the bottom@8#. By con-
trast, if the pile is an elastic medium the perturbing for
should be spread in a broad pattern at the bottom, wit
maximum directly under the applied force. Existing expe
mental information seems inadequate to test either pre
tion, but experiments to measure such responses ar
progress@29#.

As noted above, emulsions and colloids are good real
tions of the frictionless case. The contacts in such syst
are typically organized by hydrostatic pressure or by flo
rather than by gravity. Still, our general arguments for u
directional propagation should apply. Extensive mechan
measurements of these systems have been made@16,18#. The
shear modulus study of Weitz and Mason@18# illustrates the
issues. The study spans the range from liquidlike behavio
low volume fractions to solidlike behavior at high volum
fractions. In between these two regimes should lie a s
where the emulsion droplets are well connected but li
deformed. The emulsion in this state should show unidir
tional force transmission. It is not clear how this should
fect the measured apparent moduli.

Other indirect information about force propagation com
from the load distribution of a granular pack on its contain
such as the celebrated central dip under a conical hea
sand@3#. These data amply show that the mechanical pr
erties of a pack depend on how it was constructed. Theo
postulating null-stress behavior have successfully explai
these data@6#. But conventional elastoplastic theories ha
also proved capable of producing a central dip@5#. An an-
isotropic elastic tensor may also be capable of explaining
central dip.

Another source of information is the statistical distrib
tion of individual contact forces within the pack or at i
boundaries. The measured forces become exponentially
for strong forces@9,12#. Such exponential falloff is predicte
by Coppersmith’s ‘‘q model’’ @9#, which postulates unidirec
tional force propagation. Still, it is not clear whether th
es
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exponential falloff is a distinguishing feature of unidire
tional propagation. A disordered elastic material might w
show a similar exponential distribution.

Computer simulations should also be able to test our p
dictions. Recent simulations@20,30,31# have focussed on
stress-induced restructuring of the force-bearing contact
work. We are not aware of a simulation study of the tran
mission of a local perturbing force. Such a perturbation stu
seems quite feasible and would be a valuable test. We h
performed a simple simulation to test the mean-field desc
tion of stress in frictionless packs. Preliminary results ag
well with the predictions. An account of our simulations w
be published separately.

VI. CONCLUSION

In this study we have aimed to understand how force
transmitted in granular media, whether via elastic respo
or via unidirectional propagation. We have identified a cla
of disordered systems that ought to show unidirectio
propagation. Namely, we have shown that in a general ca
system of frictionless rigid particles must be isostatic,
minimally connected. That is, all the interparticle forces c
in principle be determined from the force balance equatio
This contrasts with statically undetermined, elastic syste
in which the forces cannot be determined without se
consistently finding the displacements induced by th
forces. Our general equation-counting arguments sug
that isostatic property of the frictionless packing results
the unidirectional propagation of the macroscopic stress.

We were able to demonstrate this unidirectional propa
tion explicitly by specializing to the case of sequential pac
ing. Here the stress obeys a condition of the previously p
tulated null-stress form @6#; our system provides a
microscopic justification for the null-stress postulate. F
ther, we could determine the numerical coefficients enter
the null-stress law from statistical averages of the con
angles by using a mean field hypothesis~decoupling ansatz!.
We have devised a numerical simulation to test the adequ
of the sequential packing assumption and the mean-field
pothesis. The results will be reported elsewhere.

If we add friction in order to describe macroscopic gran
lar packs more accurately, the packing of rigid particles
longer needs to be isostatic, and the system is expecte
revert to elastic behavior. This elasticity does not arise fr
softness of the beads or from a peculiar choice of con
network. It arises because contacts that provide only mini
constraints when created can provide redundant constra
upon further loading.

We expect our formalism to be useful in understand
experimental granular systems. It is most applicable to de
colloidal suspensions, where static friction is normally ne
ligible. Here we expect null-stress behavior to emerge
scales large enough that the suspension may be consid
uniform. We further expect that our mean-field methods w
be useful in estimating the coefficients in the null-stre
laws. In macroscopic granular packs our formalism is le
applicable because these packs have friction. Still, this f
tion may be small enough in many situations that our pict
remains useful. Then our microscopic justification may a



ca
e

the
he-
re-
of
art
os.

696 PRE 60ALEXEI V. TKACHENKO AND THOMAS A. WITTEN
count for the practical success of the null-stress postulate@6#
for these systems.
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