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We examine the network of forces to be expected in a static assembly of hard, frictionless spherical beads
of random sizes, such as a colloidal glass. Such an assembly is minimally connected: the ratio of constraint
equations to contact forces approaches unity for a large assembly. However, the bead positions in a finite
subregion of the assembly are underdetermined. Thus to maintain equilibrium, half of the exterior contact
forces are determined by the other half. We argue that the transmission of force may be regarded as unidirec-
tional, in contrast to the transmission of force in an elastic material. Specializing to sequentially deposited
beads, we show that forces on a given buried bead can be uniquely specified in terms of forces involving more
recently added beads. We derive equations for the transmission of stress averaged over scales much larger than
a single bead. This derivation requires the ansatz that statistical fluctuations of the forces are independent of
fluctuations of the contact geometry. Under this ansatzd{ke- 1)/2-component stress field can be expressed
in terms of ad-component vector field. The procedure may be generalized to nonsequential packings. In two
dimensions, the stress propagates according to a wave equation, as postulated in recent work elsewhere. We
demonstrate similar wavelike propagation in higher dimensions, assuming that the packing geometry has
uniaxial symmetry. In macroscopic granular materials we argue that our approach may be useful even though
grains have friction and are not packed sequentia#.063-651%99)02007-3

PACS numbd(s): 45.05+x, 83.70.Fn

I. INTRODUCTION order to explain this puzzling “central dip,” a number of
inventive approaches have been taken. Sphiseek to ac-
The nature of the forces within a static pile of grains hascount for the minimum qualitatively by viewing the pile as a
proven more subtle than one might expect. Such a pile is agtack of concentric “wigwams,” whose sloping sides sup-
assembly of many hard, spheroidal bodies that maintain theort the load. Other§5] have shown that the central dip is
positions via a balance of gravitational forces and contactompatible with the conventional continuum mechanics, in
forces with their neighborfl,2]. On the one hand, determin- which the pile is viewed as a central elastic zone flanked by
ing these forces is a prosaic equilibrium problem. Since thean outer plastic zone which is at the Coulomb static friction
number of grains is large, the long-established notions ofimit. A third group [6—8] has argued that granular material
continuum solid mechanics appear applicable. On the otheequires a new constitutive law, a homogeneous, local, linear
hand, a pile of grains or beads is not a solid. The forcegonstraint on the stress arising from the packing geometry.
between beads are more problematic than those between tiiée shall call it a “null stress” law. Their proposed law
atoms of a conventional solid. These latter forces araives a continuum mechanics as simple as that of a liquid or
smoothly varying on the scale of the separation and thew solid, yet different from either. The hallmark of this law is
arise from a potential energy that includes attraction. Thehe hyperbolic equations governing the transmission of
forces on a grain are different. First, they vary sharply withforces. Hyperbolic equations, such as the wave equation,
interparticle distance, and there is no attraction. Second, thebey causality. The wave at the present is unaffected by the
frictional part of a contact force is not determined by thefuture. In the null-stress picture, the vertical direction plays
macroscopic positions of the grains. Rather, it depends othe role of time. Accordingly, forces at a given point in the
how each contact was formed. The resulting macroscopipile are only influenced by forces above that point. Force
behavior of the pile is also clearly different from that of a propagatesas in a traveling wave. The transmissioruis-
conventional solid. Arbitrarily slight forces can disturb the directional in contrast with conventional continuum elastic-
pile, so that the notion of stable equilibrium is suspect. De4ty. The equations of continuum mechanics are elliptical. Ac-
spite these complexities, we expect the mechanics of aording to these, a contact within the pile should be
granular pile to be universal. Hard, round grains appear tinfluenced by all the forces above or below it, as sketched in
form piles of the same nature independent of their composiFig. 1.
tion or detailed shape. We are led to think of these as non- A separate approach has given indirect evidence for the
deformable objects that exert normal forces of constraint andnidirectional transmission of forces. Coppersmifl¥sheu-
transverse forces limited by Coulomb’s static friction limit. ristic ¢ model aims to account for the point-to-point variabil-
Recently, a puzzling discovery has underlined the subtletyty of the contact forces. It imposes a unidirectional prescrip-
of the forces in a conical heap of poured s§8f The sup- tion for determining the downward forces from one grain in
porting force under the center, where the pile is deepest, itkerms of the forces acting on it from above. Both this model
not maximal. Instead, the maximal force occurs along aand refinement§10,11] of it yield an exponential falloff of
circle lying between the edge and the center of the pile. Fronprobability for large forces. This exponential falloff agrees
this circle the force decreases tarénimumat the center. In  well with measured distribution®,12,13. This exponential
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unidirectional way, and develop a Green’s-function formal-

A ism for determining the forces in thredimensional sequen-
tial packing. This picture allows one to decouple the geomet-
/ \ ric features of the packing from the pattern of transmitted
forces. In Sec. IV we also explore the macroscopic conse-

quences of these force laws, leading to an expression for the
stress tensor witl variables rather than thi{d+ 1)/2 vari-
B ables of a general stress tensor. In two dimensions, our for-
malism places a constraint on the stress, whose form agrees
‘@; with the null stress law of Wittmeet al. [6]. In higher di-
) mensions, the constraints on the stress also lead to a unidi-
rectional equation for the transmission of stress in the form
FIG. 1. Contrast between elastielliptical) and unidirectional ~ Of & wave equation. In Sec. VI we consider the relevance of
(hyperboho force propagation in a sand_p”e shaped objéa]: our findings for real granular pileS, which are not sequen-
Elastic response to an imposed local downward force. Pictured lineally packed and which have friction. Friction can alter the
of force represent the current of vertical force, i.e., the stress contransmission of forces qualitatively, restoring the elastic
tracted into a downward unit vector. Near the source, this field igransmission of stress.
symmetric about a horizontal plane through the ohj8gi; part of
the _force is transmitted thr_ough points above the soutmeJnidi- _ Il. UNDERDETERMINATION
rectional response to an |mpose_d local downward force. The im- WITHIN A FRICTIONLESS PACK
posed force is transmitted to neighbors below the source, and is
further transmitted to neighbors below these. No force is transmit- In this section we consider how the constraints inherent in
ted to points above the source. the packing of impenetrable, frictionless beads determine the
. : contact forces between the beads. Forces in frictionless packs
falloff contrasts with the Gaussian falloff expected for a het'have been studied by simulati®h9—22. Theoretical prop-

erogeneous elastic solid. . . _ erties of the forces have been established for simplified sys-
In this paper we grapple with the relationship between thqems [15,23,24. We begin with a summary of the well-

conventional elastic view and the newer null-stress p|cturerecognized enumeration of equations and unknowns, as

Our work builds on several recent studies of the relationshi[%jiSCusseol e.g., by Alexandgt4] and by the Cambridge
bettw'een'thga connecnvny ofa structure and the force transgroup[15]. We then consider the role of external forces act-
mission in it. Alexander’s recent reviefll4] has explored

th t f trained d f freed ! ._ing on a subregion of the pack, and show that a subset of
e nature of unconstrained degrees of freedom in a MiNig,oqe suffices to determine the others.

rrigllyhconnecteld o(rj |?ostat[;1] netvyor_k. B?r:l andhEd\_/vards” For definiteness we consider a system of rigid spherical
[15] have explored force transmission through minima Ybeads whose sizes are chosen randomly from some continu-

connected networks, assuming a fixed coordination numbe, . gistribytion. We suppose that the diameters of all the
for aII' pa_rtlcles. They have shown that such lattices can h"?‘V‘gpheres are specified and the topology of their packing is
constitutive equations of the null-stress form. Our main aim iven. That is, all the pairs of contacting beads are specified.

h_ere IS to broaden the (_:Ia_ss of systems that must show uny, o topology can be characterized by the average coordina-
directional force transmission, as required by the nuII-streSﬁon number, i.e., the average number of nearest neighbors

icture. = .
P ;=2NC/M (hereN. is the total number of contacts, ail

We present the discussion of the problem of stress tran h b £ b ™ dition for th
mission in a granular packing on several levels of generality'.S t € number o eagisThe necessary con !tlon or the
packing of a given topology to be realizable in a space of

In Secs. II-IV we focus on properties of the system of fric- ~ ) 9 X
brop y izatioffimensionalityd is that the coordinates of the bead centers,

tionless, spherical beads. Possible experimental realizatio ; X : .
are hard-sphere colloidal dispersioii6,17] or weakly de- Xa satisfy the following equations, one for each pair of con-
tacting beadsy and B:

formed droplet emulsiongl8]. First, in Sec. Il we use gen-
eral counting arguments to show that such a packing is mini-
mally coupled. We then relate this fact to the inadequacy of (Xa—Xg)?=(R,+Rp)?. 1)
elastic description for such a system. For a small subsystem .
within the pile a counting of equations and unknowns showdlere R, ,R; are the radii of the beads. There a¥ig such
that approximately half of the surface forces transmitteceguations(one for each contaktand Md variables @ for
from outside the subsystem are redundant. In equilibriunfach bead The number of equations should not exceed the
these cannot be independently specified, but have a fixegumber of variables; otherwise, the coordinatgsare over-
relation to the other half of the forces. This requirement fordetermined. Thus, the coordination number of a geometri-
balance amongst many forces implies the existence of sofidlly realizable packing should not exceed the critical value
modes—infinitesimal deformations with no restoring force.of 2d: Z<2d. We assume all the equations imposed by the
In the continuum limit, the soft modes impose conditions ontopological constraints to be independent. If they were not
the stress field of the null-stress form. independent, they would become so upon infinitesimal varia-
In order to obtain the particular form of such macroscopiction of the bead sizes. For instance, the hexagonal packing in
description, we limit further discussion to so-called sequeniwo dimensions has the coordination number 6 which is
tial packing specified in Sec. Ill. In Sec. IV we give a mi- higher than the critical valu€Z)=4; but the extra contacts
croscopic prescription for determining the contact forces in are eliminated by an infinitesimal variation of the bead di-
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ameters. In other words, the creation of a contact networlare free to choose the incoming contacts at will, provided

with coordination number higher thard2ccurs with prob- these give independent constraint equations.

ability zero in an ensemble of spheres with a continuous This observation supports the unidirectional, propagating

distribution of diameters. We shall ignore such zero-measurstress picture, discussed in the Introduction. Indeed, one can

situations henceforth. apply the above arguments to the slabs of the packing cre-
The above consideration gives the upper limit on the avated by cutting it with horizontal surfaces. In a given slab of

erage coordination numbét. The lower limit can be ob- Mmaterial, we choose the forces from the slab above as the

tained from the analysis of mechanical stability of the packincoming forces. According to the preceding argument, these
ing: it gives a complementary inequalitf>2d We will should determine the outgoing forces transmitted to the slab

consider a packing to be mechanically stable if there is geneath. This must be true provided that the constraints from

nonzero measure set of external forces which can be bawe upper slab are md_ep_endent. . .
Such force transmission contrasts with that of a solid

anced by interbead ones. The packing of frictionless spheres

- ; _ _ body, as emphasized in the Introduction. If a given set of
's always characterized byZ) =2d, as we now show. Sta forces is applied to the top of a slab of elastic solid, the

bility requires that the net force on each bead be zero; ther: .
are Md such equations. The forces in theldkl equations orces on the bottom are free to vary,_prowded the total for_ce
and torque on the slab are zero. Yet in our bead pack, which

are theN, contact forces. Thévd equilibrium conditions apoears equally solid. we have iust concluded that stabilit
determine the magnitudes of tié. contact forces(Their ppears equatly Soud, J L y
conditions determine all the bottom forces individually. In

directions are determined by the geometry of the IO":m)(mg'deducing this peculiar behavior, we did not exclude tensile

The number of equilibrium equatiomMdd should not exceed f . . .
. i . orces; we may replace all the contacts by stiff springs that
the number of force variablell.; otherwise these forces o : . ;

i — can exert strong positive or negative force, without altering
would be overdetermined. Thusld<N., or Z=2d. To  oyr reasoning. In this sense our result is different from the
avoid both overdetermlne_d co-ordinates and overdeterminegcent similar result of MoukarzdR3]. The origin of the
forces, we must thus havé=2d. peculiar behavior lies in the minimal connectivity of the

Similar counting arguments have been discussed previbeads.
ously[14,23. A subset of them has been applied to granular In a subregion of the minimal network, the constraints can
packs with friction[15]. Here we emphasize a further feature be satisfied with no internal forces. Moreover, numerous
of a frictionless bead pack that has not been well appreciatedtoughly N.,/2) small external displacements can be applied
the coordinates and forces within a subregion of a large beag the subregion without generating proportional restoring
pack are necessarilynderdeterminedQuantifying this inde-  forces. We call these motions with no restoring force “soft
terminacy will play an important role in our reasoning be-modes.” If we replace these external displacements with ex-
low. To exhibit the indeterminacy, we consider some com-ternal forces and require no motion, compensating forces
pact region within the packing, containig’ beads. This must be applied elsewhere to prevent motion of the soft
unbiased selection of beads must have the same average ¢nedes. If the applied forces perturb all the soft modes, there
ordination numbeZ as the system as a whol&'=2d. Let ~must be one compensating force for each applied force to
Ny be the number of contacts of this sub-system with exprevent them from moving—on averadg,/2 of them. The
ternal beads, anM;, be the number of the internal contacts. subregion is “transparent” to external forces, allowing them
The average coordination numbEf can be expressed’  (© Propagate individually through the region. _
=(Ng,+2N;,)/M’ (any internal contact should be counted This transparent behavior would be lost |fiurther springs
twice). Since there aré’d equations of force balance for were added to the minimal network, increasiagThen the
these beads, one is able to determineNalj+ N, contact forces on a subregion would be determined even without
forces in the system, wheneviet’ d= N+ N;,;. Evidently, external contacts. The addition of external displacements
if the forces on theN,,, contacts are not specified, the inter- Would deform the springs, and produce proportional restor-
nal forces cannot be computed: the system is underdetel?d forces. There would be no soft modes, and no transpar-
mined. The number of external force, required is given €ncy to external forces.

by No=M’d—Nj,. This Ny may be related to the average A Simple square lattice of springs provides a concrete
coordination numbet’ : example of the multiple soft modes predicted above. Its elas-

tic energy has the form

d2’+
2

Nze“. (2) H=Kf dx dy[(U)2+ ()], ()

NOZM,

) ] This functional does not depend oY, thus there are shear

We now observe that the quantity [n- -] vanishes on  geformations (**=u¥Y=0) which cost no elastic energy.
average. This is because the averagé'ofor any subset of This means that the stress field should be orthogonal to any
particles is the same as the overall average. There is no sysuch mode, i.e.,
tematic change af’ with M'. Thus if one-halflon averagg B
of mutually independent external forces is knodet us call alul =0, 4
them “incoming” oneg, the analysis of force balance in the
region enables one to determine all the remaining forcesyhereu}*=u}Y=0, andu}’ is an arbitrary function ofX;y).
including the other half of external on€%utgoing”). We  The above equation implies thatY=0, i.e., the principal
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axes of the stress tensor are fixed and directed atangly.
This provides a necessary closure for the standard macro-
scopic equation of force balance,

doll=fl; (5

heref,,, is an external force. Sinc&*Y=0 the two unknown
components of the stress field?* and oY propagate inde-
pendently along the corresponding characteristiesconst
andy= const:

For=1X . 6)

NaVV=1L,. (7)
FIG. 2. A sequential packing in a channel. When the left wall is
The propagation of the solution along characteristics is alisplaced outward by a small amou#itthe beads shift to the po-
property of hyperbolic problems such as wave equation. Theitions shown by dashed lines, and the top of the pile shifts by an
above equations without external force imply that each comamounte.

ponent of the stress tensarsatisfies a wave equation of the

form first channel as far as possible. We use an identical sequence
of disks and place each at the lowest point, as before. There
2 g2\ . must be a nonvanishing range éffor which the contact
(W — gz') o=0, (8)  topology is identical. The motion of the wall over this range

is thus a soft mode. As the side wall moves, the top surface
will move by some amount, proportional tod. Now, in-

wheret=x+y ands=x—y. Thus, the fact that the original . . . :
elastic energy has the soft modes results in hyperbolic, rath%rtrf?td E{kgu?sigg \fcee S;ggewslligxsg’ t\;]vee teé(ertrzn?gfen f?;?/ﬁ
than elliptic equations for the stress field. One has now to ' P P, 9 Y,

1 X[fY —
specly the surface forcdr displacementsat a single non- 10, et PR0 B BCCR, CHGER Y RS T e
characteristic surface—a line not paralleiktor y— in order ' y

Y " i
to determine the stress field in all the sample. '([jer? ;/;/T:)izldggw(%_vhei. Thgjiti prI]utSr trr:e| ion?:tlon r?fir’:0 moélor;
A frictionless granular packing behaves similar to this ex- ete ed . This co on transiates into a posed pro-

H H Yy XX H _
ample: they both are minimally coupled, they both have soﬁ?ortlonahtylbet\éveen Epr? str?fse%d an(rj]a » as 'tf‘ the lat
modes, they both have unidirectional propagation. In bot Ice example above. The soft modes have continuum conse-

examples only the surface of the sample stabilizes the soffuences.
modes. The above consideration of regular lattice can be

easily ext.er)ded_ to .the case of arbitrary angle. between the lll. SEQUENTIAL PACKING UNDER GRAVITY
characteristic directiong andy. Instead of starting with a
square lattice, we could have applied a unifaxay shear, In the previous section we have shown that a packing of

altering the angle between the horizontal and verticafrictionless spherical beads is an anomalous solid from the
springs. The reasoning above holds for this lattice just as fopoint of view of classical elastic theory. The fact that the
the original square one. average coordination number in such a packing is exadly 2
The nature of the soft modes in a disordered bead pack ir the infinite system supports unidirectional, propagating
less obvious than in this lattice example. We have nostress. Now we elaborate this concept in more detail, by de-
proven, for instance, that all the forces acting on the top of aiving particular laws for microscopic and macroscopic force
slab correspond to independent soft modes, which determirteansfer adopting a particular packing procedure. We suppose
the forces at the bottom. Otherwise stated, we have ndahat the beads are deposited one by one in the presence of
shown that the soft modes seen in the microscopic displacegravity. The weight of any new sphere added to the existing
ments have continuum counterparts in the displacement fieldacking must be balanced by the reactions of the supporting
of the region. However, the following construction, as in thebeads. This is possible only if the number of such supporting
lattice example above, suggests that the soft modes survivantacts is equal to the dimensionalityAny larger number
in the continuum limit. of contacts requires a specific relationship between the sizes
To construct the pack, we place circular disks one at aand coordinates of the supporting beads, and thus occurs
time into a two-dimensional vertical channel of width  with vanishing probability. As a result, the eventual packing
(Such sequential packings will figure prominently in the nexthas an average coordination numbed, Zimilar to any
section) Since the disks are of different sizes, the packingstable, frictionless pack. In addition, it has a further property:
will be disordered. We place each successive disk at tha partial timelike ordering. Namely, among any two contact-
lowest available point until the packed disks have reached ang beads there is always one which has found its place ear-
height of orderL, as shown in Fig. 2. We now construct a lier than the otherthe supporting one and any bead has
second packing, starting from a channel of slightly greateexactlyd such supporting neighbors. Note that the support-
width L+ 8. We reproduce the packing constructed in theing bead is not necessarily situated below the supported one
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in the geometrical sense. The discussed ordering is topologenough to preserve their sizes, the response of the system to
cal rather than spatial. the applied force is also linear. This linearity can be de-

One could expect that although any bead has exattly stroyed only by violating the condition of positivity of the
supporters at the moment of deposition, this may changeontact forces, which implies the rearrangement of the pack-
later. Specifically, adding an extra bead to the packing mayng. While the topology(and geometry of the network is
result in the violation of positivity of some contact force in preserved, one can introduce the Green’s function to describe
the bulk[7]. This will lead to a rearrangement of the net- the response of the system to the applied forces. Namely,
work. For the moment we assume that the topology of thdorce f, applied to certain bead results in the following
sequential packing is preserved in the final state of the sysadditional force acting on another bead(lying below \):
tem, and return to the effect of rearrangements in Sec. V.

The partial ordering of the sequential packing consider- f
ably simplifies the calculation of the force distribution. In- ©
deed, any force applied to a bead can be uniquely decom-
posed into thed forces on the supporting contacts. This
means that the force balance enables us to determine all t
“outcoming” (downward forces if the “incoming” ones ) . :
are known. Therefore, there is a simple unidirectional proce- The stress f.|eldr In th? system of frlctlonless spherical
dure of determination of all the forces in the system. Below,0€@ds can be introduced in the following w&p]:
we use this observation to construct a theory of stress propa-
gation on the macroscopic scale.

=G, fr (12)

ereéw is a tensor Green function, which can be calculated
RS the superposition of all the projection sequerices tra-
jectories, which lead froma to u.

(Tij(x):% Bgﬂ) f ol ssRapd(X,—X).  (13)
IV. MEAN-FIELD STRESS
. . . . . HereR,_;=|x,—Xg4|. As we have just shown, the magni-

W_e will _charact_enze any |_nterbead contact in a Sequentlatlude of theﬁfolce‘ ?lansmitted alorjlg the contact unit \?ec-
packing with a unit vector directed from the center of SUP0r . can be exﬁessed as an appropriate projection of the
ported beadr toward the supporting ong, ap : .

total forceF , acting on the bead from above. This allows

one to express the stress tensor in terms of the vector field

Xg— X

Ng=m—7"".
ah |XB_X01|

The stress distribution in the frictionless packing is givenifa  lix)=> > (F| naﬁ>ania,gnjaﬁRa/35(Xa— X).
non-negative magnitude of the force acting along any of the a B(—a)
above contact unit vector is specified. We denote such scalar (14

contact force as . . . . o
The total force to be transmitted from some beatb its In order to obtain the continuous macroscopic description

supporting neighbors is the sum of all the incoming and ex2f the system, one has to perform the averaging of the stress
ternal (e.g., gravitationalforces: field over a region much larger than a bead. At this stage we

make a mean-field approximation for the fol€g acting on

a given bead from above: we replaEg by its averager
Fa=(fext)a+ﬁ(2 Ngaf ga- (100 over the region. To be valid, this assumption requires that

—a)

Here B(— «) denotes all the beads supporteddaySince = P = .
there are exactlyd supporting contacts for any bead in a % <(F“_F)|n“5>“naﬁnLﬁR“5<% (FINag) aNopapRags -
sequential packing, the above force can be uniquely decom- (15)
posed onto the correspondiiigcomponents, directed along
the outcoming vectors,,, . This gives the values of the out- For certain simple geometries, the mean-field approxima-
coming forces. Thé’s may be compactly expressed in terms tion is exact. One example is the simple square lattice treated

of a generalized scalar produgt- - |- - - ),: in Sec. Il. In any regular lattice with one bead per unit cell,
all theF,’s must be equal under any uniform applied stress.
fay:<Fa|nay>a' (11)  Thus replacingF, by its average changes nothing. If this
lattice is distorted by displacing its soft modes, Egare no
The scalar product(---|---), is defined such that longer equal and the validity of the mean-field approxima-

(nay|nay,)a= 5,, (all the Greek indices count beads, not tion can be tested. Figure 3 shows a periodic distortion with
spatial dimensionsIn general, it does not coincide with the fourbeads per unit cell. For example, under an applied verti-
conventional scalar product. If now some force is applied tacal force, the bottom forces oscillate to the left and right.
certain bead in the packing, the above projective procedurblevertheless, the stress crossing the bottom row, similar to
allows one to determine the response of the system, i.e., thbat crossing the row above it, is the average force times the
change of the contact forces between all the beads below tHength. One may verify that thE, may also be replaced by
given one. In other words one can follow how the perturba-ts average when the applied force is horizontal. Though the
tion propagates downward. Since the equations of mechanimean-field approximation is exact in these cases, it is clearly
cal equilibrium are linear, and beads are assumed to be rigidot exact in all. In the lattice of Fig. 3 the mean field ap-
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where[ o] = 71 and[ o,] = 72I. Since ther, and g, are
properties of the medium and are presumed known, the prob-
lem of finding the stress profile(x) becomes that of finding

F, andF, under a given external load. Rather than deter-
mining theseF's directly, we may view Eq(18) as a con-

straint ong. The form(18) constrainsr to lie in a subspace

FIG. 3. A buckled square lattice illustrating the propagation of Of the three-dimensional space of stress components
inhomogeneous forces. Bottom row of sites has alternating wide= (0™*,0”%,0™¥). It must lie in the two-dimensional sub-
and narrow spacing. Arrows indicate the unequal forces on thesspace spanned b}l and(;z, This constraint amounts to one
sites. linear constraint on the components ©f of the form

proximation may be inexact if.one considers a region not giuli=0, (19)
equal to a whole number of unit cells.

A disordered packing may be viewed as a superpositioyhere thel tensor is determined by, ande,. Specifically,

of periodic soft modes such as those of Fig. 3. Each such . .
mode produces fluctuating forces, such as those of the ex- MY kze found by observing that the determinant of the

ample. But after averaging over an integer number of uni¥€ctorsa, o, o must vanish. Expanding the determinant

cells, the stress may depend on only the average frde by minors to obtain the coefficients of tle!, one finds
disordered packing need not have a fixed coordination num-

. . . yy yy XX XX
ber as our example does. This is another possible source of o1 02 o1 07
departure from the mean-field result. o ¥ | oY

Now, it becomes an easy task to perform a local averag- U= _ (20)

ing of Eq. (14) for the stress field in the vicinity of a given 7 X oY oY
point x, replacingF, by its average ! !
o o |ot* o
ol (x) = pF*(x) 7 (x). (16) Equation (19) has the same “null-stress” form as that

_ introduced by Wittmeret al. [6], whose original arguments
Here p is the bead densityf(x) is the forceF, averaged were based on a qualitative analysis of the problem. By an

over the beaAda in the vicinity of the pointx, and the third- appropriate choice of the local coordinates#), theu ten-
order tensorr characterizes the local geometry of the pack-sor can be transformed into coordinates such théat u?”?
ing: =0. Then the null stress condition become&’=¢7¢=0.
This implies that, according to force balance equatiibn
Tkij(x):|na,8>|;niaﬁnj;zﬁRaﬁ- 17) :[‘he honzero diagonal components of the stress tensor
propagate” independently along the corresponding charac-
This equation is similar in spirit to one derived by Edwardsteristics,&= const andzn = const:
for the case of al+1 coordinated packing of spheres with
friction [26]. Our geometric tensor plays a role analogous (9§a§f:fgxt, IMoM=11.. (21
to that of the fabric tensor in that treatment.

The stress field satisfies the force balance equation, Eq. Our microscopic approach gives an alternative foundation
(5). Since this is a vector equation, it normally fails to give afor the null-stress condition, E¢19), and allows one to re-
complete description of the tensor stress field. In our casgate the tensou in this equation to the local geometry of the
however, the stress field has been expressed in terms of thgicking. Our general formalism is not limited to the two-
vector fieldF. This creates a necessary closure for the forcelimensional case, and in this sense, is a generalization of the
balance equation. It is important to note that the proposedull-stress approach.
macroscopic formalism is complete for a system of arbitrary
dimensionality: there is a single vector equation and a single
vector variable. We now discuss the application of the above - )
macroscopic formalism in two special cases. First we con- Generally, there are two preferred directions in the se-
sider the equations of stress propagation in two dimension§luential packing: that of the gravitational forag,and that
Then we discuss a packing of arbitrary dimensionality butof the growth surfacen. In the case when these two direc-
with uniaxial symmetry. It is assumed to have no preferredions coincide, the form of the third-order tensgreq. (17),

B. Axially symmetric packing

direction other than that of gravity. should be consistent with the axial symmetry associated with
the single preferred direction, Sincer " is symmetric with
A. Two-dimensional packing respect td «»j permutation, it can be only a linear combina-

In two di . ding to EAL6), the st ) tion of three tensorsn*n'ni, nks', and &<ni+ sXin', for
n two dimensions, according to E(L6), the stress tensor general spatial dimensicth

o can be written as a linear combination of twdensors Let o'l be the stress tensor in thiedimensional space

A A A (i,j=0,...d—1, and index O corresponds to the vertical
o=F01+F,0,, (18  direction. From the point of view of rotation around the
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vertical axis the stress splits into scalaw®,
(d—1)-dimensional  vector ¢% (a=1,...d-1)

(d—1)-dimensional tensoes®°. According to our constitu-
tive Eq. (16), the stress should be linear in vectrwhich
itself splits into a scalaF° and a vectoiF? with respect to
horizontal rotations. Since the material tensas by hypoth-
esis axially symmetric, the only way that the “scalag®
may depend off is to be proportional to “scalarF°. Like-
wise, the only way “tensor’o2® can be linear irF is to be
proportional to52°F°. Therefore, in the axially symmetric
case

o=\ 52590, (22

where the constant is, e.g., 7°*Y7°°°. This constitutive
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may undergo rearrangements that alter the network of con-
nections. However, it is possible to modify our arguments to
take account of such rearrangements. Our reasoning depends
on the existence dl supporting contacts for each bead. Fur-
ther, every sequence of supporting contacts starting at a
given bead must reach the boundary of the system without
passing through the starting bead: there must be no closed
loops in the sequence.

Even in a nonsequential packing we may define a network
of supporting contacts. First we define a downward direction.
Then, for any given bead in the pack, @efinethe support-
ing contacts to be thd lowest contacts. With probability 1,
each bead has at leatttontacts. Otherwise it is not stable.
Typically a supporting bead lies lower than the given bead.

Thus the typical sequence of supporting contacts leads pre-
dominantly downward, away from the given bead, and re-
turns only rarely to the original height. A return to the origi-
nal bead must be even more rare. One may estimate the
probability that there is a loop path of supporting contacts

In the case of no external force, we may talfeof the first ~ under simple assumptions about the packing. As an example
equation and combine with the second to yield a wave equa¥e suppose the contacts on a given bead to be randomly
tion for ¢°°. Evidently ®°, being a fixed multiple o0&, distributed amongst the 12 sites of a randomly oriented
obeys the same equation. Similar manipulation yields thelose-packed lattice. We further imagine that these sites are
same wave equation fer°® ando?°. Thus every component chosen independently for each bead, with at least one below
of stress satisfies the wave equation with vertical directiorthe horizontal. Then the paths are biased random walks with
playing the role of time and/\ being the propagation veloc- a mean steplength of 0.51 diameters and a root-mean-square
ity. steplength of about 1.2 times the mean. The probability of a
net upward displacement of 1 or more diameter is about 1%.
It appears that our neglect of loop paths is not unreasonable.

equation allows one to convert the force balance equéfipn
to the following form:

PO+ \§2c0=f2

0 00 a _a0_ 0
o+ Po =1 ext

ext

(23

V. DISCUSSION

In this section we consider how well our model should
describe real systems of rigid, packed units. As stated above,
our model is most relevant for emulsions or dense colloidal The introduction of friction strongly affects most of our
suspensions, whose elementary units are well described asguments. Friction creates transverse as well as normal
frictionless spheres. Under very weak compression the force®rces at the contacts. The problem is to determine positions
between such units match our model assumptions. Howevegnd orientations of the beads that lead to balanced forces and
our artificial procedure of Sequential paCking bears no ObVi'[orqueS on each. If the contact network is m|n|ma||y con-
ous resemblance to the arrangements in real suspensions. Wegcted, the forces can be determined without reference to
argue below that our model may well have value even whegjeformations of the particle. But if the network has addi-
the packing is not sequential. More broadly we may considefiona| constraints, it is impossible to satisfy these without
the connection between our frictionless model and reag,gjqering deformation. This is no less true if the beads are
granular materials with friction. The qualitative effect of resumed very rigid. We first give an example to show that
adding friction to our sequential packing is to add constraint n a generic packing the deformability alters the force distri-

SO that the network of contacts is no longer minimally CON"yution substantially. We then give a prescription for definin
nected. Thus the basis for a null-stress description of th ) Y. g P P ng
e deformation and hence the contact forces unambigu-

force transmission is compromised. We argue below thal |
friction should cause forces to propagate as in an elastic m&usly- . . . . .
In our example we imagine a two-dimensional sequential

dium, not via null-stress behavior. packing and focus on a particular bead, labeled 0, as pictured
in Fig. 4. We presume that the beads are deposited gently, so
that each contact forms without tangential force. Thus when
We first consider the consequences of our sequentiahe bead is deposited, it is minimally connected: its weight
packing assumption. One consequence is that each bead tdetermines the twénorma) supporting forces, labeled 1 and
exactlyd supporting contacts. These lead successively to ea2. Thenceforth no slipping is allowed at the contact. Later
lier particles, forming a treelike connectivity from supported during the construction of the pack bead 0 must support the
beads to supporters. Although the counting arguments dbrce from some subsequent bead. This new force is normal,
Sec. Il show that the propagating stress approach should Ince it too arises from an initial contact. But the new force
applicable to a wide class of frictionless systems, the conereates tangential forces on the supporting contacts 1 and 2.
tinuum description of Sec. IV depends strongly on the asTo gauge their magnitude, we first suppose that there is no
sumed sequential order. Now, most packings are not sequefriction at contacts 1 and 2, while the supporting beads re-
tial, and even when beads are deposited in sequence, theyain immobile. Then the added foréeleads to a compres-

B. Friction

A. Sequential packing
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We conclude that a sequential packing with perfect fric-
/F tion, under conditions that prevent contact rearrangements,
transmits forces as a solid body. Small changes in stfeds
in a region give rise to proportional changes in the strain
57\\( 5v*/. This proportionality is summarized by an elasticity

tensorK'1*/: §g1 =K1/ 59 The elastic tensoK should

depend in general on how the pack was formed; thus it may
well be anisotropic.

This elastic picture is compromised when the limitations
of friction are taken into account. As new beads are added,

underlying contacts such as contacts 1 and 2 of Fig. 4 may
slip if the tangential force becomes too great. Each slipping

FIG. 4. The effect of friction on a triad of beads. In the absencecontact relaxes so as to satisfy a fixed relationship between
of friction, the applied forcd~ is transmitted entirely to contact 1, its normal forceN and its tangential forceT: viz |T|

causing a displacemerd This would result in a sliding displace- :M|N|- If 1 were very small, virtually all the contacts

m.em_ c.’f contact 2 by an amouat W'th friction, contact 2 cannot would slip until their tangential force was nearly zero. Then
slide; it must deform the contact region by an amount of odler - .
Thus the applied forc€& is shared between contacts 1 and 2. Thethe .amount of stress associated with the redundant Cor.]_
force is distributed so as to minimize the total elastic energy alstralnt_s must become small and the corresponding elastic
contacts 1 and 2. moduli must become v_veak. Moreover, ,asapproache_s 0,
the material on any given scale must become difficult to
distinguish from a frictionless material with unidirectional
sion. We denote the compression of the contact 8.8&ith  stress propagation. Still, redundant constraints remain on the
no friction, the contact 2 would undergo a slipping displace-average and thus the ultimate behavior at large length scales
ment by an amount of ordef. Friction forbids this slipping  (for a given u) must be elastic, provided the material re-
and decrees deformation of the contact instead. The originahains homogeneous.
displacement there would create an elastic restoring force of
the same order as the originkl Thus the imposition of C. Force-generated contacts
friction creates new forces whose strength is comparable to
those without friction. The frictional forces are not negli-
gible, even if the beads are rigid. Increasing the rigidity less

Throughout the discussion of frictionless packs we have
ignored geometric configurations with probability zero, such
ens the displacement associated with the given forde, as beads with redundant contacts. Such contacts occur in a
but it does not alter the ratio of frictional to normal forces. close-packed lattice of identical disks, for example. Though

Neither are the frictional forces large compared to the norma?UCh configurations are a_rbitrarily rare in principle, they may
forces. Thus a coefficient of frictiop of order unity should hevertheless play a role in real bead packs. Real bead packs

be sufficient to generate enough frictional force to prevengtaevfezJ::‘ét:n?%?rﬂ;e:;'b.:.'gﬁ;ig?g)zg;s'?g :fc::(’)esaeqsacciggrlit—
slipping of a substantial fraction of the contacts. i P b

The contat 0ced’, and T, cannot b dtermine by 192 5 enlc) sphere has s conlct per bead, but f here
force balance alone, as they could in the frictionless caseg, Thegremainin t?//vo beacis adiacent to a aiven bead go not
Now the actual contact forces are those which minimize the " . 9 as ady 9

: s . uite touch. These remaining beads can be made to touch
elastic energy of deformation near the two contacts. This

argument holds not just for spheres but for general rounded93!" if sufficient compressive stress is a_pphed. Such stress-
objects. induced redundant contacts must occur in a real bead with

Though the new tangential forces complicate the determi>0Me Nonzero density under any nonzero load. These extra

nation of the forces, the determination need not be ambigu(-:OntaCtS serve to stab|I_|ze the pack, removing the_mdeterml-
. . . . . nate forces discussed in Sec. Il. To estimate the importance
ous. We illustrate this point for a sequential packing on a

bumpy surface with perfect friction. We choose a pIacemenPf this effect, we consider a large bead pack compressed by

. mall f ry. This overall strain compr ical
of the successive beads so that no contact rearrangeme sma actory s overall strain compresses a typica

occur. If only a few beads have been deposited in the con(—:OntaCt by a factqr of ordey as well. The ”“mb9f of new
tainer, the forces are clearly well determined. Further, if thecontacts may be _mferrec_i from_the pair correlation function
! ' (r). Data on thisg(r) is available for some computer-

forces are presumed well determined up to M bead, 9 . . . . .
they remain so upon addition of theM(+1)st bead. We generated sequential packings of identical spheres of radius

presume as before that the new bead exerts only norm§[27]' These data show thg(r) _h_as afinite value near 1 at
forces on its immediate supporters. Each supporter thus ef—2R. Thus the number of additional contacts per bead that

periences a well-defined force, as shown in Sec. Il. But b orm under a slight compression by an amodnis given by

hypothesis, these supporting beads are part of a welléZ=6¢g(2R)dor/R=4y. Here ¢=0.6 is the volume frac-
connected, solid object, whose contacts may be regarded H§n of the beads. These extra contacts impose constraints
fastened together. Thus the displacements and rotations Htat reduce the number of undetermined boundary forces in a
each bead are a well-defined function of any small applie¢ompact region containinyl’ beads and roughliy’ % sur-
load. Once theNI +1)st bead has been added, its supportingface beads. The remaining number_of undetermined bound-
contacts also support tangential force, so that it responds tary forces now averagesN.,,— M’ 5Z. The first term is of
future loads as part of the elastic body. orderM’?3 and must thus be smaller than the second term
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for M’'Y3=(5Z)"1. For M’ larger than this amount, there €xponential falloff is a distinguishing feature of unidirec-

are no further undetermined forces and the region becomé¥nal propagation. A disordered elastic material might well
mechanically stable. Moukarzg23] reaches a similar con- Show a similar exponential distribution.
clusion by a somewhat different route. Computer simulations should also be able to test our pre-

If the pack is compressed by a factorpfstability occurs ~ dictions. Recent simulationg20,30,3] have focussed on
for M’3=1/y—a region roughly 1y beads across. In a Stress-induced restructuring of the force-bearing contact net-
typical experimenf28] the contact compressiopis 107 or work. We are not aware of a simulation study of the trans-
less, and the system size is far smaller thah i€ads. Thus mission of a local perturbing force. Such a perturbation study
compression-induced stability should be a minor effect hereS€ems quite feasible and would be a valuable test. We have
Still, this compression-induced stability might well play a Performed a simple simulation to test the mean-field descrip-
significant role for large and highly compressed bead packBO” of stress in frictionless packs. Preliminary results agree
such as compressed emulsidi29]. In some of the large well with the predictions. An account of our simulations will
packs of Ref[3], compression-induced stability may also be P& published separately.
important.

VI. CONCLUSION

D. Experimental evidence In this study we have aimed to understand how force is

We have argued above that undeformed, frictionlesgransmitted in granular media, whether via elastic response
beads should show unidirectional, propagating forces whiler via unidirectional propagation. We have identified a class
beads with friction should show elastic spreading of forcesof disordered systems that ought to show unidirectional
The most direct test of these contrasting behaviors is to megropagation. Namely, we have shown that in a general case a
sure the response to a local perturbing fdice Thus, e.g., if  system of frictionless rigid particles must be isostatic, or
the pile of Fig. 1 is a null-stress medium, the local perturbingminimally connected. That is, all the interparticle forces can
force should propagate along a light cone and should thus b principle be determined from the force balance equations.
concentrated in a ringlike region at the bott¢&]. By con-  This contrasts with statically undetermined, elastic systems,
trast, if the pile is an elastic medium the perturbing fo_rcein which the forces cannot be determined without self-
should be spread in a broad pattern at the bottom, with . qigtently finding the displacements induced by those

maximum direct_ly under th9 applied force. Existjng EXPeM5rces. Our general equation-counting arguments suggest
r_nental mformat'lon seems inadequate 1o test either pred'cthat isostatic property of the frictionless packing results in
tion, but experiments to measure such responses are I

Re unidirectional propagation of the macroscopic stress.
progres 29], ; - We were able to demonstrate this unidirectional propaga-
As noted above, emulsions and colloids are good realiza-

tions of the frictionless case. The contacts in such systemiOn explicitly by specializing to the case of sequential pack-
are typically organized by hydrostatic pressure or by flow,Ng- Here the stress obeys a condition of the prevpusly pos-
rather than by gravity. Still, our general arguments for uni-tulated null-stress form[6]; our system provides a
directional propagation should apply. Extensive mechanicanicroscopic justification for the null-stress postulate. Fur-
measurements of these systems have been fiédts. The ther, we could determine the numerical coefficients entering
shear modulus study of Weitz and Magds] illustrates the the null-stress law from statistical averages of the contact
issues. The study spans the range from liquidlike behavior éngles by using a mean field hypothe@lecoupling ansajz
low volume fractions to solidlike behavior at high volume We have devised a numerical simulation to test the adequacy
fractions. In between these two regimes should lie a statef the sequential packing assumption and the mean-field hy-
where the emulsion droplets are well connected but littlepothesis. The results will be reported elsewhere.
deformed. The emulsion in this state should show unidirec- If we add friction in order to describe macroscopic granu-
tional force transmission. It is not clear how this should af-lar packs more accurately, the packing of rigid particles no
fect the measured apparent moduli. longer needs to be isostatic, and the system is expected to
Other indirect information about force propagation comesevert to elastic behavior. This elasticity does not arise from
from the load distribution of a granular pack on its container,softness of the beads or from a peculiar choice of contact
such as the celebrated central dip under a conical heap oktwork. It arises because contacts that provide only minimal
sand[3]. These data amply show that the mechanical propeonstraints when created can provide redundant constraints
erties of a pack depend on how it was constructed. Theoriegpon further loading.
postulating null-stress behavior have successfully explained We expect our formalism to be useful in understanding
these datd6]. But conventional elastoplastic theories haveexperimental granular systems. It is most applicable to dense
also proved capable of producing a central (B An an-  colloidal suspensions, where static friction is normally neg-
isotropic elastic tensor may also be capable of explaining thgible. Here we expect null-stress behavior to emerge at
central dip. scales large enough that the suspension may be considered
Another source of information is the statistical distribu- uniform. We further expect that our mean-field methods will
tion of individual contact forces within the pack or at its be useful in estimating the coefficients in the null-stress
boundaries. The measured forces become exponentially rat&ws. In macroscopic granular packs our formalism is less
for strong force$9,12]. Such exponential falloff is predicted applicable because these packs have friction. Still, this fric-
by Coppersmith’s ‘¢ model” [9], which postulates unidirec- tion may be small enough in many situations that our picture
tional force propagation. Still, it is not clear whether this remains useful. Then our microscopic justification may ac-
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