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Experiments have widely shown that a steady-state lamellar eutectic solidification front is destabilized on a
scale much larger than the lamellar spacing by the rejection of a dilute ternary impurity and forms two-phase
cells commonly referred to as “eutectic colonies.” We extend the stability analysis of Datye and Lahger
Datye and J. S. Langer, Phys. Rev2B 4155(1981)] for a binary eutectic to include the effect of a ternary
impurity. We find that the expressions for the critical onset velocity and morphological instability wavelength
are analogous to those for the classic Mullins-Sekerka instability of a monophase planar interface, albeit with
an effective surface tension that depends on the geometry of the lamellar interface and, nontrivially, on
interlamellar diffusion. A qualitatively new aspect of this instability is the occurrence of oscillatory modes due
to the interplay between the destabilizing effect of the ternary impurity and the dynamical feedback of the local
change in lamellar spacing on the front motion. In a transient regime, these modes lead to the formation of
large scale oscillatory microstructures for which there is recent experimental evidence in a transparent organic
system. Moreover, it is shown that the eutectic front dynamics on a scale larger than the lamellar spacing can
be formulated as an effective monophase interface free boundary problem with a modified Gibbs-Thomson
condition that is coupled to a slow evolution equation for the lamellar spacing. This formulation provides
additional physical insights into the nature of the instability and a simple means to calculate an approximate
stability spectrum. Finally, we investigate the influence of the ternary impurity on a short wavelength oscilla-
tory instability that is already present at off-eutectic compositions in binary eutectics.
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[. INTRODUCTION smaller than in dendritic alloys, leading to superior mechani-
cal properties. Consequently, understanding the solidification
The interfacial patterns that arise naturally during the soprocessing conditions that yield a particular eutectic micro-
lidification of eutectic alloys have attracted widespread interstructure is a goal of direct technological relevance.
est for several decades from both fundamental and practical Since the early investigations of eutectic alloys, it has
viewpoints. At a fundamental level, the main theoreticalbeen remarked that besides the fine lamellae or rods, there
challenge lies in understanding the complex spatiotemporahay exist cellular structures, termed colonfés-9]. Their
dynamics of phase boundariésolid-liquid and solid-solid  size is typically 10 to 100 times the lamellar spacing. In Fig.
resulting from the competition of two thermodynamically 1 we show an experimental picture of colonies obtained in a
stable solid phases growing simultaneously into a metastabldirectional solidification experimenf4]. In their overall
liquid phase. In particular, one basic question is how to unshape, the two-phase cells are remarkably similar to the
derstand the nature of the morphological instability of themonophase(i.e., single solid phagesolidification cells
simplest spatially periodic steady state that gives rise to thiformed in standard directional solidification of a dilute bi-
rich dynamics. From a practical viewpoint, the compositenary alloy. This analogy is further supported by the experi-
microstructure formed by lamellae or rods of these two solidmental finding that colonies appear only when a ternary im-
phases growing simultaneously from the melt leads to interpurity, rejected by both solid phases, is presghg]. In
esting materials where the properties of two different solidscontrast, in binary eutectics the large scale solidification
can be advantageously combined. Moreover, the typical siziont stays planar for a range of compositions around the
of the microstructure pattern is about an order of magnitudeutectic point. This suggests that the mechanism of the insta-
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cooling AT of the solid-liquid interface with respect to the
eutectic temperature dependsXomand the curve\T versus
\ presents a minimum for a certain spacing;,. The ex-
perimentally observed spacings are usually close\ tg,
[16].

A hypothesis attributed to Cahn by Jackson and Hut
is that the lamellae always grow normal to the envelope of
the solidification front. This hypothesis seems to work well
in practice when the surface energy anisotropy of the solid-
liquid and solid-solid phase boundaries is small enough to
prevent locking of the lamellae to preferred growth direc-
tions. When used to analyze heuristically the long-
wavelength stability of a eutectic front, this hypothesis leads
to the conclusion that the lamellar structure is unstable for
lamellar spacings below,,,. Under Cahn’s hypothesis, the
lamellar spacing in a concave part of the solid-liquid inter-
face decreases as the interface advances. Consequently, if the
average spacing falls belowmy,,, the local undercooling will
increase in such a way that thinner lamellae fall further be-
hind the front, leading finally to lamella termination. On the
other hand, for spacings larger thag,,, the opposite oc-
curs: finer lamellae grow faster than wider ones and the con-
cavity of the eutectic front is smoothed out.

This argument can determine only a lower bound Xor
To assess stability fax>\,,;,, @ more involved analysis is
required. Several authors tried to adapt the linear stability

FIG. 1. Eutectic colonies in the transparent organic alloy2nalysis of Mullins and Sekerka for single-phase solidifica-
CBr,-C,Cl, (from Ref.[4]), grown by a directional solidification tion[10] to eutectic systems. The eutectic problem, however,
experiment. The growth direction is from bottom to top. The enve-IS considerably more difficult because the basic steady-state
lope of this two-phase structui@e., the solidification front on a Solution is already periodic in space. Moreover, the presence
scale much larger than the lamellar spagiopsely resembles the Of mobile trijunction points between three phases compli-
typical monophase cells observed during the directional solidificacates enormously the stability calculation by ruling out a
tion of a dilute binary alloy. smooth sinusoidal perturbation. For this reason, early at-

tempts to average over the properties of the two solid phases
bility is similar to the classical Mullins-Sekerka instability of [17], or to consider perturbations with immobile trijunctions
a monophase solidification froftL0]. Indeed, its onset is [18-20, did not produce consistent resulsee Ref[21] for
relatively well described quantitatively by the constitutional a more detailed discussipn
supercooling criteriofi11], according to which the interface The most complete analytical stability analysis of a eutec-
becomes unstable when the ternary impurity concentratiotic interface has been performed by Datye and Larifér)
gradient in the liquid ahead of the interface exceeds a criticdl22]. Their calculation is a perturbation analysis of the
value set by the ratiG/v,, of the temperature gradient and Jackson-HuntJH) [15] steady-state solution, using as basic
the pulling speed of the sample. However, the spatiotemporalariables the coordinates of the trijunction points both paral-
character of the linear modes associated with this instabilityel and perpendicular to the interface. They first calculate an
has never been investigated. In particular, it has remainedpproximate solution to the diffusion equation for a per-
unclear how the Mullins-Sekerka analysis has to be modifiedurbed lamellar interface. The assumption of local equilib-
to account for the composite structure of the interface. Taium at the solid-liquid interface and the use of Cahn’s hy-
answer this question, we present in this paper a linear stabipothesis then allow one to obtain an eigenvalue problem for
ity analysis of a lamellar eutectic solidification front in the the linear growth modes and to extract the stability spectrum
presence of a ternary impurity. of the interface. In the limit where the wavelength of the

It is useful to first briefly review the progress accom- perturbation is large compared to the lamellar spacieg
plished to date on the related problem of binary eutectic staferred to hereafter as the “long-wavelength limif"a sim-
bility (without a ternary impurity, The approach that we plified calculation confirms JH’s conclusion that lamellar
shall adopt here builds on earlier work in this context. The-spacings below\ ,;, are unstabl¢23]. In addition, the DL
oretical developments have mostly focused on the lamellaanalysis predicted the occurrence of an oscillatory instability
morphology in thin-film geometry, as then the problem canwith a wavelength twice the lamellar spacing for sufficiently
be treated as quasi-two-dimensional. For a stability analysisff-eutectic compositions (2-O instability).
one must first obtain a steady-state solution: a shape- The existence of this short-wavelength instability was
preserving solidification front propagating at constant velocdater confirmed by numerical simulations of eutectic front
ity. Studies of this probleni11-15 led to the insight that dynamics using a random walk algorithf24] and, more
there exists a family of steady-state solutions that can beecently, a boundary integral approaf®l,25. The latter
parametrized by the lamellar spacing The average under- study pinpointed the existence of additional short-
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wavelength instabilities, one of whidtilt bifurcation) was  formula is found to predict all important features of the in-
previously known[24,26], and made specific quantitative stability and to yield reasonably good quantitative predic-
predictions for the CBrC,Cls organic system that have tions.
been validated by a detailed comparison with experiments Our calculation both confirms the expectations based on
[27,28. As an additional result, which is relevant for the the analogy between a two-phase eutectic front in the pres-
present analysis, the boundary integral study revealed th&nce of a ternary impurity and a monophase front, and at the
the stability predictions of the DL analysis are quite accurat@me time yields a surprising result. Namely, we find that the
for lamellar spacings close ., and only become inac- €XPressions for the onset velocity and wavelength of thg in-
curate for larger spacings where the JH description of thStability are qnalogous to those for a monophase front with a
diffusion field breaks down. surface tension renorma_llzeql by the geometry of the lamellar
In summary, according to both theory and experiment, (,I_r(_)nt and interlamellar diffusion. Thus, as far as these quan-
planar lamellar eutectic front in a binary alloy is completelyt!tles are concerned, the Iamellar_ StT“Ct”re leads to qugnuta—
stable for compositions sufficiently close to the eutectic com V€ differences, but no new qualitative features of the insta-

position, and for lamellar spacings negy,;,. To understand Eility. The ne\éjv ingrr(]adite)nt,_ ho;/vc;:lver, V\ihiCh C.Orlljld not ha\ée
the instability leading to colony formation, one must there- een expected on the basis of the analogy with a monophase

fore include a ternary impurity. To date, few theoretical Stud_front, is that the instability is oscillatory. The origin of this

ies of ternary systems have been available. Rinaldi, Shar ifference is due to the additional degrees of freedom asso-

and Flemings derived a generalized constitutional supercooF—’iat‘ad with the underlying lamellar structure of the interface.
: o -lAccordmg to Cahn’s hypothesis, the change in the local

experimentd9]. McCartney, Hunt, and Jordan adapted thelame]lar spacing .is determined by the §hape of the front. The
spacing, in turn, is related to the local interface temperature.

JH steady-state analysis to include impurities. They interA fthe i lav b his eff dth
preted the formation of colonies as the result of a Mullins-"S & consequence of the interplay between this effect and the

Sekerka instability driven by the ternary impuriig9], but instability driven by the impurities, long-wavelength pertur-
did not carry out a detailed stability analysis. ' bations may oscillate during growth or form traveling waves.

In this paper, we extend Datye and Langer’s linear stabil-There indeed seems to be recent experimental evidence for

ity approach, based on a Jackson-Hunt approximation of th uch Ia_lrge_ scale oscillatory behayior near the onset of colony
diffusion field, to include the effect of a ternary impurity. For lormation in a transparent organic model all@g]. .
the reasons mentioned above, we expect this approach to We also investigate the influence of the ternary impurity

yield relatively accurate predictions for spacings close ta°n the short-wavelength §20) oscillatory instability that is

hich is tvpically the dvnamically selected range of &feady present in a binary eutectic. The main result is that
WhiCh 15 ypicaty y ety g this instability is enhanced by the impurity boundary layer,

hich leads to a reduced composition range for stable lamel-
ar growth even below constitutional supercooling.

)\miny
interest in experiments. We obtain the full linear stability
spectrum of the steady-state lamellar eutectic front growin

in two dimensions. Our final result is quite complicated, but ; .
d P The structure of this paper is as follows. In Sec. Il, we

can be substantially simplified for a model alloy with a sym-. d he basic sh interf . We th
metric phase diagram, solidified at its eutectic composition!Ntroduce the basic sharp-interface equations. We then sum-

From the study of this special case, we can identify all im_marize in Sec. Il the Jackson-Hunt approach and apply it to

portant factors that determine the stability of the front. InCalculate the steady-state solution in the presence of a ternary

particular, we find that the interlamellar eutectic diffusion |mpurity.hln iec.l IVI’ wehrevig\év_ the lprinciples_ of tr:,e DLh
field gives a stabilizing contribution with a functional form approach and calculate the additional terms arising from the

similar to the usual capillary term. Thus, this contribution PréSence of an impurity. Section V'is devoted to a detailed
leads effectively to a “renormalization” of the capillary d_'SCl_JSS'On of the stab|llty spectrum at the eutectic composi-
length. Using this insight, we are able to reformulate thelon in a model phase diagram that is symmetnc.e}bout this
stability problem by treating the large scale dynamics of th omposition. In Sec. VI’. we reformulate the stability prob—

eutectic front as an “effective monophase interface,” as Sug_em in terms of an effective interface approach and derive an

gested by Fig. 1, with a Gibbs-Thomson condition that isapproximate expression for the stability spectrum for an ar-
bitrary phase diagram and material parameters. In Sec. VII,

coupled to an equation of motion for the local lamellar spac- di b he off i sh | h i
ing. A similar type of approach has been used previously tg/e discuss how the off-eutectic short-wavelength oscillatory
stability is affected by the ternary impurity. Finally, we

analyze the long-wavelength modes of cellular arrays durin J ; .

directional solidification of dilute binary alloyg80]. More ~ SUmmarize our main results in Sec. VIII.
recent numerical work, however, has shown that the modes
that limit the range of stable cell spacings at low velocity are Il. BASIC EQUATIONS

oscillatory and nonoscillatory instabilities with a wavelength

equal to twice the cell spacif@1] that have been observed We study the solidification of a binary eutectic alloy con-

in experimentg32]. In contrast, here, no short-wavelength taining a small amount of ternary impurity. Leidenote the
instabilities are present near the eutectic compositio\for concentration(in molecules per unit volumeof one of the
close to\,,. Therefore, the effective interface approachconstituents of the binary eutectic, anithe concentration of
provides an accurate description of the interface dynamics ithe ternary impurity. As we restrict our attention to small
the limit of perturbation wavelengths much larger than theimpurity concentrations, we shall assume that these two
lamellar spacing. Moreover, it can be extended to derive @uantities can be treated as independent variables. In other
simplified expression for the stability spectrum by incorpo-words, we assume that the phase diagram of the binary eu-
rating phenomenologically the effect of surface tension. Thigectic is only slightly altered by the presence of the impurity.
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T (a) (b) is usually termed thesutectic valleyor eutectic trough

T Along this line,c, ¢, andT are related by the equations

liquid liquid ~ ~
mz—m, ~
o + liquid B + liquid _ _ B @

Te | | solid \ solid + liquid c—Ce m,+ Mg ’ )
I e, % % o (ll) T—Te=Mc, @

T © PN 5 m,mg+m,myg :
T ,,/a+liquij'/' \»\B+liquid - ma-I— mﬁ ( )

e liquid e
\ Equation(3) defines a monovariant line in the ternary phase

S

FIG. 2. Phase diagram of an idealized ternary eutectic al@y.
Binary eutectic phase diagrara£0). T, is the melting tempera-
ture of the pure phase3;: the eutectic temperature, amg the
eutectic composition(b) Cut through the ternary diagram along the
eutectic valley ¢=cg). (c) Liquidus and solidus surfaces in the ) - . ’
space ¢,c,T). The dashed line is the projection of the eutectic sample is pulled in a temperature gradi€nwith a constant

valley on the solidus surface. The liquidus surfaces have metastab@"”ing Speedvp. 'We qssu_me that heat diffusion is much
extensions beyond the eutectic valkept shown. (d) Coexistence  faster than chemical diffusion and that the thermal conduc-

curves for a fixed temperature beld in the (<) plane. t|V|t|es_of solid and Iqu|d_are of comparable magnitude. Un-
der this set of assumptiongommonly referred to as the
frozen temperature approximatiorthe temperature is given

Py

diagram where, except for the special casg=m,, the
eutectic composition is shifted with respect to the binary

eutectic point in the presence of a ternary impuridyis the
liquidus slope along the eutectic valley. A liquid satisfying
Egs.(3) and(4) can be in simultaneous equilibrium with two
solids.

In a typical directional solidification experiment, the

< C,

B

o

C

The two solid phases are denoteddyndg; ¢, andc,; are
the concentrations limiting the eutectic plateau in the binar
p_h_ase diagramyc=cz—c,, andcg is the eutectic compo- (6)
sition.

For coupled eutectic growth, the temperature of the lamelyhere we have chosen the origin of thaxis at the eutectic
lar front is close to the eutectic temperature, and the compQemperature.
sition on the liquid side of the solid-liquid interface is close |y the absence of convection, the growth of the solid is
to the eutectic poinf15]. This allows us to introduce tWo |imited by chemical diffusion of the constituents. We assume
further simplifications. First, we may approximate the soli-,¢q diffusivity in the solidone-sided modg! In the liquid,

dus and liquidus surfaces in the ternary phase diagram be giffusion equations in the laboratory frameoving with
planes around the eutectic point. We denote rhy and velocity v, with respect to the samplare

ms (s=a,B) the magnitude of the liquidus slopes along the

T(z)=Tg+ Gz

c- andc-axis, respectively. Second, we will assume tbat i Jc _E 2
: | X =—-d,c+V-c, (79
andc are independent of temperature and impurity concen- Do |
tration. As already argued by DL, this should only slightly
affect the final results, because in the temperature range ex- 1dc 2 _ .
plored by the front the relative variations of the concentra- 5 E=~I—¢9ZC+V C, (7b)

tion jumps across the interfaces are negligible. On the other
hand, our calculations are considerably simplified, as we can o ~
relate the volume fractiom of the a solid to the composi- With the diffusion lengthd =2D/v, and | =2D/v,, D and
tion of the melt far ahead of the interface, , via the rela- D being the diffusivities of the eutectic components and the
tion ternary impurity, respectively.
For lamellar eutectic growth in thin-film geometry, the
(1) problem is essentially two-dimensional. Let the position of
the solid-liquid interface be described by the cudfe,t).

independently of the concentration of the ternary impurityDuring the phase transformation, impurities and the minor
and the interface temperature. For the impurity, we will workcomponent of the growing solid are rejected into the liquid.
in a dilute alloy approximation where the impurity concen- The condition of mass conservation implies that at the inter-
trations on the solid and liquid sides of the interface areface
related in equilibrium by

C=ContCp(1—17),

—Dd,c=vy[c(x,{)—c,] (aL-interface, (8a)

Cs=KCL, s=a,B. 2 —Ddsc=v[c(x,{)—cgl  (BL-interface, (8b)

The resulting phase diagram in the spac&(T) is sketched B E)an~c=vn(1—l~<a)£:(x,§) (alL-interface), (80
in Fig. 2. The line of intersection of the two liquidus surfaces —Dd,c=v,(1—kg)c(x,{) (BL-interface, (8d)
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fusion equations and the Gibbs-Thomson conditions at the
interface are both satisfied. The JH approximation starts by
solving the diffusion problem for a flat interfageonsisting

of lamellae with6,= 65=0). This can be achieved by ex-
panding the diffusion field in Fourier modes along kaxis:

2| ~ liquid

N

o]

o ‘ c(x,2)=c.+ > Bpexgigx—dn(z=2)], (12
j G+ 2 n=—ow

G+)A X

FIG. 3. Sketch of a steady-state array of lamellae growing parwith q,=2mn/\, and z the z coordinate of the trijunction

allel to thez axis. The lamella pairs are numbered by the intgger noints. The constants, are obtained by substituting the
7 is the volume fraction ok-phase, and is thez coordinate of the  above sum into the diffusion equation. Since time derivatives

trijunction points. are zero in steady state, this yields, at once,
wherev, andd, denote the normal velocity of the interface =11+ ,/1/|2+q?n_ (13

and the derivative normal to the interface, respectively.

We are interested in a regime of relatively low solidifica- Inserting the expansiofi2) into the mass conservation con-
tion velocity where the solid-liquid interface can be consid-dition allows us to determine all Fourier coefficients except
ered to be in local equilibrium, in which case the temperaturgor B,. The average undercooling for each lamella can then
and concentration fields at the interface are related by thge calculated using the Gibbs-Thomson conditions. Finally,

Gibbs-Thomson conditions the condition that the two phases must grow at equal under-
- - cooling determine®8, and the average undercoolidgl’ of
T=Te—my(c —ce)—myc —I',K[{] (alL-interface, the solid-liquid interface as a function af and 7.
(9a) For a eutectic with a ternary impurity, we must in addition
- treat the diffusion of the ternary impurity in the liquid phase.
T=Tg+mg(c —cg) —mge —I'sK[{] (BL-interface. For this purpose, we use the same Fourier expansion as
(90 above,
Here,K[ ] is the local interface curvature, and oc

[=Teyy /Lo, S—a.p, (10 c(x,z)=cw+n;xBnexp[iqnx—qn(z—z)], (14

are the Gibbs-Thomson constants, wjth andLs denoting,  \wherec,, is the impurity concentration far from the interface,

respectively, the liquid-solid surface tensions and the laten ~ : —
heats of the two solids at the eutectic point. é nd the constantg, are equivalent taj, with | replaced by

Finally, local equilibrium also implies that at the trijunc- |. This expansion is.inserted into the condition for_ impurity
tion points, where the three phases are in contact, the ang|ggnservat|on at the~|nterface. To extract an equation for the
between the three interfaces are fixed by the balance of suFourier coefficient8,, both sides of the equation are then
face tension forces, which for isotropic interfaces yields themultiplied by exp¢-ig.x) and integrated ovex from O to\.

two conditions The result for the coefficier,, which gives the magnitude
) i of the overall diffusion boundary layer, can be written in the
Yal Sin 0a+ YﬁL Sin 632 ’yaB, (11@ form
YL COSO,= 7y COSHOg, (11b ~ ~ (1
: pLEEETE Bo=C.| (=1, (15)
E

where the definition of the anglek, and 6 is illustrated in

Fig. 3. with an effective partition coefficient

Ill. STEADY-STATE SOLUTION ke= 77K+ (1= 7)Kg. (16)

For a binary eutectic, the steady-state problem has bee'gOr n=0. we obtain
treated by Jackson and Hufi5]. Their method has been '
extended to ternary systems by McCartney, Hunt, and Jordan
[29]. We need the steady-state solution as the starting point 9.B.==1
for our stability analysis. We will only summarize here the " " T
essential steps of the calculation; more details can be found (G g 7
in Refs.[15,22,29. R }

B,+

- 2 - [ el —1
~ k _ka Coo .
| ( P )[ —I\Qy,

17

A typical configuration for a lamellar eutectic growing at iN(gn—0m) B
constant solidification speed, is sketched in Fig. 3. Alter-
nating lamellae of ther and 8 phase are regularly spaced. We are interested in a growth regime where the diffusion
The width of one lamella pain, is usually of the order of length is much larger that the lamellar spacing, and the Pe
10 um. We must find the interface shape for which the dif- clet number, Pe\/I<1. Consequently, fon#0, we have
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q,> 11T, and all terms containing the coefficierig on the ~ The last step is to apply the condition that neighboring

right-hand sidgRHS) of Eq. (17) can be neglected, which lamellae should grow at equal undercoolingAT),

yields =(AT)g. This determines the only degree of freedom left in
the problem: the eutectic boundary lay&y. The solution is

= _4c.(kg—k,)e MM sin(g, 7\ /2)

n N (18 B +Em mg—m, . 2\P(7)Ac
qnqn 0— (Coo CE) kE ma+mﬁ ma+mﬁ

Note that, if we want to go beyond this approximation, the 1 1/5 ~ 0\~

problem becomes considerably more involved, because then | = Mg _ ﬂ) -z %+ﬂ)c_°°(|~( -k, |.

all the Fourier coefficients are coupled. Ni-% #) Tl»n 1-y/Ac? "¢

We proceed now as JH by calculating the average impu- (25)

rity concentration in front of each phase, that is, by evaluat-

Ing There are two terms that are not present in the binary eutec-
1 rm tic. The second term on the RHS of Eg5) gives, according

<E>a=_)\J'” T(x,2)dx, (199 to Eq. (3), the shift of the eutectiNC composition correspond-

M Jo ing to an impurity concentratior.,,/kg. It is remarkable

that, even for a system that started from an initial state with
~ 1 N three-phase equilibrium, a eutectic boundary layer must de-
<C>ﬁ——f c(x,z)dx (19b) ' o o
(I—=gN o velop in order that the composition condition for three-phase
equilibrium at the trijunction points can be met. The second
at z=z. The results are new term is the last term in brackets on the RHS of 2§),
involving the difference of the partition coefficients. This
_ T 2\ o term is due to the unequal rejection of impurities in the lig-
<C>“=k_ +=—P(n)C..(kg—Kyg), (209  uid.
E |y The interfacial undercooling as a function of the lamellar
spacing can be written in a form very similar to the JH result

~ Co ~ o~ for a simple binary eutectic:
(©p=1C 7 Pmca(ks—ka), (20b)
E 1(1-7) =~
AT+ EAT -(L+Amm) (26)
with ke 27 ™M N A
o The first term, according to Ed4), gives the undercooling
P(n)= E sir(yn). (21 of the point in the eutectic valley corresponding to an impu-

n=1 (7Tn)3 . L~ .. . )
rity concentratiorc,, /Kg . The minimum undercooling T i,

Averaging the Gibbs-Thomson condition over individual and the corresponding spacingy, are

Iamgllge, we obtain the mean undercooling of the solid- 4AC / m,mg _

liquid interface: AT pin= A=) mymy Vi(n)p(n.c.), (27
(AT)a=my((C)o=Ce) T Mu(C)u+ T'(K),, (228 NN Ty 29
(AT)p=—mg((c)p—ce) +Mu(C) s+ I n(K)g, (22D ith

where the average valuéAT)g, (c)s, and(K)s (s=«,B) (1-9)l,sing, nlgsindg

are defined by expressions analogous to Et@). for (C)s. f(n)= mAc moAc (29)

The averages for the compositioft)s, and for the curva-

tures,(K),, are[22] P(n) P(n) % -

NAC p( nicoc)_ | + T AC(kB ka)
(Cha=Ce=Cx+Bo+ ——P(n), (233 o
m, Mg
o\ Ac X[ (1=m) - ﬂm—ﬁ : (30
(C)p—Ce=CwtBo— mp(ﬂ), (23b)
7 Note that, as in a binary eutectic, we haA{émin~\/v_p and
5 Amin~1/\V,. In the special cas&,=kz, we recover the
(K),=—sing,, (24a classic JH result. The twp-dependent terms on the RHS of

2 Eq. (26) represent the effects of diffusion and surface ten-

sion. For finer lamellae, the diffusion between adjacent
2 : lamellae is faster, and the undercooling due to the concen-
(K)g=77——sinb. (24b) . . ; o ;
(1—mn)\ tration term in the Gibbs-Thomson relation is smaller. This
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C—Cg 33
z =
U= "Ac (33
_ and a dimensionless impurity concentration field
Z
. t—¢. 34
’ y u=——,
ir (GHmr x Ac

FIG. 4. Sketch of a perturbed lamellar interface, showing the
displacementy;’, y*, &, and£/. with Ac=c,.(1/kg—1).

Let us outline the strategy of the DL calculation. For a
gives the term proportional to. On the other hand, for finer Slowly evolving, slightly perturbed interface, the Gibbs-
lamellae the average curvature is higher due to the conthomson condition for local equilibrium remains satisfied.
straints at the trijunction points, leading to the term propor-The deformation of the front modifies the local curvatures
tional to\ 1. and concentrations. The perturbed diffusion fields can be cal-

For our subsequent stability analysis, we will now sim- culated using the mass conservation conditions. For small
plify the problem. The main effect of the impurities, rejected displacements, all resulting expressions are Iinearizegf in
by both solid phases, is the buildup of the impurity boundar)andyjs. To close the set of equations, DL use Cahn'’s hypoth-

layer of amplitudeB,. The diffusion of impurities between €sis, which gives additional relations between dteand the
neighboring lamellae leads to corrections\ig, andAT;,.  Y'S. Inserting all these expressions into the Gibbs-Thomson
In the dilute limit. however. where. <Ac. these corrections condition allows one to determine the stability spectrum of

are small. In addition, the partition coefficients for ternarythe interface. . . . e
. . -~ The new element here is the ternary impurity diffusion
impurities are often close to zero, and we h&ye-kg<1.

Thus it I iustified t ke th imati field. To obtain the modifications it generates in the stability
us 1t seems well justiied to make the approxima Ionspectrum, we have to introduce the procedure in more detalil.

P(7,¢..)~P(7)/l in Eq.(30) and to drop the term involving  As in the JH calculation, a complete solution of the free
the difference of the partition coefficients in BE@5). This  poundary problem is out of reach, and we use quantities that
means that we neglect the interlamellar impurity diffusionare averaged over individual lamellae. The average under-
modes,B,=0 for n#0, which is equivalent to the assump- cooling of a lamella is written as

tion of equal impurity partition coefficientsk,=ks=ke.

For two very different impurity partition coefficients, it AT (1) =AT+6T(t) (s=a,pB), (35)
might be necessary to go beyond this approximation and to ! :

include the interlamellar impurity diffusion.

We will also assume equal impurity liquidus slopes, with AT, the steady-state value, given by H@6). To ex-

press thedT js(t)’s, we have to calculate the deviations of

andm, for most of what follows. Then, the eutectic compo- ¢\ rature and concentrations from their steady-state values;
sition and the magnitude of the eutectic boundary layer, deg 4t is

scribed by the coefficier,, do not depend on the impurity
concentration. We will briefly comment on the general case
at the end of Sec. VI. 5<K>ja(t):

x.ﬁ
s | KL (), (@6

| J j
IV. STABILITY ANALYSIS

The DL method is a perturbation analysis around the JH 5 )A(t) = ;ija*lK[g(x,t)]dx%K)ﬁ, (36b)
steady-state solution. The fundamental variables in this ap- . b 1—ij Xl
proach are the coordinates of the trijunction points, or more

precisely, the departure of these coordinates from their 1 p

steady-state values. As illustrated in Fig. 4, the coordinates S(u) (1) = J X _ 7

of the trijunction points of thgth lamella pair are written as R
Xja:j)\+yj“(t) ij:(j + 77))\+yjﬁ(t), (3D 1 X%
s(uyf(t)= a—ﬁfBl*lu(x,g(x,t),t)dx—w}ﬁ, (37b)
X — Xt xt
o . j+1 ] ]
Z'=z+ M) P=z+EA(). (32

with the equivalent quantities for the ternary impurity field

We assume the system to consist of a total numbeN of being obtained by replacingby u in the last two equations
lamella pairs, and use periodic boundary conditions. For conabove. The steady-state values are obtained from @2@5.
venience, we define a dimensionless eutectic concentraticemd (23) using the changes of variabl€33) and (34). Fur-
field by thermore, we define the averag@osition of a lamella by



6872 MATHIS PLAPP AND ALAIN KARMA PRE 60

1 R i ’ !
(O =5(&+€), (389 G(Of=e Nt X G k)X, (43)
S'=a,ﬁ
1 H H ’ !
(O =5 (&t &) (380) S =eN Tt F KT (kw)XE (44
s'=a,B
In terms of these local averages, the linearized Gibbs- . o .5 o
Thomson conditions read SuyS(ty=e Mot F s (k)X (45)
s'=a,B
ST{(1)=—G(&){ (t)=m, &(u)f'(t) + M, &(U)f'(t) B n B
3 suysy=eNtet 3 TS (kw)X§ . (46
+Fa5<K>] (t)! (39@ s'=a,B
_ _ ~ o~ Then, the conditiong39) can be written as an eigenvalue
STH(1) == G(&)f(1) = —my(u){ (1) + mea(u)f(1) equation.
+T g (K)P(1). (390
ASS'XE =0, 4
The next step is to express the averages in the two equations srzzayﬁ K @0

above in terms of the displacemenrgsandy; . For the cur- o
vature terms, the procedure is straightforward, but for thevhere the matriA is given by
diffusion fields one needs to introduce a piecewise linear

representation of the interface shape, as will be described in A=G+ ', 0 )K (maAC 0 )

more detail belowsee Eq.(52)]. Following this step, Egs. 0 Iy 0 —mgAc

(39) become a system ofN linear equations for M vari- -

ables and their time derivatives. To complete this system, we m,Ac 0 \._

must specify how the trijunction points react to deformations + 0 Fnﬁ AT u. (48)

of the growth front. Following DL, we will use Cahn’s hy-

pothesis and assume that the trijunctions always grow pefrpe first three terms on the RHS of E¢8) are identical to

pendicular to the eutectic solidification front, which yields ,5se calculated by DL, whereas the last term is due to the

the conditions presence of the ternary impurity. For a given wave nunkber
Eq. (47) is fulfilled only for special values of». The solv-

yJa: _(gjﬁ_ fjﬁfl)vp”‘* (408 apility condition,
yP=— (&1 Evp/N, (40b) detA=0, (49
where the dot denotes the time derivative. gives the dispersion relations(k).

We now transform the problem into an eigenvalue equa- 1he core of the problem is the calculation of the matrices
tion by analyzing it in terms of time-dependent Fourier @Ppearing in Eq(48). The first two,G andK, are relatively

modes. We write easy(see Ref[22] and Appendix A. The most difficult is
the matrix U. We start by writing the perturbed diffusion
E=Xpexp(ik\jtot) (s=a,B), (419  field as
y,—s= Yeexp(ikhj+ot) (s=a,B), (41b) u(x,z,t)=ug(X,z) + du(x,z,t), (50

where ug(x,z) is the steady-state solution. Nexdy is ex-
panded in Fourier modes; this time with the periodicity of
the whole system, i.e., with wave numbgrs 27n/NAX:

where the allowed wave vectoksare integer multiples of

27/N\ and lie in the interva] — &/\,7/\]. In the limit of

an infinite number of lamellady— oo, we recover a continu-

ous spectrum. The growth constraié) give then imme- __

diately 5u(x,z,t):E by,exdipx—qy,(z—2)+wt]. (51
p

oYi=— %efikmsin(k)\/z)xﬂ, (428  Thep’s, unlike thek’s, range from—< to «, because the
diffusion field is continuous. To simplify our calculations,
2iv we use the quasistationary approximation for the diffusion
B _ VP kN2 @ equation; i.e., we drop the time derivative in E@a). Physi-
Yk N C Sn(kA/2)Xic (42 cally, this means that we assume that the diffusion field ad-
justs instantaneously to any change in the interface configu-
This allows us to eliminate the coefficientg andYf, and  ration. For a perturbation such as that given by &4), this
the only unknowns left in the problem ax§, Xf, andw. It is justified if |w|<Dp? and|w|<Dp/I, conditions that will
is useful to write each of the terms appearing in the Gibbsbe checked posterioriat the end of Sec. V D. In the range
Thomson condition in the compact forms of wavelength of interest here, i.e. fa27/p<I, we find
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that these conditions are generally well satisfied. Within this _ 3% a8
approximation, the constantg, are given by the analog of —D—| (=29-D—r _
Eq. (13. 97 |,z 2-7

To obtain the Fourier coefficients,, we proceed as in ) o U
the steady-state calculation and insert the expansion in the zg[(l—kE)uo(x,z)+kE]+vp(1—kE)E
mass conservation condition. To make the problem tractable, z=7
the actual interface shai@géx,t) is replaced by the piecewise % (g_;) +vp(1—ke) 51]()('20_ (56)

constant function
We now insert the Fourier expansi@) in the above equa-
tion, multiply both sides by exp{ip’x)/N\, and_integrate
" (52)  overxfrom 0 toNX. With Ug(x,z) =exp(— 2(z—2)/T), this
<§>-ﬁ, XJ‘8<X<X1+1- leads to

L(x,t)—z= (&, x<x<xf,

dke 1

i ~ 2 NA
One needs to be careful because the gradients of the stea ‘"t[qp— T—(l—ke)} :T_z o e 1P (x,1)dx
0

state concentration field diverge at the trijunction points. De- p€
tails can be found in DL’s article. Finally, the result is in- 11 (o

serted in Eqs(37). There are two types of contributions to += _J e P (x,t)dx. (57)
linear order in& and yf' the steady-state diffusion field is D NAJo

evaluated at the position of the perturbed interface, and the

perturbed diffusion field is taken at the location of the TO perform the integrals over, we use the piecewise con-
steady-state interface. These different terms, containing sunsant expression, E@52), for {(x,t). As {—z is already of
over the steady-state interlamellar diffusion modes, lead torderé, we can neglect thg’s in the integration boundaries.
quite complicated expressions, summarized in Appendix A.For §js given by a Fourier mode of wave numbeaccording

The calculation of) is somewhat easier because, with theto Egs.(41), we obtain
assumption of equal solute partition coefficients, the steady- . ipAi2
state impurity diffusion field is translationally invariant along 3 4ke wle 7
X, and hence the horizontal displacemeyftsirop out of the P pA
calculation. It would be possible to include the interlamellar DN
impurity diffusion in the expression fdd by following the X sin%(Xng?('g)
lines of the DL calculation fotJ. We expect, however, as
argued in the preceding section, that this would only lead to +sinp(1_ n)x(eipx,f%re_im,zxﬁ) ,
minor corrections. 2 P P

The perturbed impurity diffusion field is written as

T2 B

(58)

where

U(X,z,t) =Ug(2) + Su(x,z,t) (53 . 10 -
;:N Z 'PM*‘”tng:; SpkramnXg (S=a,B).

and expanded in Fourier modes, (59

Note that, even if we start with a set §% given by a single
Su(x,z,t)=>, Bp exp[ipx—ap(z—;)wLwt]. (54) ~ Fourier mode of wave numbd, the use of the piecewise
constant interface shape of E§2) induces perturbations in
the diffusion field at all wave numbers shifted with respect to
- lculate th tant th istati k by a multiple of 27/\. This effect is unavoidable if we
o calculate the constanty,, we use the quasistationary o 1o replace the full free boundary problem by equations
approximation of the impurity diffusion equation. In terms of for a discrete set of variables

the dimensionless impurity field, the continuity equation at  The next step is the calculation of the average concentra-

the interface takes the form tions in front of each lamella:
o | ) U f(J [ g o oo g
B2 —wperbla-ketk Gy XWTO=T || 5] (O eutan dx
z=¢ (603

We want to keep only terms that are linear in the displace- ~ 5

ments&; or their time derivatives. Such terms come from &u)] (t):m
several sources: the time derivative &fthe correctionsSu

in the diffusion field and its gradient, and from evaluating the (+1\ [ dug
steady-state diffusion field at the new interface position x j o\ 9z
{(x,t). The equation of order 1 in the displacements be- )
comes (60b)

(OF+ 5E(x,2t)) dx
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The first term inside each integral is due to the displacement
of the interface in the steady-state diffusion field, and the
second arises from the perturbed diffusion field evaluated at
the steady-state interface position. The final result for the

PRE 60

V. SYMMETRIC PHASE DIAGRAM AT EUTECTIC

COMPOSITION
A. Stability spectrum

matrix U is

~ 1 1 2kE)\ w)\l ~ o
Uro=——+ —| —+—|[Su(x,7)+ S (x, 7],
[ R 2D
(618
gxB=0aax (61b
N 1 1 [2keh oNT|
UPP=— -+ ”( o [Si(x,1=7)
I A=l 1 2D
+35 (k,1- 7)1, (619
Upa= kA A B* (610

whereU®** denotes the expression obtained fraift® by
complex conjugation of all quantities except for (for w
real, this is the usual complex conjugatipmnd we have
defined

k=kN\/27, (62

r=1/T=DID, (63

(k) =\rPPE+4m2(n+k)2—r Pet2rPeks, (64)

sirf[mp(n+ )]

Sl(K,??):n:Zoc m (65
NSz(K, n):n;x e*iﬂ'(nJrK)
XSir[ﬂ'n(n-l-K)]Sir[ﬂ'(l— 77)(n+K)]. 66)

72N+ K)%pn( k)

In general, the characteristic equation of the stability
spectrum is a polynomial of degree four inwith real co-
efficients. The solutions could be obtained algebraically, but
this method leads to complicated expressions that are diffi-
cult to interpret. For this reason, we will restrict our attention
in this section to the special case of an alloy of eutectic
composition in a model system where the phase diagram is
symmetrical about the eutectic composition. In this case, the
characteristic equation can be factored into two quadratic
equations, thus greatly simplifying the interpretation. As we
shall see when we treat the general case in Sec. VI, all quali-
tative features of the instability are already contained in this
special case.

There are general relations between the elements of the
matrix A, due to the existence of two planes of mirror sym-
metry in the steady state, one in the middle of each type of
lamella (« or B). Hence we can change the sign lofind
relabel the trijunction points without affecting the final re-
sult. This leads to the relations

AF=pwox, (673
APa= A pp Y, (67b

Here, an asterisk again denotes complex conjugation of all
quantities excepb. If we consider a model eutectic with a
completely symmetric phase diagram, i.en,=mg=m,
My=My=m, To=T4=T, 6,= 0,= 0, anduy=—u,=1/2,

at its eutectic compositiony=1/2, we have in addition
A%*= AP The solvability condition, deA=0, can then be
factored into two equations,

Rqe_ik)\MAa’a):O and |n(e_ik)‘/4Aa’a)=O, (68)

both of them quadratic im.

To proceed, we will rewrite the equations in a dimension-
less form. For the sake of subsequent generalization, we will
give expressions for the parameters that are valid for any
phase diagram. We define

These notations have been chosen in analogy to some of

DL'’s results (see Appendix A The ratior of the eutectic
and impurity diffusion lengths is usually close to 1, ands
the dimensionless wave number. For smaklBenumbers,

and perturbation wavelengths much larger than the lamellar

spacing(k<1), the sumsS, and'S, are dominated by the
term with n=0. In this limit, we can neglect all the other
terms in the sums, which corresponds to keeping only the

Fourier coefficiean with p=k, and hence to a single-mode
approximation of the perturbed impurity diffusion field.
Whenk is larger, however, and in particular near the “Bril-
louin zone” boundary«=0.5, we have to consider the full
sums. To obtain the stability spectra, we must now combine
this result with DL’s calculations for the other matrices and
solve the characteristic equation fer

_ mamﬁ 69
(Mg +mp)/2’ (69)
Q=ow)v,, (70
Gl 2DG o
g_MAc_vaAc’ 7D
_ mAC 2

W= Mac (72
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A=\ Npin- (73 20

@) '

Here,M is a mean liquidus slopéor the symmetric phase
diagram,M =m); 1/Re(} is the distance along thedirection
that the interface needs to traval units of lamellar spacing

for the amplitude of the perturbation to grow by a factoepf
and 27/Im Q is the length traveled by the interface during
one oscillation cycle. The parametgtis the ratio of the two
freezing ranges and is proportional to the impurity concen-
tration sinceAc= (1/kg—1)C...

It may be useful to comment on typical experimental val-
ues of the dimensionless parameters. The best studied system
in this context is the organic eutectic GBE,Clg used origi-
nally by Hunt and Jacksop4]. This system contains natu-
rally residual gas that acts as an impurity, leading to colony
formation. For this system, Akamatsu and Faii/8d] have
estimatedw to be of order 0.1, with a distribution coefficient L
ke~0.02. The Pelet number Pe is typically between 0.01 T00 01 02 03 04 05
and 0.1 in the low-velocity regime used to investigate colony
formation. FIG. 5. Stability spectra of the symmetric eutectichat1, Pe

After mUltiplication bylﬂ/(MAC), the first of Eq5(68) =0.01,g=1, r=1, kg=0.05, and#=45° (a) without impurity
becomes, expressed in the above dimensionless quantitigg=0) and (b) with a small amount of ternary impurityw(
(see Appendix A for more detajls =0.01). Full lines, real modes; dashed lines, complex modes.

ReQ

®

ReQ

2P( 7
0=0 gcos7z+ —(T)sm( wkl2)sin( i) () cotd—2/n) dure can be found in Appendix B. It turns out that an expan-

2 A sion up to ordew? is sufficient to obtain a satisfying agree-
+Q2Rg e ™0k, 7)]+Q Rge ™20k, 7)] ment with the direct numerical solution of E¢74). We
’ ’ obtain

. . TK
+2 sin( k)R ie' ™ U 4(k, 7)]—wrQ CoS -

e a(k)=2P(1/2)+ =

wr) ~
= (2K Pe+9)(sl(,(,77)cos7 Po(K)

(769

. 2
—I—Re[e_'wK/Zé;(Ka??)])a (74 b(K)=Wr—g/2—<-27T P(i./22)cot0+ %) 2

where we have chosen to displgyfor clarity, although the 2w Per2kg

factorization is only possible fop=1/2. The first term of Eq. ——

(74) arises from the matriG; the factor cosg«/2) is simply po(K)

due to the averaging over the two trijunction points limiting

a lamella. The matriX contributes the next two terms, pro-

portional to A~2. The first, containing(), describes the C(K):SWZP(]_/Z)(l——lz) 2 (760
change of curvature due to the bending of the interface over A '

a large scale, and is therefore equivalent to the capillary term

in the dilute binary alloy problem. The second gives the

change in average curvature upon variation of the locawherepo() is defined by Eq(64), andR, is a constant
lamellar spacing. All terms containing the functions given by Eq.(B11). We note that, to obtain these expres-
U&(7,x), defined in Appendix A, are due to the eutectic sions, we have only kept the leading order terms of each of

diffusion field. Finally, the terms proportional tov arise  the contributions in Eq(74) and dropped several terms of
from the matrixU order|«| and«? that turn out to give negligible contributions

Equation(74) is exact and can be solved numerically. But at the onset of instability for the reasons detailed in Appen-

it is also useful to simplify this equation in order to renderd X B. The simplified stability spectrum defined by the equa-

the physical interpretation of the instability more transparenttIons above will be used below to derive simple analytical
To this end, let us group the terms with equal powergof expressions for the onset velocity and wavelength. More-
and rewrite Eq(74) as over, it will allow us to identify the terms that contribute to

the effective surface tension in the long-wavelength free

a(k)Q?—b(k)Q+c(k)=0. (75) boundary formulation presented in Sec. VI. In the rest of this

paper, the results based on this simplified spectrum will be

To obtain a simplified expression, we expand the coefficientsystematically checked against the direct numerical solution
a(k), b(x), andc(x) in powers ofx. Details on this proce- of Eq. (74).

(76b)
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B. Binary versus ternary eutectic: The limit «—0 latter expression, the impurity contribution is dominant for
Let us first examine the limik—0 of the stability spec- small Pelet number and small impurity partition coefficient,

trum, which governs the relaxation to steady-state growtt"?‘nd hence this branch is strongly influefced by the addition
after an infinitesimal translation of the solidification front of impurities. As the terms proportional jg(«) ~* also ap-
along thez axis. Although this is not the limit of interest for pear in the classical Mullins-Sekerka analysis of a mono-
morphological instability, it is worth a brief discussion to phase solidification front, we will hereafter refer to this
understand more fully the subtle effects of the ternary impubranch as the MS branch.
rity on the complete stability spectrum. The oscillatory branch is little affected by the addition of
Since, as mentioned above, the complete eigenvalue equiPpurities. The reason is that the second of HGS) does
tion is of degree four i) with real coefficients, there are not contain the MS terms at=0. We will discuss the rela-
four branches of the dispersion relation, and modes can bén between long- and short-wavelength instabilities in more
real or occur in complex conjugate pairs. In the completelydetail in Sec. VII.
symmetric case, each of the two equati¢é®) gives a pair The derivation of Eqs(74) and(76) is based on the qua-
of branches. To calculate the stability spectra, we must firssistationary approximation of the two diffusion equations.
evaluate numerically the sums occurring in the functionsThis approximation relies on the assumption that the wave-
Un(k, ) to obtain the coefficients of the polynomial {d, length of the perturbation is smaller than the diffusion
which can then be solved for eaghFigure 5 shows a com- length, and hence breaks down fe<Pe. In the framework
parison between the stability spectrum of a binary eutecti®f the DL formalism, however, the calculation becomes ex-
(w=0) and a eutectic with a small amount of impurities, tremely tedious if this assumption is relaxed, and the results
“small” meaning that we stay far below the threshold of Of this calculation will not be displayed here. The effective
instability. We have chosen the parametg@nd A in order ~ interface formulation to be presented in Sec. VI, however,
to reproduce, for the binary eutectic, Figh¥of DL's ar-  easily allows us to relax this assumption and to include the
ticle. Without impurities, we can distinguish two types of dynamics of the diffusive boundary layer. As a result, the
branches. There is always a characteristic diffusive brancHVIS branch of the spectrum becomes complex #4stPe,
which is real and satisfie® = D(A) «? for k—0: the spacing corresponding to an oscillatory relaxation of the interface to
can be locally adjusted by “diffusion” in. space23]. This steady-state growth driven by oscillations of the impurity
branch is related to the long-wavelength lamella eliminationPoundary layer that is already well-known for a monophase
instability for A<\ y,: the effective diffusion coefficient front. As we shall see below, the morphological instability
D(A) is negative forA<1. The companion of this branch is eading to colony formation involves only modes witk-Pe
also real, with strongly negative growth rates. The secondor which the quasistationary approximation is valid.
pair of branches is complex for small This mode gives rise
to the 2-O instability for sufficiently off-eutectic composi-
tions: it becomes complex up to the “Brillouin zone”
boundaryx=0.5 and its real part becomes positive. Let us now examine the onset of instability and compare
When we add a small amount of impurities€0.01), we  our findings to the well-known results for dilute binary al-
find that the diffusive and oscillatory branches are nearlyloys. For the one-sided model, the constitutional supercool-
unaffected; however, the companion of the diffusive branching (CS) criterion is fairly accurate. This criterion states that
undergoes a drastic change. Physically speaking, this strorsgmonophase solidification front is unstable if the diffusion
reaction to a seemingly small perturbation is due to the infength s less than twice the thermal lendit= mAC/G. In
troduction of a new conservation law. In the binary eutectic.or dimensionless variables, this is equivalentgia2wr.
this mode describes the relaxation of an interface by the morpne Mullins-Sekerka analysis show40] that the actual
tion of the trijunction points with respect to the temperaturecitical velocity differs from CS by corrective factors that are
gradient(in thez direction. At the eutectic composition, this ,gyally small. The critical wavelength, at the onset of
relaxation involves only short range interlamellar d|ffu3|oninstability scales a& .~ (dy| ~|)1/3 whered, is the capillary
and is therefore fast. On the other hand, for a flat interfac ength ¢ o 0

the impurities must diffuse over a length scale of the order o Let us briefly comment on some consequences of this

the diffusion length to achieve relaxation. This leads to mUChscaIing. From Eq(28) we can deduce that the eutectic spac-
slower decay rates for small wave numbers.

H . o 1/2
To see more formally how this change arises, let us con'9 Anin Scales as\ iy~ (dol)™* Therefore, for low Pelet

. : N : ' ! numbers we always expekt,i,<\, and hence we can con-
:(S\I/siroliq;g?a:rqcjtg((exh)n?sltta’;_f;gi.t:\e/vilrtlhtﬁ:tlitr:?bli%ur&%;?gss sider the limit of smallk for the determination of the onset of

c(k) k2. HenceQo k2 leads to a balance between the Iastinstability. On the other hand,. will always be smaller than
two terms of EqQ.(75). In the impurity terms, we have the diffusion length, and we havd/27>1, or equivalently

C. Onset of instability

BO(K)_>2kEr Pe for x—0, and fork=0 we obtain k>Pe. Therefore, we may use the simplificatipg(«)
~2|k| in Egs.(76).
, 9 The occurrence of unstable modes is determined by the
2P(1/2)+ 2ke Pe Q- EQZO’ (77) behavior ofb(«): if wr—g/2 is positive and large enough,

b(k) becomes positive for a certain rangekinWe want to

determine the critical valug. of the parameteg where the
yielding the solutions)=0, for the diffusive branch and, first unstable mode occurs, and the wave numgeof this
QO =—g/[4P(1/2)+wl/(kg Pe)], for its companion. In the mode. The two solutions of the quadratic equati@d) are
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FIG. 6. Stability spectra for
0.1 T T T T varying g and A and w=0.1, Pe
© (d) =0.01,r=1, kg=0.05, andg=45°.
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\\ \ complex modes. Note that we show
\ \ only the diffusive and MS branches
~01 ) A ~o1 ) . in the region of smalk where they
0.0 0.1 0.2 00 0.1 0.2 are unstable. The inset i@ shows
K K in more detail the part of the spec-
trum at smallx.
0-1 T L} L} {
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0.0 0.1 0.2 0.0 0.1 0.2
K K
b(x)* Vb2(k)—4a(k)c(k) equation becomes identical to the result for a monophase
Q.= 2a(x) (78  planar interface if we define the effective capillary length

As the producta(x)c(x) is always positive and finite, the _ Tcosé R.Pex
solutions become complex whdi(k) tends to 0, and we do=—=—+ 0 )
have R&) =b(«k)/2a(«). Hence the two conditions to obtain mAc 4w
0. and . are simplyb(«)=0 anddb(x)/d«=0. Let us
rewrite the first of these conditions in the dimensional quan-r
tities and divide through bwr. The result is

(80)

he above expression implies that the interlamellar eutectic

diffusion field has a stabilizing effect. This is rather remark-
~ . able since it implies that the two diffusion fiel@associated

~GP _FLC0~80 kj_ ROZ)‘Z kj — ZiiiE =0. (79 with the eutectic components and the ternary impurities, re-

mAcv, mAc 2 4mwr 2 ] spectively play antagonistic roles in the instability.

From the conditiordb(«)/dx=0 we obtain the expres-

There are two terms proportional k3. The first is the sur-  gjon

face tension term, which stabilizes the interface. It is analo-

gous to the surface tension term in the monophase MS spec-

trum, except that it is multiplied by a geometrical factor s 2Ke

cosé. This factor is present because the eutectic interface is kc:ﬁ (82)

made of an array of arcs, each one linking two trijunctions, 0

which renders the front less stiff than a flat monophase in-

terface. The second term arises from the eutectic diffusioffior the critical wave number. Furthermore, substituting this

field. It can be directly interpreted by noting that the aboveexpression in Eq(79), we find
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0.4

FIG. 7. Structure of the dispersion relation as function of the FIG. 8. Wave numbers of some characteristic points in the sta-
parameters\ = \/\ i, andg/ges=Vcs/Vy . The onset of instability  bility spectrum as a function of/gcs for w=0.1, Pe=0.01, ke
(constitutional supercoolings at the bottom of the diagram. The =0.05, andA=1.1. Solid lines with circles, real maximum; with

meanings of R, RC, CR, and C are defined in the text. crosses, limit between real and complex modes; with triangles,
complex maximum; and with diamonds, marginally stable mode.
= The dashed and dash-dotted lines are the approximations for the
GD 1 - ) )
= _ 82 complex maximum and the marginal mode given by E§8) and
V=== YR (82 _
mAc 1—3(dgkg/2l) (85), respectively.

for the critical pulling speed. This expression is equivalent to . - B
the constitutional supercooling criteriorv{s=GD/mAc) growth rate still satisfies Eq77) for =0, but now as«

up to the capillary correction in the denominator of the secIrows the MS branch and the diffusive branch meet to form

ond term on the RHS of E¢82). This correction is typically a complex conjugate pair, becautsfa) approaches zero and

o : ) : the discriminant becomes negative. Whemgrows further,
negligibly small, except for very low impurity concentrations =
) . the real part of) becomes positive, and the branch may stay
where the effective capillary length becomes large. Conse- ; S . .
: o - complex or split again in two real branches, both with posi-
qguently, as for a monophase front, there is a critical impurity,; - )
i . ) . tive growth rates. FoA=1 [Figs. §a) and Gb)], the spectra
concentration below which the eutectic front is completely o
always exhibit real modes above the onset, and the mode

stable. with the maximum growth rate is real for both valuesgof

The above results show that the instability of the eutectiq:Or A=1.1[Figs. 6¢) and &d)], near the onset only a nar-

interface is qualitatively similar to the standard MS instabil- band of | des i d the f .
ity of a monophase front, as far as the expression&fa@nd row band of real modes Is present, and the fastest growing
’ mode is complex. This changes at lowgrthe « range of

Ve aré concer_ned, up to a renormali.zati.o n of the surface ®eal modes has increased, and the fastest growing mode is
sion as described by E(B0). One main difference, however, real. Note that in both spectra there are two maxima of the
is that the branch of the spectrum that becomes unstabler\gs

complex, which suggests the existence of oscillatory patter fowth rate, one real and the other complex. At a certain
Piex, 99 yp alue ofg, the two maxima are of equal height; at this point,

decide whether SUCh patterne aré observabie expermentallyS 12ve & fnte jump in the wave number of the fastes:
we need to examine Eext how this complex braﬁch evolvegrOWing mode wherg is varied, and two perturbations of
P ifferent wave numbers grow with the same rate. Finally, for

above the onset of instability. A=1.5[Figs. Ge) and &f)], there is a range af where the
spectrum is entirely complex, and only far above the onset
D. Above onset do real modes appear. The fastest growing mode is always
Forv>v,, the solutions for) still satisfy the quadratic complex.
equation(75). The nature of the mode, whether complex or We can summarize these results in a diagram that shows
real, is determined by the sign of the discriminat(x)  the nature of the spectrum in the plank,§) (Fig. 7). For
—4a(k)c(k). The most important parameter, besigethat  this diagram, we normalize the temperature gradient by its
controls the discriminant is\, becausec(x) strongly de- critical value according to the constitutional supercooling
pends onA nearA=1. We are interested only in the case criterion, gcs=2rw. Note that we havey/gcs=ves/Vp,
A>1, since spacings below,,, are intrinsically unstable. wherev.s=GD/mMAT is the critical velocity. We classify
For A near 1,c(«) is small, and real modes should appear.the spectra into four categories, according to the occurrence
In contrast, for larger\, complex modes should be favored. of maxima. We denote by R spectra with only a real maxi-
To check this prediction, we plot in Figg a series of mum [Fig. 6)]; spectra with a real and a complex maxi-
stability spectra, calculated using E@4), for varyinggand  mum are denoted by RC when the fastest growing mode is
A. We chosew=0.1, which, using the constitutional super- real [Fig. 6(d)], and by CR when it is compleiFig. 6(c)].
cooling criterion, gives a critical temperature gradient ofFinally, the entirely complex spectra are denoted by C. Fig-
dcs=0.2. We display spectra for two values gfone close ure 7 shows for which parameters we can expect predomi-
to onset §=0.15), and one far above the onsgt0.05). nantly real or complex modes; around the line between RC
Let us first comment on the structure of the spectrum aand CR, we can have the competition of two different
small values ofx. The inset of Fig. @) shows that the modes. This diagram was determined using [#¢) with the
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o mated over the whole range af We also recalculated the
k‘;;x”wx,& N diagrams of Figs. 7 and 8, and found that the lines are
o1 b A& N ] slightly shifted, but the qualitative structure of the diagrams
a L \\\ stays the same. It seems therefore valid to use Eésfor a
&’ * \ general analysis.
0.0 — The marginally stable mode is always complex, angl
N can be determined by the condititafx,,)=0. In addition,
* far enough above the onset the term ir it Eq. (76b) can
O T oL oz o3 od be neglected. We find
K
o1 9
. | ' | ' Km—a<wr 2) (83
s b Z ] with
g .l ] _ 27®P(1/2)coth _4772WIE
;g a= A2 +Ro= N2 Jos (84)
05
whereR,, as before, is given by EB11). We can also give
0.0 s s . s an approximate expression for the wave number of the com-
00 01 02 03 04 05 plex maximum. For complex modes, Re=b(«)/2a(«). If

K we neglect the first term in E763a for a(«), we obtain

FIG. 9. Comparison of stability spectra obtained by the full

calculation, Eq(74), and by Eq.75) using Eqs(76) for the coef- 1 g

ficientsa, b, andc. Symbols, full calculatior(circles, real modes; Kmant™ K/ 3= V @(Wr— E) (89)

crosses, complex moded.ines, approximation(solid lines, real

modes; _dashed lines, complex modé&she parameters are the same The resulting curves fok,, and k. are shown in Fig. 8.

as for Fig. ). For the real maximum, all terms in the quadratic equation for
) have to be retained, and no simple expression for the wave

parametersv=0.1, Pe=0.01, andkg=0.05. Increasing the number of the maximum can be obtained.

concentration of impuritieéncreasingv) favors real modes: Some remarks seem to be in order here to clarify the

all curves are shifted to the right and to the bottom in themeaning of EQ.(83) in the dimensional variables. Since

diagram. The Relet number and the partition coefficient in- 9/dcs=Vcs/Vp, the limit of high pulling speeds corre-

fluence the diagram only in the part near the onset of instasponds tog— 0. In this limit, the structure of the spectrum
bility. varies very little with the pulling speed, because both the

To describe a spectrum in more detail, we may use seVcharacteristic length of the MS problem(ﬁ and the spac-
eral characteristic wave numbers: the wave numbers of thgyg \ . vary as 1,(/\,—p far above the onset. Hence, if we
fastest growing modes, the limit between _reaI and complexncrease the pulling speed aatithe same timehange the
modes, and the wave number of the marginally stable modgmellar spacing such that stays constant, the only param-
km. Figure 8 shows these quantities as a functiogddr  eter that changegexceptg) is the Pelet number. But Pe
A=1.1. As can be seen from Figs(ch and @d), for this  gppears in the problem only in the last term of Eg6b),
value of A real modes become dominant only well beyondhich we have neglected in order to obtain E83). This
the CS threshold. term becomes important only at very high pulling speeds and

To investigate systematically these quantities as functionfeads to the absolute stability of the interface, as in the case
of the control parameters, it is cumbersome to use(#4).  of a dilute binary alloy. Substituting=k\/27 in Eq. (84)
because of the sums involved in the functidg. There-  ghows that, for constant, far above the CS threshold the
fore, it is convenient to obtain approximate expressions fofyayelength of the fastest growing complex mode scales as

the wave ”“r_“bers of the m_arg'”a' mode and t_he ComIOIeX\/dol, as for monophase solidification. On the other hand, in
maximum using the approximate spectrum defined by Eq,

(75) and Eqgs(76). We will show in Sec. VI that this sim- experiments on eutectics unstable states are usually reached

lified spectrum can be recovered from an effective interfac from stable states by a sudden increase of the pulling veloc-
P P . ) . : ity [27,28. The lamellar spacing immediately after the jump
approach, which applies to an arbitrary phase diagram an

composition. It is therefore worthwhile to investigate the IS the same as before, bl and consequenti\ have

! . S . changed. Hence, starting from the same initial state and vary-
quality of this approximation in the present symmetric case

by quantitative comparison with the exact spectrum of Eq.mg the final pulling _speed _correspo.nds. to a variation of both
(74). Figure 9 shows that, for the example of the last spec—g and A. Eq. (83) sill applies, but in view of Eq(84) no

trum in Fig. 6, the qualitative aspect of the spectrum is WeIISlmple scaling withv, is expected. A last remark concerns

reproduced. We checked several cases and always found tﬁ[QF dependence oty on the impurity content. Taking the

the approximation shifts the marginally stable mode and thémit g—0 in Eq. (83) shows thatcy,~ Jw~ \/E_m The rea-
maxima to largerx. The error, however, never exceeded son for this behavior is that the effective capillary length, Eqg.

about 30%. The imaginary part &1 is very well approxi- (80), scales a$_10~w‘1, whereas\ i, is independent ofv.
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FIG. 11. Ratio of oscillation frequency to amplification rate,
Im Q/Re(), and ratio of the wavelengths in tteand x direction,
0 ‘ 0 27x/lm (), for the oscillatory modes with maximum growth rates as
0 X/A 10 0 x/ A 10 a function of g/gcs. Other parameters ara=1.5, w=0.1, Pe

=0.01,kg=0.05.
FIG. 10. Microstructures created by complex linear growth
modes. Left, a single mode traveling to the left; right, a standing \y/e chose the complex modes with a maximum growth
wave mode obtair_1ed py the superposition of two complex conjugat?ate of Fig. 6) (w=0.1, A=1.5, g=0.15). As for every
modes. Growth direction from bottom to top. point in the complex part of the spectrum, there are two
“degenerate” modes with complex conjugate growth rates.
This means that the MS instability length increases with deThe modes of our example have a wavelength of 10
creasingw, whereas the lamellar spacing stays constant, ane-0.1) and growth rated)=0.0347-0.257. One of these
hence we expect the wavelength of the primary instability oftwo modes is depicted in the left part of Fig. 10. We see that
a eutectic front to decrease with increasing impurity contentit has a “traveling wave” structure. The wavelength in the
Finally, let us verify that the quasistationary approxima-direction, expressed in lamellar spacings, igléh (2, and the
tion we have used to obtain the above results is justified. T@ropagation velocity isv/v,=ImQ/2mk. There are two
this end, we estimate the order of magnitude of the thl’eeomplex conjugate modes: one propagates to the left, and the
terms in the diffusion equation, E¢7a). For a perturbation other to the right. As their growth rates are equal, we can
su of wave numbek>1/T (x>Pe growing at ratew, we  create any superposition of the two, in particular a *'standing

haved,su~ wdu, 9,8u~kdu, andV2su~k2su. In terms of ~ Wave” shown in the right part of Fig. 10. .
the dimensionless variables, the magnitude of these terms is 1he reason for the existence of these oscillatory modes is
|Q|Pe, x Pe, andx2. From Fig. 9 we see that, fok>Pe the interplay between the destabilizing impurity diffusion
|Q|<Bx with some numbeB of order unity, and hence the fiéld and the dynamical response of the internal lamellar
omission of the time derivative from the diffusion equation isStructure. A protrusion of the interface rejects impurities

well justified for the rangec>Pe of interest here. It is also More efficiently than a flat interface, and hence grows faster.
possible to relax the quasistationary approximation. ThenBut as the curvature of the front increases, the trajectories of

the growth ratew appears in the denominators of all the the trijunctions are more and more curved, and the local
sumsS, () andS, (). An analytic treatment becomes im- spacing increases. This leads to a decreased efficiency of the

. : : : interlamellar eutectic diffusion and, hen the interf
possible, but the equation fé} can be iterated numerically. ¢ ellareutectic_diffusio d, hence, the interface

We have checked that for the present ranae of arameterslows down. As a result, the protrusion grows back. The
P 9 P Rimellar spacing, however, still increases due to the geomet-

gamuiﬁa?]f tehslsinc?rr:; pftgciﬂcﬁztt'gnhlg\?vi‘?‘/;n?h;? ;gflﬁingic constraints, and the process overshoots, leading to a con-
. g . P ’ ’ X ’ . 9Nave deformation of the front. This gives a geometric inter-
Peclet numbers it may be necessary to include this effect.

pretation of the difference between traveling and standing
waves: for the traveling wave, the lamellar spacings to the
E. Oscillatory modes right and to the left of the protrusion are different, providing

a driving force for the propagation of the perturbation. For

.The most interesting result of this analysis is evidently thehe standing wave, the interface shape and the spacing are
existence of complex modes. To illustrate the type of micro-, phase,” and the perturbation oscillates without propaga-

structures these modes would generate, we have calculatg, Hence, the resulting microstructure depends on the ini-
the trajectories of the trijunction points for a particular €x- | relation between interface shape and lamellar spacing.
ample, using the definitions, Eqgll), and the complex am- s implies that in an experiment, where the initial pertur-
plitudes Xg and Y obtained from the eigenvalue equation. pations of interface position and lamellar spacing have no
For the symmetric alloy at the eutectic composition, the Symreason to be in a particular phase relation, one should ob-
metry between ther and 8 phases gives immediate¥f  serve all possible superpositions.

=exp(k\/2)X . The amplitude and phase off may be There are two characteristic quantitidésesides the wave
chosen arbitrarily, as this amounts to fixing the origins of thenumbej related to an oscillatory mode: its propagation ve-
space and time axes. Thg were then calculated using the locity, or equivalently the ratio of the wavelengths in the
growth constraints Eqg40). and x directions, 2r«/Im (), and the ratio of its frequency
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and its amplification time, I/Re(}, which determines tion for the ternary impurity in the liquid phase and the as-
how many oscillations should be observable before the amsociated mass conservation condition at the phase boundary,
plification leads to lamella elimination. In Fig. 11 we show which yields the equations

both quantities as a function gffor A=1.5, where complex

modes always dominate. We used E¢%) and (76), deter- (?E:IBVZE, (86)
mined for each value off the wave number of the fastest
growing mode, and calculated Reand Im(Q at this point. —50n~c=(vp+'§)(1—kE)E, (87)

Approximate values could be obtained by using B¥) to

obtain k.- Figure 11 shows that the ratio of frequency andwherek is given by Eq.(16), and we have used in E(B7)
amplification rate diverges when we approach the onset. Thithe expression for the normal interface velocity in the mov-
is to be expected, as the growth rate vanishes, whereas thgy frame,v,=v,+ &, which is valid for small amplitude

imaginary part of() remains finite. With decreasirgy fewer  deformations of the interface. Next, we need a boundary con-
and fewer oscillations are observable before lamella terminagition for © on this interface. For this purpose, we note that

tions occur. However, even gt=0, more than two oscilla-  |3mellae can be assumed to grow locally in steady state as
tions are completed before the amplitude of the mode hag,,4 55 the interface deformation is on a scale much larger

grown by a factoe, which means that such modes should beiha the lamellar spacing. Therefore, we can assume that for

transiently observable. The arr_1pl|f|cat|on ratio ge_nerally iN-c\ch deformation& obeys locally the Gibbs-Thomson con-
creases whemv decreases o\ increases. The ratio of the

wavelengths is fairly constant and slightly increases when dition
decreases ow increases. T R AToO0), o8
VI EFFECTIVE INTERFACE APPROACH where the contribution of the eutectic structure to the inter-

The discrete analysis of Sec. IV can in principle be used‘acial undercooling is given by the Jackson-Hunt formula

to calculate the stability properties of a eutectic front for an 1 N -

arbitrary phase diagram and composition. As we have seen, INEYORAE _ATmin<_+ m'”>, (89)

however, the resulting eigenvalue equation is quite compli- 2 Nmin A

cated. It is therefore advantageous to develop an alternate, ) .

formulation of the stability problem by exploiting the fact With ATmin @ndX i, given by Egs(27) and(28). Finally, to

that the instability wavelength is typically much larger than C0MPIete the problem, we need to relate the local lamellar

the lamellar spacing. The idea, therefore, is to consider th&PaCiNgA(x,t) and the shape of the from(x,t). This is

shape of the large-scale front instead of the actual Iamellaqon_e' asin Ref,23], by noting that the local lamellar spac-

interface, and to solve a modified free boundary problem fof9 IS given by

this “effective interface,” with boundary conditions that ac-

count for the effect of the underlying lamellar structure. AX )=\
It is useful to present this approach in two steps. In a first

step, we write down the free boundary problem for the ef-

fective interface in the absence of surface tension effectd® Y <<\ wherel, is the unperturbed spacing. The figld
This yields a rigorous long-wavelength limit where the ex.can then be eliminated by using the geometrical constraint

pression for() agrees up to ordet? with the one obtained that lamellae grow locally perpendicular to the solidification
from taking the smalk limit of the full discrete spectrum. [TONt Which, expressed in terms of the continuous fields,

This expression also reduces, in the absence of a terna@kes the form
impurity, to the one derived by LangéR3] for a binary ay(x.1) p:
eutectic, and contains the long-wavelength instability leading A —Vp—.
to lamella termination fo\<<1. In a second step, we intro- at 26
duce phenomenologically the effect of surface tensio . . .
guidedpby the insighqcs ofySec. V. In the following, we will rlEqLianns(SG)—(gl), together with the boundary condition

allow the volume fraction; and the eutectic liquidus slopes ¢=C- far from the interface, define the free boundary prob-

brevity of notation tham,=m,. We will briefly comment of the effective interface. . .
-~ Pl . The stability spectrum can now be obtained by carrying
on the general case, wheng,#mg, at the end of this sec-

; out a standard linear stability analysis of the above equa-
tion. tions, which is analogous to the analysis for a monophase
front with the added ingredient that the Gibbs-Thomson con-
dition is coupled to a slow evolution equation falx,t)
o o _ obtained by combining Eq$90) and (91).

We start by defining the effective interface as the continu- e start the stability analysis by writing the perturbations
ous curveé(x,t) that interpolates between the displacementss andy in terms of Fourier modes,

of the trijunction points¢j* and fjﬁ and a continuous field

y(x,t) for the displacements along thalirection. To obtain E(x,t) = & exp(ikx+ wt), (929
the free boundary problem that governs the large-scale mo-

tion of this interface, we start by writing the diffusion equa- y(x,t) =y, explikx+ wt). (92b

oX

1+ a_y) , (90)

(91)

A. Long-wavelength limit
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0.4 T T T Inserting Eq.(93) for by with the quasistationary approxima-
03 b /,,/”’_ tion for q,, and using Eqs(27) and (28) to calculate the
e derivatives ofAT;,, we obtain a quadratic equation far.
a 02 F /,/’ 4 In the dimensionless quantities defined as before, this equa-
3 . L0000, tion reads
& o1} X’x&,& .
*. wr P 2w Per?k
0.0 o (~ + () ) 2—(WI‘— 9 ——F
* po(x) 2m(1=m) 2 po(x)
-0.1 : . —
00 01 02 03 04 27%P(7n) ( L 1), 0 7
+——|1- 5| k=0,
K 7=\~ A?

FIG. 12. Comparison between the full calculation and the long-
wavelength limit, Eq(97), for the stability spectrum. Symbols, full

calculation, Eq(74); circles, real modes; crosses, complex modes
Lines, long-wavelength limit, Eq(97); solid lines, real modes;
dashed lines, complex modes. The parameters are the same as

Figs. @f) and 9.

The impurity diffusion field is expanded in Fourier modes
according to Eq(54) and, carrying out the same steps as
from Egs.(54) to (58), allows us to determine the Fourier

coefficients. As a result, Eq458) is replaced by

ke

- - 2 1w 4
bk={Qk—~|—(1—kE)} <5+~|—2)§k (93

~—1+\/1+k2+w (94)
WTTNE T TR

with

with po(x) defined by Eq(64). Figure 12 shows a compari-
'son between this formula and the full calculation, Ezd),

}m the same parameters as in Fig. 9. We see that, indeed, all
Qor .

eatures of the spectrum at smallare correctly predicted,
including the transition from real to complex growth rates
with growing . This means that the simple calculation out-
lined above is able to capture the qualitatively new feature of
the instability. Formally, the occurrence of the complex
growth rates is due to the fact that the equation is quadratic
in w, whereas the analogous equation of the Mullins-Sekerka
calculation is linear. This difference arises from the growth
constraint resulting from Cahn’s hypothesis. Physically, the
change in the local lamellar spacing resulting from this con-
straint counteracts the destabilization of the front by the im-
purities. This is due to the fact that in a convér., protrud-

ing) part of the front, the growing lamellar spacing leads to
an increase in the JH undercooling, whereas the inverse is
true for concave parts. The magnitude of this effect is pro-
portional to the slope of the JH undercooling versus spacing

We will in the following again use the quasistationary ap-Ccurve, which increases with lamellar spacing. The oscilla-
proximation of the impurity diffusion equation, which corre- tions occur because only thene derivativeof the spacing

sponds to dropping the term/D on the RHS of Eq(94). As

discussed before, we are mainly interested in perturbatio
wavelengths much smaller than the diffusion length. Not
that in this limit, and within the quasistationary approxima-

tion, we haveq,~|k|. We will not, however, make use of
this simplification for the sake of generality. Next, we linear-

ize the JH formula around the initial spacing and the
pulling speedv,:

IAT 34 ay
ATJH()\-V):ATJH()\O.Vp)+T 0%
O'Vp
AT -
+ v ¢, (95

)\O,vp
where we have usedn=vp+§ and\ —\g=\gdy/dx from
Eqg. (90). The Gibbs-Thomson condition, E@8), linearized
in the perturbations, becomes

- (2 . AT 3y v pk?
Gé=mAc T—fk—bk TN Tfk
)\o,vp
IAT 3y
— Y (96)
ov AoV,

depends on the instantaneous front shape, but not the spacing
Hself. Therefore, the perturbation of the lamellar spacing is

eohase shifted byr/2 with respect to the perturbation of the

front shape. Consequently, during an oscillation cycle the
former has its maximum amplitude when the front is planar.
In summary, the long-wavelength oscillations are created by
the interplay of the destabilizing effect of the impurity diffu-
sion field, which is the same as for a monophase solidifica-
tion front, and the dynamical response of the underlying
lamellar structure.

B. Inclusion of surface tension

As shown in Fig. 12, the spectrum derived from the sta-
bility analysis of the effective interface free boundary prob-
lem is in good quantitative agreement with the full spectrum
at smallx. This approach, however, fails to predict the resta-
bilization of the interface at larget because it lacks capil-
larity. To add this effect, we can use the insights of Sec. V
for the symmetric case, where it was noted that the eutectic
stability spectrum could be interpreted as a planar interface
spectrum with an effective surface tension. This suggests that
we can simply add to the Gibbs-Thomson conditidy.
(88)] a capillary term proportional to the curvature of the
effective interface, which yields the new condition

T=Te—mc—ATyu(\,vp) — e[ £], (98)
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' T ' DL calculations, respectively. First, to compare to the MS

02 F . instability, the dispersion relation can be written
OO0, \\\
a o “”x&_. ol? —AKD| 1 ! a°(|<T)2 ok
S x"x;\\ 2D 207 21 .
P x";\\
0.0 L TA(KD) 1\v k? wA
”’% T~ =~ min| N p_ ) (100)
4mATc Al o v
-0.1 b—mt : . N
00 ol 0}.{2 03 04 whereA(KT), the thermal length;, and the effective capil-
lary lengthd, are defined by
FIG. 13. Comparison between the full calculation and @§4)
for an off-eutectic compositiofy=0.65. The other parameters are A(k~l) =1+ (kNI)Z— 1+ 2Kg, (101
as for Figs. 9 and 12. Symbols, full calculation, E@4) (circles,
real modes; crosses, complex modésnes, Eq.(97); solid lines, IT=r~nAE/G, (102

real modes; dashed lines, complex modes.

wherel o is an effective Gibbs-Thomson coefficient. For the do= ~F6fi . (103
completely symmetric case, we can identify; by compar- mAc

ing Eq. (97) to Eq. (75) with the approximate expressions, . ) .

Egs. (76), for the coefficientsa(x), b(x), andc(x), which Wlthout the eutectic part on _the RHS, E40O is the clas-
yields at once the expression sical MS result for the one-sided model.

In the dimensionless quantities used by DL, the result is

r I+ MAc PeAOR 99 wr P(7) )
o F 472 o 99 po(k)  21(1=7)
4m?y(n)P 2
wherel'c=1I" cosfd andR, is given by Eq.(B11). - {W - g— (W'F RO)%
Let us now consider the extension of this result to a gen-
eral alloy phase diagram and an arbitrary composition. The 2w Pe 2kg 2772P(77)( 1
RHS of Eq.(99) contains two contributions that arise from —— 1- —2) k>=0,
the large-scale bending of the effective interface. The first is, po(k) 7(1=7)| A
in terms of the discrete formalism, the part of the curvature (104)
matrix K that is not contained in the JH formula. For arbi-
trary Gibbs-Thomson constants, contact angles, and volumeith the functiony(#) given by
fractions, simple arguments detailed in Appendix C lead to
the conclusion that the reaction of a composite interface to a Fe(n)(my+mp)/2
small curvature can be described by a Gibbs-Thomson con- v(m)= (1= )Myl sinf,+ 7M.l 4sin6," (109
stantl'g defined by Eq(C4) that depends o, I's, 6,,,
¢ and the volume fraction. Figure 13 shows both the full calculation and the result of

The second term on the RHS of E®9) originates from  Eq. (104) for the stability spectrum of the symmetric phase
the eutectic diffusion field, which was shown in Sec. V todiagram at an off-eutectic composition=0.65. The two are
have a stabilizing effect analogous to a supplementary cagh reasonably good quantitative agreement, even though the
illary term. For general alloy composition and phase dia-value of R, corresponding tay=1/2 was used in Eq99).
gram, this contribution can in principle be extracted by ex- Let us now briefly indicate which modifications will occur
panding the complete spectrum to ordét Since, as noted jf the two impurity liquidus slopes differm,, mg. In this
earlier, Calculating this spectrum involves flndlng the roots Ofcase’ the eutectic Composition depends on the impurity con-
a fourth order polynomial if), this expansion is extremely centration, and there is a eutectic boundary layer with a mag-
tedious and was not carried out here. We have found numerhitude depending on the impurity concentration at the inter-
caIIy., however, that rgasonably gccurgte pre'dlcuons can bf'éce. If the two diffusion coefficient® andD are equal (
obtained for off-eutectic compositions if we simply uSgy ) . ~
defined by Eq(99) with T given by Eq.(C4). In view of =1.), all results garry over~|f.we use thg liquidus slolm.e
the large uncertainty in the knowledge of several of the madefined by Eq(5) instead ofm in all equations, and redefine
terials’ parameters, notably the Gibbs-Thomson constantthe parametew=MAc/MAc. This should usually be a rea-
and the diffusion coefficients, this level of accuracy seemsonable approximation. If the two diffusion lengths are very
presently sufficient to interpret experimental results. Onlydifferent, however, one would have to consider the eutectic
very precise experiments could probe the differences bdsoundary layer separately. Then, a separate Fourier expan-
tween the full calculation and this approximation. sion has to be used for the eutectic boundary layer, and Eq.

Let us state the final result for the stability spectrum in(96) is replaced by a more complicated form containing both
two different forms to display the analogies with the MS anddiffusion lengths.
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FIG. 15. Stability diagram for the symmetric eutectic alloy in
the space 4,w) for A=1, g=0.2, Pe=0.01, andkg=0.05. Solid
line, neutral stability limit for the 2-O mode. Dashed line, consti-
tutional supercooling criterion.

=0.05), however, the spectrum becomes quite different: a
single branch of the spectrum now contains both the long-
and short-wavelength instabilities, making their distinction
______ somewhat arbitrary, whereas the other branch is completely
0 == = stable. We have always found a similar structure for impurity
concentrations larger tham~0.02. Figure 14) shows only

% the unstable branch fag=0.05, w=0.1, andA=1, for a
R 1 comparison with the spectrum at the eutectic composition
shown in Fig. €b). The long-wavelength part of the two
© spectra is very similar, but at the off-eutectic composition the
00 01 02 03 o4 05 most unstable mode is the.?D mode. The growth rates of
K the long- and short-wavelength instabilities, however, are not
very different, and we can expect a competition between the
0.40 I two.
@ B At «=0.5, the matrix elements oA become real. The
030 ya characteristic equation can again be factored in two quadratic
o /’ equations, which are simply
o 020 | / k
I d A®e=0 and APP=Q. (106)
0.10 1
This allows us, in particular, to obtain an equation for the
000 o 010 020 030 040 050 neutral stability boundaries where tha-® mode first be-
K comes unstable. For the model alloy with the symmetric
phase diagram, we have on therich side of the phase dia-

FIG. 14. Stability spectra fo=0.75,A=1, #=45°, kg=0.05,
and (a) g=0, w=0; (b) g=0, w=0.01; (c) g=0, w=0.05; and
(d) g=0.05,w=0.1. In(d) only the unstable branch is shown.

gram(7>0.5

wr ~
g=2wr— —2kgr PeS;(0.57)+27n—1
VII. SHORT-WAVELENGTH MODES 7

Up to now, we have only considered the instabilities aris- 2 0
ing from the diffusive and MS modes. Let us now turn to the 5 Ro(m) = S(05) =—7=P(») |, (107
effect of the ternary impurity on thea2oscillatory (2\-O)
instability at off-eutectic compositions. In Fig. 14, we show awhereR,(7) andS;(«, ) are defined in appendix A. This is
series of spectra at an off-eutectic compositigr0.8) with a direct generalization of DL’s result for the binary eutectic.
increasing impurity concentration. The first spectrum, with-Figure 15 shows the resulting stability diagram fpe0.2
out impurity, again reproduces one of DL'’s figures. The dif-and A=1. The dashed line is the constitutional supercooling
fusive branch is completely stable, but there is an unstableriterion, and the long-range instability is present every-
complex branch, with the most unstable mod&&0.5. For  where above this line. The solid line was calculated using
a small impurity concentration w=0.01), the long- Eq.(107), and the 2-O mode is unstable to the right of this
wavelength morphological instability is simultaneously line. We see that when the impurity concentration increases,
present, but the structure of the spectrum stays qualitativelthe range in volume fraction for which the eutectic front is
unchanged. For still higher impurity concentrationv ( stable decreases. This means that, not surprisingly, the ter-
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nary impurity boundary layer enhances the oscillatory instainstability of the eutectic front and not the finally selected
bility. Furthermore, there is a large region in parameter spaceolony spacing. After the first colonies have formed, the non-
where the two instabilities compete and the fastest growinglanar front may undergo a complicated sequence of cell
linear mode needs to be identified from a plot of the specelimination or tip splitting events, as during the development
trum. of monophase cellular structures.
Furthermore, we have shown that the eutectic front dy-
namics on scales much larger than the lamellar spacing can
VIIl. CONCLUSION be formulated as a free boundary problem with a modified
We have performed a linear stability analysis of a thinGibbs'-Thomson condition that.is coupled to aslpw evoIL!tion
equation for the lamellar spacing. This formulation provides

lamellar eutectic interface in the presence of a ternary impu d hvsical und di fth icf d
rity to investigate the initial stages of colony formation. The & d€€PEr pnysical un erstanding of the eutectic front dynam-

extension of Datye and Langer's method has allowed us S 8” this lscallle. In addmon,_ we havebﬁhown that it C?]n b_e
calculate the complete stability spectrum of the steady-statdS€d 0 calculate an approximate stability spectrum that is

interface. From previous numerical studies of the binary euy"e” suited to interpret experimental data. The effective cap-

tectic casq21], we expect this discrete stability analysis to |I_Iary length appearing in _th's spectrum contains cont_rlbu-
ons both from an averaging over the material properties of

be quantitatively accurate for spacings near the JH minimunt{1 : i
d y P g the two phases, weighted by geometric factors, and from the

undercooling spacing mi, . ok . ; - ; .
The mostgdrgmati%nggnclusion resulting from our analysiseutecuc interlamellar diffusion field, which acts as a stabiliz-

is that the morphological instability of the eutectic interface'ngFf.orCIF' h found that the short lenath i

induced by the ternary impurity is oscillatory, in contrast tot I'naty,b\'ll\{te a\lle 3“” a i €S %r. -wave etngt' oscifia-
the standard MS instability of a planar interface for a dilute ory instability, alréady present in a binary utectic, 1 en-
binary alloy, which is nonoscillatory. We have seen that os1anced by the ternary impurity boundary layer. This reduces

cillatory modes originate from the interplay between the gif-the composition range for stable Igmellar eutectic _grqvvth,
fusive instability driven by the ternary impurity and the “dy- even below constitutional supercooling. Above constitutional

namical feedback” of the local change in lamellar SpaCingsupercoollng and for sufficiently off-eutectic compositions,

on the front motion. In a transient regime, these mode§he long-range and Moscillatory instabilities are both

should create oscillatory microstructures with a wavelengttprelSent anld may comEete W'rt]h eac[]ho;[htir. instability of

of several lamellar spacings, such as the ones displayed jn n conclusion, we have shown that the instabiity of a

Fig. 10. There indeed seems to be recent experimental e\J@m?”ar eutectic mterfacg n the presence ofa ternary impu-
dence for large-scale oscillatory structures of this type in 'FY IS In some res_pects similar to the MuII|ns—Seke_rI_<a ms_ta—
transparent organic with a dilute ternary impufiga], but a ility of a dilute binary alloy, but also presents striking dif-

more detailed comparison between theory and experiment §rence_s. There are two Interesting future prospects. F.'rSt’
now needed. ynamical simulations of the complete equations of motion

Aside from its oscillatory character, the morphological are necessary to go beyond this linear stapility anglysis and
instability of the eutectic interface is qualitatively similar, to investigate the subsequent stages of the instability, as well

near onset, to the standard MS instability of a monophas@s to determine what structures are ultimately formed. Work
front. In particular, we find that the expressions for the criti- 2" these issues using the phase-fle_ld method is currently_ in
progress. Second, it seems worthwhile to extend the effective

cal onset velocity and morphological instability wavelength! torf ht i ime t del the sh
are analogous to those for the classic Mullins-Sekerka inst nierface approach 10 a nonlinéar regime {0 model the shape
and dynamics of fully developed colonies, as depicted in

bility of a planar interface. The main difference is that the?.
restabilization of the interface at short wavelength is con—F'g' 1.

trolled by an effective surface tension that depends on the

geometry of the lamellar interface and on interlamellar dif- ACKNOWLEDGMENTS

fusion, which has a restabilizing effect. One consequence of

this result is that the constitutional supercooling criterion that We thank S. Akamatsu and G. Faivre for many fruitful
has been commonly used in the metallurgical literature tdliscussions and for sharing with us their unpublished experi-
predict the onset of instability is indeed applicable for typicalmental results. This research was supported by the U.S DOE
alloy compositions. Note, however, that this criterion be-under Grant No. DE-FG02-92ER45471.

comes inaccurate for very small concentrations of the ternary
impurity.

Above the onset of instability, the stability spectrum can
exhibit both real and complex modes. The scaling of the
wavelength of the fastest growing mode with pulling veloc-  We will state here DL’s results for the matricés K, and
ity depends on the nature of the mode. For complex modes) and transform them into our notations. The matxcan
far above the onset this wavelength scales as the geomettie: simply read off the definitions of the average interface

mean of the capillary length and the diffusion length. FOfpositions(g)jS; Egs.(38), and of the Fourier expansion, Eq.
real modes, the situation is more complicated. In both casegq]):

for fixed velocity and lamellar spacing, the wavelength far

above the onset and at sufficiently high impurity concentra-

tion scales as the inverse square root of the impurity concen- G= E( 1 1) (A1)
tration. Note that all these statements concernpghmary 2\ e

APPENDIX A: SUMMARY OF DATYE AND LANGER’'S
RESULTS



6886 MATHIS PLAPP AND ALAIN KARMA PRE 60

The curvature matrix contains two contributions. The first o i?
| . . sirf[ mp(n+x)]
arises from the change in the local lamellar spacing due to Si(k,m)= E 22T 2o (k) (A13)
the horizontal displacementg . The second appears when n==e mHNF ) palK
the interface is bent on a scale of several lamellae. Then, the o
trijunction points are turned by small angles with respect to Sy(k,7) = z e im(n+x)
their steady-state orientation. These angles can be related to ' n=—c
the time derivatives of the horizontal displacements. Finally, , )
we use the growth constraints, Ed0), and obtain X5|r[7-r77(n+;<)]3|r{77(1— 7)(n+x)]
74N+ k) *py( k) ’
2ie™2sin(kN/2) [ 2v,sind, coséd,
K N(kA2) (2, Sinf ) (A2) (A14)
A2 ok 7
sif mp(M+ k
o . Sity)=a > SLTHMTO]
2ie™M2sin(kN/2) [ 2v,sind;  cosby m=" e m(M+ K)ppy(K)
K BB = P _
A2 w)\(l_ﬂ)z 1-n)’ * |n|
Ve im(n—m—k)/2
(A3) X > sin(wyn)e
n=>"c;#0 N
a,f_aa .
KeP=K®er, (A4) sin{ w(n—m— x)/2]
X , (A15)
K= gk B (A5) m(n=m-«)
where the asterisks in the last two equations denote complex Sikm= S eim,(n+,<)s'r{”77(n+ «)] . (A16)
conjugation of all the coefficients, but nat nE o m(N+k)p,(K)
For the symmetric phase diagram, we may conveniently N _
rewrite this matrix in the dimensionless parameters define@sing these quantities, the matrix elementdJoére
in Sec. IV. We remark that in this case we have 1
N2 = IT sing (A6) ur :T(Qul(K'nHUZ(K’n)
min_MACP(’I]). 2ieiﬂ'K .
+—g ST Us(k,m) |, (A7)
This relation can be used to eliminate gim the matrix; the
reduced lamellar spacingy appears, and, for example, we
btain forK *« pp_ L B B
0 U = QU (k,m)+U5(k,7)
. MAcP(n)/ 2  cotd PIER
a, 0 _ )il TK of _ e .
KEE=2iemsinm ) =z g2~ ) + g SR Us(i,1- 77)), (A18)
(A7)
a,B_ | |, ax
Note that in the general case the scaling with respect to the U v ' (A19)
physical parameters would remain the same; however, addi- UBa= gk JB.B* (A20)
tional coefficients depending on the angégsand ¢, and the '
liquidus slopesn, andmg would appear. with

For the matrixU, we will just state DL's results; for more
details, sed22]. The calculation is straightforward but te- " 1 .
dious because we have to treat the interlamellar diffusion. Uik, )= ;[Aasl(K'W)_ABSz(K’”)]' (A21)
This brings in various sums over the Fourier modes of the

steady-state expansion, Hd2). We define 1
U'f(K, 77): E[Aﬂsl(’(!l_ n)_AaSZ(K!]-_ 7])]1

A,=Bg+tu,—u,, (A8) (A22)
Ag=Uz—By—U., (A9) 1
e Uk, n)=~Bo+ (S} (k,m)~Re(m)],  (A29)
R (77)=§ sinzm 7n) (A10) 1
! i (mn)? U'g(K,n)=Bo+W[S’é('ﬁl_’?)—Rz(l—ﬂ)].
= il (A24)
Rm=3, 2, (A1)

1
Ua(k,7)= ;[2P(n)/n— Ri(7)—2S; (k,7)].
pn(K) =47 (n+ k)>+ P& Pe, (A12) (A25)
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APPENDIX B: LIMIT OF THE DL SUMS FOR k—0

For the detailed study of the symmetric phase diagram a
eutectic composition, we need to know the leading order

behavior of the functiond)7, U5, andUs;, for k—0. To
this end, we have to expand the su8)sin x and resum the

resulting terms. We will systematically neglect terms of rela-
tive magnitude Pe, as was already done in DL’s calculations

leading to the results of the preceding appendix.

We have to single out terms containing the function
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With the help of these expressions and the definition of
1, we find for »=1/2 andA ,=A;=1/2,

Ree '™ "2U{(k,1/2)]=2P(1/2) +[12R5(1/2)
— 3P(1/2) | m2k%+ O(k*).
(B8)

Rather remarkably, all the singular terms cancel out. A com-
parison with direct numerical summation shows that the limit

po(«) in the denominator, because these terms will be sinpepayior is correct and that the neglected terms sum up to a

gular in the limitk—0. To see this, note that we have
2w Kk%IPet O(k?)
2| |

for 2mk<Pe,
for 2mk>Pe.

po( k)= (B1)

We will be interested in a regime where the wavelength of
the perturbation is larger than the lamellar spacing, but much
smaller than the diffusion length; hence the latter limit ap-

plies.

Similarly, the functionpy(x) will become small whenc
tends to O:

- r Pekg+2m2k?/Pet O(k%),
po(K)=

27 k<Pe,

27 k>Pe.
(B2)

27| k|,

Hence the terms proportional fg, * in the impurity contri-
butions have to be considered separately.
ExpandingS;(«, ) andS,(«,7), we obtain

1
72— = ptali?

Si(k,m)= ") +P(7)+[ 7°R3(7) —37Rqa(7)
+6Rs( )] 72 k>+ O(k* po) + O(k*), (B3)
_ 1 1
SZ(K,W)I{].—MTK—E 1+ §(772+(1—77)2) 7T2K2]
1-17) )
Xyll()oT;]—(l—MTK—’ITZKZ)P(’U)
+[7(1=n)R3(n)+3(n—1/2Ry(n)
—6R5( 7])]7T2K2+O(K4/p0)+O(K4), (B4)
with
_ w Cos27yn
Ra( 77)—;::1 NCOE (B5)
_i sin 27N
R4(77)_n=1 (’7Tn)4 ’ (BG)
sirfrgn
Re(7)= 2 5 (B7)

The expansions for the impurity sursg(«, ) andS,(«, 7)

are obtained by replacing,(«) by po(x) in the above ex-
pressions.

correction that does not excePd1/2), even for large values
of k.
For the impurities, we need the expression

~ TK .
Si(k1/2)cos>-+Ree” meI2S% (k,1/2)]

- 1-57°k?124
2po(x)

+0O(x*pg) +O(k4).

1
+5[P(112)+ R4(1/2) 7% k?

(B9)

We will simplify our task for the functionU5, which
contains the most difficult sur§; («,7), by directly expand-
ing the producte' ™*2S; (k,1/2). Using B,=0 for the sym-
metric phase diagram at eutectic composition, we obtain

Ree' ™2U%) =Ryk2/2+ O(k*), (B10)
with
Ro=27? 3Rg(1/2) — %R2(1/2) —R4(1/2)
~0.4965, (B11)
_w 2sin(man)

Re(7) = n§=:1 — (B12)

= 2 sin(7ym) nf

R7(n):mE:1 (77;)772 n=—o,#0;#m |7|S|n(7”7n)

cog[ m(n—m)/2] (613

m’(n—m)?

Comparison to direct summation shows that the expression
(B10) is accurate to within 5% over the whole rangerof
Finally, to expressJ;, we need the expansion

+i 2 2 2.3 2+i 3.4 3
Si(km)= ”pof:; £z ”;‘po(; Y
+27mi[P(7) — nR1(7) ]k +[6R4(7) —87R5(7)
— 772R1( 7)] w224+ o] KS). (B14)

For Eq.(74), we need

2 sinwk)Rie' ™"?U4(k,1/12)]1=8m?P( ) K>+ O(k)*.
(B15)
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Collecting all these results, we can finally write down theactor ofw Pekg ; as bothw and Pe are small quantities and

complete expressions for the coefficierté), b(x), and
c(k) of Eq. (75) up to orderx?:

a(k)=2P(1/2)+[12R5(1/2) — 2P(1/2) ] m?k?

1-572k224
+Wrr~—+[P(1/2)+R3(1/2)]772K2]
polk
(B16)
27%P(1/2 R
b(K)=(Wr—g/2)(l—7TZK2/8)—(%4— 7") K2
) [1—5’772K2/24
—2wPer?kg{ ————
Po(K)
+[P(1/2)+R3(1/2)]772KZJ, (B17)
1
c(k)= 8772P(1/2)< 1— P) K. (B18)

To obtain the expressions given by E(&6), we remark that

ke<1, it seems justified to neglect them. For example, for
w=0.1, Pe=0.01, andk=0.01, the largest neglected term is
of orderw Pex~10"°, whereas the capillary term is of order
k?>~10“. Hence, Eq(76b) for b(x) seems well justified at
the onset of instability.

APPENDIX C: EFFECTIVE SURFACE TENSION

We will give here an expression for the Gibbs-Thomson
constant of a lamellar eutectic interfaCe that describes the
shift of the average interface temperature when the compos-
ite interface is curved on a scale much larger than the lamel-
lar spacing. This analysis is necessary because, in a compos-
ite material, the interface with the weaker surface tension
will absorb more of the curvature, leading to an effective
surface tension, that depends on the volume fraction. Note
that the expression derived here is valid in thermodynamic
equilibrium and contains only the “geometric part” of the
effective Gibbs-Thomson constalig; for a movingeutectic
front, in which the stabilizing effect of the interlamellar dif-
fusion has to be included.

Consider a lamellar interface that is curved such that the

for small k we can neglect most of the terms listed above.f solid-solid interfaces on the two sides of a lamella pair
We have to be careful, however, to keep track of all physicamake a small angles. Suppose that th8« interface between

effects. For example, formally the leading order terma(r)

them is turned by an angl#,. The corrections of the curva-

is of orderx 1 if we usepg( k)= 27| k|. But this term comes ture with respect to the planar front values are then given by
with a prefactorw, proportional to the impurity concentra- (Using the fact thaty~\/R for large radii of curvature)

tion, whereas the leading order term in the expansiod bf

arising from the eutectic diffusion field, is independentiof

Hence for the approximation to be valid for arbitramy we
need to keep both terms leading to Ed6a for a(«). Simi-
larly, in b(x), we need to keep the dominant terms éach

_ cosd, 4 sk cosfy
a= T $1 an B—W(sﬁ b1).

(C1

oK

As the average temperature of neighboring lamellae should

physical effect, even if their order is higher than other termgye the same, we must have
we may neglect. In particular, we must keep the capillary

term that is of orde? and has a prefactor of order unity.
Let us show that, at the onset of instability, we can indee
neglect other terms of orderand «2. Keep in mind that we

are interested in a regime whetas small, but notoo small;

a plausible estimate is=~0.01. First, there is the correction

SK I = 8K 5T 5. (C2)

q:rom this condition, we can determine the unknown angle

¢1. Finally, we obtain the undercooling of the interface as

aus irst orrect! AT=TgK (C3)
—mk“(wr—g/2)/8 to the constitutional supercooling crite-
rion, of order . But aswr—g/2 is very small near the with
onset, this term is actually much smaller than the capillary
term. Next, there are terms of ordetsand 2 arising from I',Ig cOs0, COSg )

the impurity contribution. But all of these come with a pref-

FE:(1— 7T, cosb,+ nl zcosby”
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