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Phase-ordering dynamics in nematic liquid crystals has been the subject of much active investigation in
recent years in theory, experiments, and simulations. With a rapid quench from the isotropic to nematic phase,
a large number of topological defects are formed and dominate the subsequent equilibration process. Here we
present the results of a molecular dynamics simulation of the Gay-Berne model of liquid crystals after such a
guench in a system with 65536 molecules. Twist disclination lines as well as type-1 lines and monopoles were
observed. Evidence of dynamical scaling was found in the behavior of the spatial correlation function and the
density of disclination lines. However, the behavior of the structure factor provides a more sensitive measure
of scaling, and we observed a crossover from a defect dominated regime at small values of the wave vector to
a thermal fluctuation dominated regime at large wave vef8#063-651X%99)02812-3

PACS numbg(s): 61.30.Jf, 64.70.Md, 61.30.Cz

[. INTRODUCTION fluid model which mimics the behavior of ellipsoidal mol-
ecules interacting through a combination of attractive and
Topological defects formed during quenches from high-repulsive forces. This model has proven over the past decade
temperature equilibrium phases are of interest in a wide vato capture the essential physical features of real liquid crys-
riety of fields from condensed matter physics to cosmologyials [18], and it is an appropriate model for studying the
[1-4]. Uniaxial nematic liquid crystals are excellent materi- formation of topological defects with an off-lattice model.
als for studying topological defects because of the variety of This paper is organized as follows. In Sec. Il we review
defects they possess and because of the ease with which thi&\¢ classification of nematic defects, the dynamical scaling
can be studied experimentally. Tables of processes involvinyPothesis, and the scaling forms of the real-space correla-
defects, such as found in Ré6], are interesting both from TON funct!on and st_ructure fac_tor. In_ Sec. Il we present the
theoretical and experimental points of view. Simulations incOmputational details of our simulation, followed in Sec. IV
which actual molecular configurations can be viewed and®Y @ description of our defect-finding algorithms. Our results
tracked could greatly elucidate these processes and aid ofifd & comparison with theoretical predictions is presented in
general understanding of defect dynamics and phase ordep€C- V, which is followed in the Sec. VI by some concluding

ing. This paper represents a step toward these goals. remarks.
Simulations of defects in nematics have often used, by
analogy withO(n) and other model simulation6-8|, a Il. THEORETICAL BACKGROUND

cell-dynamical schemg9—11] in which the order parameter A basi derstandi f the defects i fi
¢ at each site is advanced in time according to a time- asic understanding ot the delects in hematics goes

dependent Ginsburg-Landau equation, within the one elastilt),aCk as far as the_,\ _ear_ly work of_Lehmahlrg], but the first
constant approximation. Other&l2,13 have performed quantitative classification was given by Osd@®]. Topo-

Monte Carlo simulations of a discretized Frank free energy!Oglcal defect solutions are local minima of the Frank free

including allowance for elastic anisotropy and surface an*nergy

choring. Still other§14—-16 have investigated specific types

of defects or processes by directly creating the appropriate F= l f d3X[ K 15(V -R)2+ K po(N-VX )2
configurations as initial conditions and then evolving the sys- 2

tem. While all of these approaches have yielded fruitful re-
sults, it would certainly be advantageous to study defects
using more realistic off-lattice models with no prior bias to- .
ward forming any particular defect configurations. In thiswheren is the nematic director. A three-dimensional uniaxial
paper we present results of a simulation of a quench of theematic has stable poiritnonopolg and line (disclination
Gay-Berne nematic liquid cryst@ll7], a phenomenological defects. The former include both radiatharge +1) and

+KagnX (Vxn)|2], 1)
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/ / / / larger than the defect core sigel]), so scaling is only as-
- / / / sumed to hold at “late” times. Experiments are generally
/ consistent with scaling predictions except perhaps in the be-
X // / havior of monopole§5,28,29. Simulations also demonstrate
scaling[9,10,13, but with calculated exponents somewhat
= //// /// // different from theory and experiment. There have also been
indications in simulations that more than one characteristic
FIG. 1. (a Director configuration around a twist disclination length may be preseii0], but this is possibly just a finite-
line (pointing out of the page On the left of the defect, the director size effect.
is pointing out of the page, parallel to the disclination line, while on  The real-space order parameter correlation function
the right the director lies in the plane of the page. Above and belowC(r,t) and its Fourier transforns(k,t) are widely used

the defect, the directors are depicted in intermediate orientationgrobes[26] of domain structure and dynamical scaling. For
(b) Nustration of the difference in director orientation between re-the nematic order parameter

gions interior and exterior to the twist disclination line. The two

regions have uniform orientations but are rotated with respect to — 379 0 _1

ea?:h other by 90° along an axis perpendicular to the loop. P Qup(X) = 2[UalX)U(X) = 500p], @
one has the definitions

hyperbolic(charge— 1) geometrie$21] which are topologi-

cally equivalgnt. D?sclinat'ion line 'defe'cts are eith.er of the f d Qup(X,1) Qpa(X+T1,1)

wedge or twist variety. Either variety is characterized by a cirt)=

+180° director rotation about the lifee., the defects have ’ q

charge+ 1/2). A twist disclination loop is shown in Fig. 1. J d°X Qap(%, 1) Qpal(X,1)

Note that the loop carries zero monopole charge and the

director configuration is uniform at large distances from the _ Q,4(k,)Qa.(—k,1)

loop. Wedge disclination loops, on the other hand, carry a S(k,t)zf dir elkre(r ) =——2f e

net charge, and at large distances from them the director Jddx Qus(X,HQpa(X,1)

configuration is equivalent to that of a monopole of charge 1.

Another type of line defect is characterized by director (3b)
rotations of=360° (type-1 ling, and is unstable to “escap-
ing in the third dimension,” into a nonsingular configuration
[22] (see Fig. 2 These escaped structures can still be ob
served experimentally23-25, however, and we can also
visualize them in our simulation.

The dynamical scaling hypothegi26] for phase ordering

: (3a

According to the scaling hypothesjg6], the data for the

orientationally average@(r,t) at different times should col-

lapse to a single curve when distances at ttraee rescaled

by L(t). Similarly, S(k,t) should have a single, underlying
scaling form: that is,

processes asserts that there is a characteristic ldngh C(r,t)y=f[r/L(1)], (43
(e.g., the domain size or defect separatisuch that the sys-
tem appears to be time independéint a statistical senge S(k,t) =L9[KkL(t)]. (4b)

when all lengths are rescaled hyt). For nematics, theory

[26] predicts thatl(t)~tY? wheret is the time since the The late-time behavior 08(k) is determined by the type
ordering process bega®.g., the time since a temperature and number of defects present in the system. For nematics,
guench which leads to an isotropic-nematic transjtidrhe  S(k) can be written in the fornp30]

disclination line density i (the total length of disclination

lines per unit volume should then scale ak(t)/(L(t))3 367" 37 3 KkgT
~(L(t))"2~t"! and the monopole densifymgnop (NUMber S(k)zpmonop?JrPdiSCFJr 2 kK2 ®)

of monopoles per unit volumas(L(t)) 3~t~ %2 Note that

defects occur at the intersections of domains growing withyhere the right-hand side includes contributions from the
differing director orientationsthe Kibble mechanisrh27]).  monopoles, disclinations, and thermal fluctuations, respec-
Until the domains are large enough, defects are neither weljyely (the nonsingular type-1 lines do not make a power-law
defined nor well separatebne needs a defect separation contribution to the structure factorHere K is the elastic
constant in the one-constant approximation. For thin nematic
films (i.e., two spatial dimensions, but with a three-

dimensional directon) the monopole and disclination con-
tributions to Eq.(5) are replaced by a single contribution
proportional tok™# arising from disclination points charac-
terized by+180° director rotations. In the three-dimensional
case the disclination contribution proportionakte® appears
¥ — for twist and wedge disclination loofas well as any curved
disclination loop segmenat wave vectorg>R !, whereR
FIG. 2. (a) Side view of a singular but unstable line with topo- is the radius of the loof30]. For smaller wave vectors, there
logical charget+1 (type-1 lind. (b) Escaped type-1 line with direc- iS no power-law contribution to the structure factor from the
tors tilted into a nonsingular configuration. twist loops(recall that the director configuration is homoge-
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neous at large distances from the Ipopnd wedge loops 1 .
contribute a term of the same form as the monopoles. The \
defect contributions to the structure factor above are specific o
examples of Porod’s lay26], which states that

= -+ -

S(k)~pk™¥, (6)

wherep is the defect density ang is the Porod exponent

given by A—D, whered is the number of spatial dimen- -3

sions andD is the defect dimensionalitye.g., points have

D=0 and lines hav®® =1). Experiment§31] show a good "

scaling ofS(k) with an asymptotic exponent approximately

equal to 5, with the approach through effective exponents .s .

lying between 5 and §32]. Zapotocky and Goldbait30] o 1 2 3 4

showed that such a behavior would be consistent with the r

presence of sufficient numbers of monopoles or wedge dis- , ,
FIG. 3. Potential energy curves for the Gay-Berne model using

clination loops. However, experimentally the population of e parameters cited in the text. The horizontal axis is in units,of
monopoles seems too low, and wedge disclinations are enetlh- P : Units,

getically less preferablf33,34] than twist disclinations for and tTe Ver'ca: axis Is in ]En'ts ?f"' Curyez.arte ghown for four
typical values of the nematic elastic constaftteough the Sample molecliar pair conngurations as incleated.

former defects might be generated dynamidalrom Eq.

(5) we see that thermal fluctuations will dominate the struc-

tlire factor for2 sufficiently _Iarge wave vectors satisfying Here o, is the separation between two molecules when they

(EkBT/KPdIisék >1 éaSSUrT'”bg hthat EO”OF’OES are not gre oriented end to end, ang the separation when the mol-
resent in large numbersThis behavior has not been seen in ; : AT

P 9 9 ecules are presented side by side. The well depti, u; ,r),

the experimental studid85,36 carried out thus far. As dis- representing the anisotropy of the attractive interactions, is
cussed in Ref[30], the scattering experiments were per-, o oc

formed over a time range where the defect density is suffi-
ciently large that the crossover to the thermal regime is not N 7 T N ST R

. ; . iU r)= Ui, 10
evident for wave vectors in the visible range. 8(Ui,Uj,1) =08 (Ui, U s (Ui, ;1) (10

o
o

X:{(O'e/a's)z_1}/{(0'e/0's)2+1}- 9

where
Ill. SIMULATION DETAILS
NN 1 W20 2112
We performed a molecular dynami@éD) simulation us- e (Ui, ) ={1—x“(ui- U} (1D
ing the Gay-Berne moddll7], an intermolecular potential
similar to the simple Lennard-Jones potential but extended to

model the anisotropic mesogen shape. The complete Gay- 1 (FeGT-0)2 (F-Oi—T-0)2
’ | ] | J
+

Berne potential is as follow37]: g’ (U, ,(Jj N=1—-x _ 1,
o o 27 (1) (U 1= x' (U )
U(U|,u],r):48(u|,u],r) (12
oo 12 with x' defined in terms of, andeg, in the end-to-end and
X — = side-by-side well depths, respectively, as
r_O'(Ui WUj ,r)+0'o
6 X,:{1_(8e/85)lm}/{1+(Se/‘gs)l/'u}- (13
Jo
_[r_g(l]i ,Gj 'f)+00] l 0 The overall energy scale is set by the valueegf Some

representative plots of the Gay-Berne potential energy curves

where U; and U; give the orientations of the long axes of are shown in Fig. 3.
moleculesi andj, respectively, and is the intermolecular FO:jtT)e adJUStZ‘p'e t)aram.eters, we USEC} the valueg sug-
vector (=r;—r;). The parametes(U;, ;1) is the intermo- gested by Berardetal. [38]: u=1r=30e/0s=3, an

lecular separation at which the potential vanishes, and thys’ e~ 2 These values yield a nematic phase over a wider

Iy . fange of temperatures, compared to the original parametriza-
represents the shape of the molecules. Its explicit form is tion chosen by Gay and Berfd7]. The temperature was

1 [(F-Gt7-0)2 controlled by velocity rescalinf39], and the dimensionless
U((Ji '(Jj ’f) =0go| 1— —X| A densityp* Epag was fixed at 0.3 with the dimensions of the
2 1+ x(ui-uy) simulation box in the ratio 2:2:1. Periodic boundary condi-
Aa A Y112 tions were applied. The system was equilibrated at dimen-
n (r-u—r-u) ®) sionless temperatufB* =3.6 (T* =kgT/e,) in the isotropic
1—x(U; (JJ) ' phase for 130 000 MD time stepwith a dimensionless time

stepAt* =0.004At* =(mo?/e,) ~*?], and then a quench to
where o= o, (defined beloy, andy is T*=3.2 was implementedthe nematic-isotropic transition
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temperature is approximately 3.5The system gradually

came to equilibrium in the nematic phase with the order a B
parameterS (the largest eigenvalue @,;) saturating at a
value of 0.69 over the next 100 000 steps. We used a domain
decomposition approach on the Cray T3E at the San Diego
Supercomputing Center. Briefly, the domain decomposition g :
approach involves dividing up the simulation volume into a

number of cells, each controlled by a different proce$a@r

used 64 cells Because the Gay-Berne potential is short FIG. 4. The disclination-finding algorithm. The directors at the
ranged, most of the intermolecular interactions involvecorners of the lattice cube face shown on the left are tracked on the
same-cell molecules; thus only the relatively small numbeirder parameter space sphere shown on the right. The diameters
of molecules near cell boundaries will require interprocessoAA’, BB’, CC’, andDD' correspond to the axes of the headless
communications. The cell scheme and the required commugdirector at the real-space lattice sitésB, C, andD, respectively.
nications are somewhat difficult to implement, but provide

very significant computational speedups. A computational, the previously defined point, and so on. Once the last point

scheme similar to ours is described in more detail in Ref(from cornerD) is determined, one looks at whether its in-
[40] (although we used a slightly different communication yesection is in the same hemisphere as that of the starting

scheme in which an additional map tracking the specific subg it |f so, no defect is present—the path in order parameter

cells to be transferred between specific neighbors was impl space is deformable to a single point, i.e., a uniform configu-

mented. We obtained timings virtually identical to those re- \4tjon |if the first and last points are in different hemispheres,
ported in the latter referenc@n the order 61 s per time  p,yever, then a disclination line is taken to cut through the

step with a 64-node partition of the Cpaydur computation  center of the square and is oriented perpendicular to the
time increases linearly with the number of particles and with) o na of the square.

the number of processing elements, indicating the good scal- T fing escaped type-1 lines, we performed a similar pro-

ability of our code. cedure, except that we measured the actual arclength swept
out as one moves from each intersection to the next.
IV. DEFECT-FINDING METHODS Arclengths greater tham are counted as type-1 lines if the
lattice square has not already been determined to hold a dis-
A preliminary step for locating defects is to break the clination (obviously, there is some overlap in the methods
system into a lattice of cubic bins. Note that the creation of arhe arclengthr corresponds to an escaped structure similar
lattice is strictly for convenience in defect finding; the time to that of Fig. 2 with an opening angle of about 30°. Experi-
evolution of the system allows for complete translationalmentally, smaller opening angles are observable as type-1
freedom. Even experiments, of course, have “binning” in-lines, but smaller cutoff values of the arclength produced too
herent in the resolution of the optical microscopy. Within many random type-1 line segments unconnected with each
each bin, the order parameter ten&y; [Eq. (2)], was cal-  other or with disclinations, a situation not in accord with
culated, its largest eigenvalue taken as the local order paramxperiments.
eterSand the corresponding eigenvalue as the local director Finally, to look for monopoles, we used the method from

n. The bin size was chosen so that the core size of the did9]. Each of the six faces of a lattice cube is divided into two
clinations, determined from the distance over whigh equal area triangles by the face diagonal. The directors at the
dropped significantly below the background value, was ofthree corners of each of the 12 triangles are mapped to points
the order of one lattice spacing. In our case, this resulted in @n the order parameter sphere, forming spherical triangles.
16X 16X 8 lattice, each bin holding roughly 30 molecules. It The total area of the 12 spherical triangles formed by this
is with this lattice of orientation vectors that we began anamapping is then computed. If this total area is greater than
lyzing planes parallel to the, y, andz axes for the presence 24, a monopole is assumed to lie inside the lattice cube.
of defects. Note that while it is convenient to work with the Note that in all these defect-finding procedures, one must be
orientationvectorson the lattice, we must remember that the careful to apply periodic boundary conditions to the edge
actual directors arbeadlesgexpressing the symmetry upon lattice sites.
rotation by 180° about an axis perpendicular to the dirgctor ~ One could also consider simulating the effect of crossed
and so some care must be taken to account for this. polarizers on individual planes. We used the method of Refs.
A nice method of searching for disclinations was intro-[42,43 which, phrased in the language of the Stokes param-
duced in Ref[10] (see also Ref41]). Consider the directors eters, uses Mler matrices to simulate the effect of a group
at the corners of a squafene of the faces of a cup@ our of molecules on the polarization of incoming light. In this
three—dimensional lattice. The idea is to track the course oimethod, one must set values for the ordinary and extraordi-
the intersections of these vectors with the order parametétary refractive indices; we used typical experimental values
sphere(actually the projective plan®P,) as one moves between 1.5 and P44]. The remaining free parameter, the
around the corners of the real-space squBig. 4). Starting  ratio of the thickness of the cell to the wavelength of light,
with the intersection oﬁA with the sphere, as the next point was chosen _to be the value Wh'_Ch makes the calculated out-
. . oA - . going intensity for molecules oriented at 45° to the crossed
one then takes eA|ther' the |nte'rsect|omgfor. _n‘?’ V\_’h'Ch' polarizer directions equal to 1; we used a value of 2.5. Vi-
ever is close§t t(mA’sAlntersectlon. Once this point is deter- sualizing the resulting contour plots is aided by choosing an
mined, eitheinc or —n¢ is used, depending on the proximity exponential distribution of contour values in order to sharpen
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FIG. 6. Coarsening sequence at tinfest=2, (b) t=14, (c) t

N \
=~ N0\ \ \ S S S ,
=25, and(d) t=37, witht=0 corresponding to the instantaneous

FIG. 5. Simulated crossed-polarizer image with actual director

configuration superimposed. The crossed-polarizer image is the rgemperature quench f_rom the |sotr_op|p to the nematic phasg. Filled
sult of applying the Miler matrix method to the single lattice plane squares represent point defects, thin lines represent type-1 lines, and

shown. The disclination linawith topological charge 1j2at the top thick lines (for emphasis represent disclinations. Note that with

center of the image is clearly indicated by two brushes. The disperiodic boundary conditions, all disclination lines form closed
tance between neighboring directors isc,8 loops. The spacing between the large tick marks is9,6and each

defect line segment measures,8 An animation of the coarsen-

the dark areagthe “brushes”[44]). This method did yield "9 Seauence is available on our web $48}.

planes in which two clear brushes met at fairly well-localized

points (Fig. 5), indicating the presence of a disclination, but lines tended to fluctuate on much shorter time scales than
in general the brushes and intersections were simply not wedlisclinations, which seems reasonable given that the former
determined enough to be useful. We estimate that an order @ire not topologically stable. One interesting observation is
magnitude increase in the number of biesrresponding to that type-1 lines often appeared as precursors to or remnants
several million Gay-Berne particlesvould be required to  of the motion of disclination line segments. For example, the

use this crossed-polarizer approach quantitatively. appearance of a type-1 line or several connected lines jutting
out from a disclination was often followed by a kink or bend
V. RESULTS developing in the disclination line at that point. Similarly, the

removal of kinks or bends often left behind type-1 lines for
some period of time. The type-1 lines seemed to be initially

With the methods described, we observed a coarseningefining, and afterwards retaining, a memory of the disclina-
sequence—compare Fig. 6 with similar figures in Ref.tion path. Also, the emergence of distinct disclination loops

[5]—which exhibited most of the general behaviors observed
experimentally{5]. An animation of our results is available

Xperi y5] imati ur results is avai //////l\\
/ /O

A. Coarsening sequence

on our web sitd45]. Shortly after the quench, there was a
dense tangle of defect lines. This tangle gradually thinnet
out, and we could clearly identify and follow individual de-
fect loops. With the exception of one wedge disclination line
[46] running through the sample, all of the disclination lines
were of twist type(see Fig. 7, and, with periodic boundary
conditions, formed closed loops. The presence of twist line!
is consisten{33,34] with the relative values of the elastic
constants in the Gay-Berne nemdtit7], namely,K,<(K;
+K3)/2. Apart from the exception mentioned above we sa
no evidence of dynamically generated wedge disclinatior
lines that might contribute substantially to the structure fac-
tor. Combination, separation, and collapse of the loops wer
all observed. The disclination loops appeared to experience g 7. Indication of a twist disclination. A single lattice plane
minimal center-of-mass displacement and were relativelyy girectors is shown with disclinations indicated as thick lines.
long-lived structures. Type-1 lines took the form of single park areas indicate local directors perpendicular to the global di-
line segments or small partial loops virtually always con-rector (along the vertical axis while light areas indicate parallel
nected to disclination line segments and often formingorientations. The dark region in the center of the figure falls inside
bridges(much like theT intersections of5]) between discli-  a disclination loop, clearly indicating a twist disclination. Compare
nation segments from the same or distinct loops. Type-With Fig. 1(b).
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FIG. 8. Time behavior of the various defect quantities: total
length of disclination lines and type-1 lines and total nhumber of
monopoles. The units of the time axis are thousands of time steps
after the quench.

from localized tangles often included the breaking of numer-
ous type-1 “bonds” between the loops.

The monopoles we observed fluctuated even more rapidly
than the type-1 lines, although in many cases their positions
remained constant, on average, over relatively longer times.
Because of their fluctuations, it is difficult to make any reli-
able statements about specific monopole behaviors such as
monopole-antimonopole annihilation, for example. We never
observed monopole formation upon disclination loop col-
lapse, a result consistent with the presence of only twist dis-
clination loops. All of the above processes are best observed
in the animations we provide on our web dis]. The total
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line length of disclination lines and type-1 lines, as well as
the number of monopoles, is plotted in Fig. 8 as a function o

FIG. 10. a3 Correlation functionC(r,t) for times ranging from
=13 to 40 with distances rescaled by the characteristic lengths
efined byC(r =L(t))=1/2. (b) Time behavior of the characteristic

time. The total number of disclination loops is plotted as aIengthL(t). Note that the data in this figure were obtained by using

function of time in Fig. 9.

B. Real-space correlation functionC(r,t)

To calculate the correlation functio@(r,t), [Eq. (3a)],

a smaller bin sizécorresponding to a 3232% 16 lattice than the
previous figures. The units of the time axis in both figures are
thousands of time steps after the quench.

32X 32X 16 lattice siz¢ to obtain a larger data set. We ob-

we reduced our bin dimensions by a factor ofy2elding a
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tained curves folC(r,t) at times spanning the entire coars-
ening process. Motivated by the dynamical scaling hypoth-
esis[Eq. (4a)], we attempted to collapse our data to a single
curve with appropriate rescaling of distances. Fiterml3 (in
units of thousands of steps since the temperature quiench
until t=40, when nearly all of the defects disappeared, the
C(r,t) curves for different times collapse to a single curve
[Fig. 10@] upon rescaling distances by a length sda(€)
chosen so thaC(r=L(t),t)=1/2. This particular choice
L(t) for the characteristic length scale was first suggested in
[10], and is the most accurate to implement numerically. The
time dependence af(t) is shown in Fig. 1(b). Our system

is not large enough to extract a reliable power law for the
growth of L(t). However, according to the dynamic scaling
hypothesis, the length(t) defined by the above criterion
should differ at most by prefactors or subdominant contribu-
tions at late times from other characteristic length scales of
the system. For example, as we noted in Sec. Il, the discli-

FIG. 9. Number of disclination loops as a function of time, with nation line density should scale éis(t)) 2. In Fig. 11 we

time measured in thousands of time steps after the quench.

plot the disclination line density as a function loft), over
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FIG. 11. Log-log plot of disclination line densifjine length per
unit volume vs the characteristic lengthshown in Fig. 1(b). The
straight line is a least squares fit with slopd.99+0.23. The range
of L shown corresponds to the time rartige13—40, where scaling
behavior ofC(r,t) is observed as shown in Fig. ().

FIG. 13. Structure factor as a function lofat timet=40, near
the end of the coarsening sequence. The crossover between the
thermal fluctuation regime at lardeand the defect dominated re-
gime at smalk occurs at smaller values &fthan at earlier times in
the coarsening sequen@mpare with Fig. 12 The straight line is
a fit to the data at large values &f Due to the relatively small
number of data points in the defect dominated regime at siake
have not attempted a power-law fit in that regime as we did in the
J)revious figure.

the range of timest& 13—-40) where we found good scaling
of C(r,t). A least squares fit yields an exponent 1.99
+0.23, consistentwith dynamical scaling. However, the
range of times over which coarsening occurs is too limite
(du.e'to the small system shzgo allow us tq fully assess thg C. Structure factor S(k,t)

validity of the dynamical scaling hypothesis. Similarly, while

the collapse of the correlation function data to a single scal- We computed the structure fact§(k,t) [Eq. (3b)], by

ing curve is consistent with the predictions of dynamicalf'rSt evaluating the Fourier transform of the nematic order

scaling, the range of distances and times is too limited t@2rametefEq. )]
provide more definitive support for the hypothesis. Further- Vv 3
more, as we discuss in Sec. V C, when we examine the struc- Qup(k)=+ 2 =

) . . . NS 2
ture factor dynamical scaling may in fact be breaking down

in the range(r/L(t))<1, even though this is not evident
from the scale of the plot oE(r,t). whereV andN are the system volume and number of mol-

ecules, respectively. As in Sec. VB we used a<32X 16
lattice. The wave vectots have components which are mul-

explik-r), (14

~ A 1
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FIG. 12. Structure factor as a function kfat timet=27. The FIG. 14. Structure factor as a function kofat timet=70, after
exponents of the power-law fits at small and lakggre 4.3 and 1.8  all of the defects have disappeared. The data are fit with an expo-
respectively. At smalk the structure factor is dominated by defects, nent of 1.7. With the coarsening process completed, only thermal
while at largek thermal fluctuations dominate. fluctuations contribute to the structure factor.
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Ar of k when the process is completéhermal fluctuations
- dominate, while at smak during the coarsening process the
e v ® ® defects dominate the structure factor behavior. While our
C v e T i i i
sk —vvlv—'—v L) value of 1.9 for the exponent at lardeis consistent with
B v thermal fluctuation dominated behavior, it is less clear how
25 to interpret the value of 4.5 for the Porod exponent that we
2 I obtain at smalk. As indicated in Fig. 8, the total disclination
§ SF M Smallkexponent line length is in general an order of magnitude greater than
g sk p4 ';\ﬁ’gee:pi’gﬁ':e“' the number of monopoles, i.n4isc=10Pmonop: N Spite of
i Small k average this order of magnitude difference in densities, we see from
4f - S ,';‘;‘,’32",‘;;’;:’93 Eq. (5) that the monopoles and disclinations should make
- - - comparable contributions to the structure factor in the range
45 " m mm of k values used in our plots. In principle, then, the structure
.'T. oy factor at small values ok during the coarsening process
0 10 20 30 40 50 60 70 80 should involve a sum of two power-law terms corresponding
tt, to the monopoles and disclinations. Because the twist discli-

nation lines yield an exponent of 5 and monopoles yield an
exponent of 6, we would expect to observe an effective ex-
ponent between 5 and(@ith our small range ok values the
two individual contributions will not be distinguishable
Thus it is not clear why we obtain an exponent between 4

thermal fluctuations are the only contribution$¢k) for all k, and and 5. One poss'b'l'ty_ IS that_ we are seeing two-dimensional
a single exponent fits the entire rangekoDuring the last stages of effects_due_to _the_an's_c’tmp'c Sh_ape O_f our MD c(t_ad!lcall

the coarsening sequendaetweent =30 and 40, we do not have that point disclinations in a two-dimensional nematic should
sufficient numbers of data points to fit the smabiehavior because Yield a power law of 4 It is also possible that we have
the crossover to the thermal fluctuation regime occurs at sknall Overestimated the number of monopoles. As discussed above
However, the largek behavior continues to be fit well with an in Sec. V A, the monopoles fluctuated quite rapidly, and it is
exponent of approximately &see Fig. 18 The solid and dashed possible that some apparent monopoles that we identified
lines indicate the average values of the exponents used to fit thésing the algorithm described in Sec. IV are not in fact to-
large and smalk regimes ofS(k) during the coarsening sequence; pological defects. Our exponent of 4.5 may in fact corre-
the values are 1.9 and 4.5 in these regimes, respectively. The dastpond to a crossover regime between point disclinations
dotted curve indicates the average exponent, 1.9, that fits all of thevith an exponent of ¥and twist disclination linegwith an

k data after the defects have disappeared. exponent of 5 with monopoles playing little or no role.

The crossover value &f separating the defect dominated
tiples of the minimum values commensurate with the MDand thermal fluctuation dominated regimes is of the order of
cell sizes in each direction. Motivated by E@b) for the  magnitude predicted by Eg. (5), namely, k
structure factor, we plotted our results in log-log form. Rep-~ (27K pgisc/KgT) 3~ (247 pmonop/ Ks T) Y. This  cross-
resentative results are shown in Figs. 12, 13, and 14, whermver value decreases with time, as can be seen by comparing
we have compute®(k) for values ofk=27/16, the mini-  Fig. 12 with the later time data of Fig. 13. The crossover
mum commensurate value along the shortest dimension afalue ofk in the latter figure is about half of the correspond-
the cell, and less thak=2. For values ok larger than 2 we ing value in the former figure, consistent with the relative
are unable to fit our data to the long wavelength expressiodensities of defects at the two times.

[Eqg. (3b)] for S(k). Figure 12 corresponds to time=27 As discussed in Ref30], we would expect the crossover
when there are still a sizable number of defects, Fig. 130 the thermal fluctuation dominated regime to be accompa-
corresponds ta=40 near the end of the coarsening se-nied by a breakdown of the dynamical scaling hypothesis
guence, and Fig. 14 correspondstte70 well beyond the because it assumes that thermal fluctuations play no role in
end of the coarsening sequence. The data in the latter figutbe behavior of real-space or Fourier-space correlation func-
can be fit over nearly the entire rangeloby a power law tions. To test this expectation we used our dataSgk,t)
S(k)~k =17 consistent with a purely thermal fluctuation during a time range spanning the coarsening process to plot
contribution to the structure factor. On the other hand, wehe scaling functiory defined in Eq(4b). This plot is shown
note that, in the figure corresponding to a time midwayin Fig. 16, where we clearly see the breakdown of scaling for
through the coarsening procd$sg. (12)], there is an appar- kL(t) greater than approximately 4 or 5, corresponding to
ent crossover in the behavior 8{(k) as a function ok. In  values ofr/L(t) less than approximately 1. Note that the
Fig. 15 we show the power laws obtained at small and larg@umerical range of is much larger than the range Hfthe
values ofk during most of the coarsening sequence and beeorresponding scaling function f@(r,t) [Eq. (48 and Fig.
yond. For small values &, S(k) can be fit to the power-law 10], so that the breakdown in scaling is easier to see in the
form S(k)~k™ X [Eq. (6)], with the average value of the structure factor data. The wider horizontal range Kbx(t)
Porod exponeng given by 4.5, while at largk the average compared ta/L(t) also makes the breakdown clearer.
exponent is 1.9. This crossover behavior is consistent at least Note that, in our plotk=R~? for nearly all values of the

in part with the predictions of Ref30]; that is, at large disclination loop radiu®k. Thus in this regime we expect to
values ofk during the coarsening proce&nd at all values see a power-law contribution t8(k) from the twist discli-

FIG. 15. Values of the exponenit&q. (6)] used to fit the struc-
ture factorS(k) at small and large values &fas a function of time
(the units of time are as in the previous figyréopological defects
dominate the smak behavior until the defects disappear around
=40, while thermal fluctuations dominate at laigeAt later times
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I~ u% pretation of scattering experiments on quenched nematics,
F o 0 s following upon the ideas of Ref30]. As we discussed in
A =18 Sec. ll, light scattering measurements of the structure factor
ol ¥ exhibit dynamical scaling with an effective exponent be-
g ?> tween 5 and 6. According to theory, twist disclination lines

should yield an exponent of 5, whereas monopoles and
wedge disclination lines yield an exponent of 6. However,
the density of monopoles in experimental systems is so small
that their contribution to the structure factor is negligible,
and wedge disclination lines are not energetically favorable.
It was suggested in Ref30] that dynamically generated
wedge disclination lines might account for the experimen-
tally observed exponent lying between 5 and 6. Given the
absence of such lines in our simulations, we believe that an
kL(t) explanation of the experimentally observed exponent is still
lacking.

FIG. 16. Plot of the dynamical scaling functiory . . -
—S(k.t)/(L(1))? as a function of the scaling variableL(t) [see Our computed real-space correlation function exhibited

Eq. (4b)]. Note the clear breakdown of scaling for large values ofgoo_d dynamical scaling over the limited range of dBtanceS
KL(t). available, though the structure factor appears to be provide a
more sensitive test of scaling. In our structure factor data we

nation loops. With a simulation of a larger system it might becould clearly see the breakdown of dynamical scaling and
possible to study the regime<R 1, where the twist discli- the crossover to the thermal fluctuation dominated behavior,

nation loops are expected to make no contributios(io), as in accord with the predictions of Zapotocky and Goldbart
discussed in Sec. I1. [30]. Clearly, simulations of even larger Gay-Berne systems
would be of interest to further address the issues raised here.

VI. CONCLUSIONS

. ACKNOWLEDGMENTS
In conclusion, we have shown that the Gay-Berne poten-

tial is fruitful for studying the behavior of the wide variety of Helpful discussions with Professor G. Crawford are grate-
topological defects generated in a quench from the isotropitully acknowledged. Computational work in support of this
phase to the nematic phase. At least for the Gay-Berne paesearch was performed at the Theoretical Physics Comput-
rameters chosen here, twist disclination loops were the doming Facility at Brown University and at the San Diego Su-
nant defects, and we did not, aside from possibly one isopercomputing Center under the auspices of the National Part-
lated line, observe dynamically generated wedge disclinationership for Advanced Computational Infrastructure. This
loops. This result, if it is not an artifact of our relatively work was supported by the National Science Foundation un-
small system size, has important implications for the interder Grant Nos. DMR-9528092 and DMR98-73849.

[1] M. Bowick, L. Chandar, E. Schiff, and A. Srivastava, Science[14] A. Kilian, Mol. Cryst. Lig. Cryst.222 57 (1992.

263 943(1994. [15] L. M. Pismen and B. Y. Rubinstein, Phys. Rev. L&9, 96
[2] I. Chuang, R. Durrer, N. Turok, and B. Yurke, Scier2&, (1992.

1336(199). [16] S. D. Hudson and R. G. Larson, Phys. Rev. L&, 2916
[3] M. Salomaa and G. Volovik, Rev. Mod. Phys9, 533(1987). (1993.

L . _ [17]J. Gay and B. Berne, J. Chem. Phyd, 3316(1981).
[4] A. Vilenkin and E. ShellardTopological Defects and Cosmol [18] For a recent review, see J. Crain and A. V. Komolkin, Adv.

ogy (Cambridge University Press,. Cambridge, 1994 Chem. Phys109, 39 (1999.
[5]1. Chuang, B. Yurke, A. N. Pargellis, and N. Turok, Phys. Rev. [19] D. LehmannDie Lehre der flssigen Kristallen und ihre Bez-

E 47, 3343(1993. iehung zu den Problemen der Biologiergmann, Wies-
[6] M. Mondello and N. Goldenfeld, Phys. Rev.45, 657(1992. baden, 1911

[7] R. E. Blundell and A. J. Bray, Phys. Rev.4®, 4925(1994). [20] C. Oseen, Trans. Faraday S@e, 883 (1933.
[8] H. Nishimori and T. Nukii, J. Phys. Soc. JpB8, 563(1989.  [21] T. C. Lubensky, D. Pettey, N. Currier, and H. Stark, Phys.

[9] H. Toyoki, J. Phys. Soc. JpB3, 4446(1994). Rev. E57, 610(1998.
[10] M. Zapotocky, P. M. Goldbart, and N. Goldenfeld, Phys. Rev.[22] M. Kléman,Points, Lines and Walls: In Liquid Crystals, Mag-
E 51, 1216(1995. netic Systems and Various Ordered Me(idiley, New York,
[11] N. Goldenfeld, inFormation and Interactions of Topological 1983.

Defects Vol. 349 of NATO Advanced Study Institute, Series B: [23] R. Meyer, Philos. Mag27, 405 (1973.
Physics edited by A. Davis and R. Brandenberg@lenum  [24] A. N. Pargellis, J. Mendez, M. Srinivasarao, and B. Yurke,
Press, New York, 1995p. 103. Phys. Rev. E53, R25(1996.
[12] S. Bedford and A. Windle, Lig. Crysil5, 31(1993. [25] C. Williams, P. Cladis, and M. Kleman, Mol. Cryst. Lig. Cryst.
[13] C. Liu and M. Muthukumar, J. Chem. Phyk06, 7822(1997). 21, 355(1972.



6840 BILLETER, SMONDYREYV, LORIOT, AND PELCOVITS PRE 60

[26] A. J. Bray, Adv. Phys43, 357 (19949. [39] M. Allen and D. Tildesley,Computer Simulations of Liquids
[27] T. Kibble, J. Phys. A9, 1387(1976. (Clarendon, Oxford, 1987
[28] M. Hindmarsh, Phys. Rev. Lett5, 2502(1995. [40] M. R. Wilson, M. P. Allen, M. A. Warren, A. Sauron, and W.
[29] T. Nagaya, H. Hotta, H. Orihara, and Y. Ishibashi, J. Phys. _ Smith, J. Comput. Chen18, 478 (1997.

Soc. Jpn61, 3511(1992. [41] K. Strobl (unpublishegl

[42] R. Ondris-Crawford, E. P. Boyko, B. G. Wagner, J. H. Erd-

[30] M. Zapotocky and P. Goldbattinpublishedt mann, S. Zummer, and J. W. Doane, J. Appl. Pi8g.6380

[31] B. Yurke, A. Pargellis, and N. Turok, Mol. Cryst. Lig. Cryst. (1991)

222, 195(1992. _ [43] J. Schellmann, ifPolarized Spectroscopy of Ordered Systems
[32] A. J. Bray, S. Puri, R. E. Blundell, and A. M. Somoza, Phys. edited by B. Samori and E. Thulstruluwer, Dordrecht,

Rev. E47, 2261(1993. ] 1988.

[33] S. I. Anisimov and I. E. Dzyaloshinskii, Zh.K8p. Teor. Fiz.  [44] P. de Gennes and J. Pro3the Physics of Liquid Crystals
63, 1460(1972 [Sov. Phys. JETR6, 774 (1973]. (Clarendon Press, Oxford, 1993

[34] S. Chandrasekhar and G. Ranganath, Adv. PI3g.507 [45] http://www.physics.brown.edu/Users/faculty/pelcovits/Ic/
(1986. coarsening.html

[35] A. P. Y. Wong, P. Wiltzius, and B. Yurke, Phys. Rev. L&, [46] There is some possibility that this apparent wedge segment is
3583(1992. in fact part of a twist line given our particular viewing perspec-

[36] A. P. Y. Wong, P. Wiltzius, R. G. Larson, and B. Yurke, Phys. tive along the axis of the MD cell. See Y. Bouligand Ge-
Rev. E47, 2683(1993. ometry and Topology of Defects in Liquid Crystadslited by

[37] G. Luckhurst, R. Stephens, and R. Phippen, Lig. Cr§st51 R. Balian, M. Klanan, and J.-P. PoirigNorth-Holland, Am-
(1990. sterdam, 198]1for a discussion of this possibility.

[38] R. Berardi, P. Emerson, and C. Zannoni, J. Chem. Soc., Farg47] M. P. Allen, M. A. Warren, and W. Smith, J. Chem. Ph{65,
day Trans89, 4069(1993. 2850(1996.



