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Capillary waves at liquid-vapor interfaces: A molecular dynamics simulation
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Evidence for capillary waves at a liquid-vapor interface are presented from extensive molecular dynamics
simulations of a system containing up to 1.24 million Lennard-Jones particles. Careful measurements show that
the total interfacial width depends logarithmically &n, the length of the simulation cell parallel to the
interface, as predicted theoretically. The strength of the divergence of the interfacial width depends
inversely on the surface tensign This allows us to measurg two ways sincey can also be obtained from
the difference in the pressure parallel and perpendicular to the interface. These two independent megsures of
agree provided that the interfacial order parameter profile is fit to an error function and not a hyperbolic
tangent, as often assumed. We explore why these two common fitting functions give different results for
[S1063-651%99)02512-X]

PACS numbg(s): 68.35.Ja, 68.35.Md, 64.70.Fx, 68.35.Ct

An interface is the physical boundary between two dis- The purpose of this paper is to present computer simula-
tinct thermodynamic phases, i.e., a region characterized by tion results of interfaces in a liquid-vapor system. To our
local gradient of the order-parameter whose mean valugnowledge, these simulations are the most extensive studies
changes from one phase to the other. Examples include d@f the interface fluctuations due to capillary waves. In par-
main boundaries in ferromagnetic materials, the interface beicular, we obtain the surface tensigntwo different ways:
tween two immiscible liquids, or between a liquid and its from the dependence of onL (yy), and from the differ-
own vapor below the critical temperatufe. This last case €nce in pressure parallp| and perpendiculap, to the in-
has been well studied, both theoretically and experimentallytérface ;). We find the surprising result, that, depends
For simple fluids interacting via van der Waals forces, thedn the functional form chosen to fit the order parameter pro-
mean local density changes monotonicdlly?] across the file through th_e mtgrface. In partlcular_, fitting _the profile to
interface from its bulk liquid value to that of the vapor. In an error function gives results fox, which are in excellent

other systems, such as alkali metals for exanjgld], the agreement withy,, . However, fitting our data to tanfga),

profile across the interface is often more complex, with os2. functional form den\_/ed from mean-f_|eld argume:pé,
ives results fory,, which are systematically 15% smaller

gﬂggﬁci,:gfﬁze local density superimposed on the decayin han Yp- Since the _tan'h function is often used tp fit.interfa-
: o . . . cial profiles at the liquid-vapor interfadd4,20, this differ-
For simple fluids, thermodynamic considerations alone g
: . k . ence is important to understand.
would predict that the mter_famal vwdtW, depgnds qnly on For this study we perform continuous-space, molecular
temperature and on the interaction energies within eaclyy namics simulations on a system of particles interacting
phase and across the mterfac;e. quevgr, the presence of tﬂﬁ'ough a standar€l2-6) Lennard-Jones potential. The po-
interface breaks the translational invariance of the systementjal between particleisandj takes the form
inducing Goldstone fluctuations or “capillary waves” at an
interface[5,6]. For two-dimensional interfaces, these non- 1 5
critical fluctuations give rise to a logarithmic increase in the c (i) _ (i) ro<r
interfacial widthw with increasingL |, the length of the in- U(rj)= rij rij e (1)
terface. Evidence for capillary waves has been found experi- 0 ry>re,
mentally from x-ray scatterin§7—9] on liquid-vapor inter-
faces and neutron reflectivifyl0—12 on polymer-polymer ) _ o _
interfaces. Moreover, nuclear reaction analydlRA) depth ~ Whererj; is the distance between particleand], ande and
profiling [13] has been used to directly investigate the film @ Set the energy and length scales of the potential, respec-
thickness dependence on the interface width between twibvely. Here we take a cutoff of ;=2.50-. Increasingr
polymer films and is in qualitative agreement with capillary- merely shiftsT to higher values, which should have little
wave predictions. Capillary waves have also been observegffect on the capillary-wave properties while increasing com-
in computer simulations for polymer-polymer interfaces Putation time significantly. The trajectories of tNeparticles
[13—17. Most previous simulation§18,19 of the liquid- of massm, are ob_talned by stepwise integration of Newton’s
vapor interface in three dimensions did not investigate th&duations of motiofEOM)
dependence ofv on the size of the interface. One recent
simulation study[20] of a thin polymer-film system gave a2 dr
some evidence for capillary waves, but the longitudinal size m— =—VU(r)—ml — +W(t). 2
of the interface was very small. 2 dt
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TABLE |. Values used for the parameters of simulations: tem-
peratureT, number of particle®N, L=L, L, , and duration of run.

T [elkg] N L[o] L, [o] time [ 7]
0.8 7200 12.8 127.0 6000
24000 24.7 127.0 6000
69360 42.0 127.0 6000
154400 545 195.6 5000
506880 94.0 125.6 2800
0.9 14400 15.1 216.1 11000
40000 25.2 216.1 10000
115660 42.9 216.1 7800
154400 545 195.6 5800
506880 94.0 144.4 4200
1240000 134.6 164.4 4200
1.0 14400 13.3 264.2 16500 . ) . - -
48000 257 264.2 14400 _ FIG. 1. Txplcal configuration of an equilibrated I!qmd/vapor
138720 43.7 264.2 10500 mterface atT_—0.8 e/kg. Length of square cross section holding
the interface id. =12.80.
170000 54.5 195.6 13500
590000 94.0 293.9 4900

face perpendicular to thedirection.L ; is set such that it is

at least twice the length of the liquid slab, allowing sufficient
- ) ) space for the bulk liquid and vapor densities to achieve con-
In addition to the force derived from the LJ potential, the siant values. Since the phase coexistence diagram is well
EOM contains a velocity-dependent damping term and &nown for this systenil8,19,23, we adjusted the density of
noise term representing a viscous drag force and a wealqe |iquid and vapor regions to be close to their reported
stochastic force, respectively. The noise tan(t) is taken  \gjyes for each temperatufe

from a uniform distribution, which mean value is set from  after the system has equilibrated the density profile is
the temperatur& and the damping coefficieiit through the  measured, i.e., they-cross-section averaged number density
fluctuation-dissipation theorefi21]. The combination of the p(2) as a function ok Over the course of a simulation for a
visc.ous damping and stochastic force terms in thg EOM efgivenT andL, p(2) is measured every 400 time steps. Once
fectively couples the system to a heat bath. Our simulationg,e interfaces have equilibrated, the density profiles are av-
are performed in the canonical ensemble with fixed partlcleeraged over T0-2X 10°PAt. Great care must be exercised in
number and voluméeconstant-NVJ. The EOM for each par- - he averaging procedure. For each profile, the position of the
tl(?le is _mtegrated with the veIomty-Ver|6[122]1/23|90“thm interface is located to insure that the averaging does not ar-
with a time stepAt=0.006r, wherer=o(m/e)™ fixes the ficially broaden the interface width due to drift in the inter-

time scale. We seff =0.57~*. All results presented here are face positions. Figure 2 shows an example of an equilibrated,
measured in reduced units, as derived from the fundamentgl\,eraged density profile foT=0.8 and 1.e/kg for L

scales fixed byr, €, m, and the Boltzmann constakg. To —41.9.
reduce computation time we use a combination of the Verlet gk values for the density are extracted from the tail
and linked-cell list algorithm$22]. values(obtained through a fit described belpuf the inter-

_ Periodic boundary conditions are used in all three spacg,cia| density profiles. Our final equilibrated values for the
dimensions, thus forcing the creation (aft least two inter- ik |iquid and vapor densities are listed in Table II, and
faces in a two-phase system. The system sizes, temperaturggyee very well with values reported in the literature. The
particle numbers, and equilibration times of our simulationsyerived coexistence curve, along with a fit to an expression

are listed in Table I. In Table | and throughout this paer, suggested in Ref.19] are shown in Fig. 3. The very good
refers to the dimensions of the square cross section parallel

to the interface, which lies in they plane. Thusl,=L, 0.8

=Lj=L. L, refers to the dimension of the box perpendicu- ' [\ T=08¢/ks

lar to the plane of the interface. Simulations are performed 0.6 :

for L ranging from 12.8 to 134.6r. The largest system we :

could run contains 1.24 million particles. After that, compu- 20_4

tation becomes prohibitively slow due to the large number of

particles. At the other end of our size range, systems with 0.2 :

L<120 demonstrate non-negligible finite-size effects. Fig- :

ure 1 shows a typical configuration of an equilibrated system 0 —

of L=12.87 at T=0.8e/kg. 0 50 100 /0150 200 250
Initial systems were built as follows: for each system size @

and temperature, we construct a slab of the liquid phase and FIG. 2. Averaged density profile after equilibration f6=0.8

center it in the middle of the simulation cell with the inter- and 1.0e/kg for L=41.%.

T =10¢/ks
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TABLE Il. Calculated values of the bulk densities and surface ¥

tensions for different simulation temperatures. ~§f dx dy1V§(x,y)|2. 4

T(elk . .

(lks) v P Y e The capillary-wave spectrum can be calculated by substitut-
0.8 0.020(1) 0.730(1) 0.37(3) 0.39(1) ing the Fourier transform of giving
0.9 0.045(1)  0.663(1)  0.22(1) 0.22(1)
0.95 0.066(1)  0.623(1) 0.15(1) Y[z oo a2
1.0 0.098(2)  0571(1)  0.097(2)  0.08(1) HAZ} zf daaZ(a)l*, ®)

where g represents a two-dimensional vector in reciprocal
agreement of the bulk values suggests that our systems are ~ e ,
dF ¢(x,y)]1=¢(q) is the Fourier transform of

well equilibrated that our measurement procedures aréPac€ an X:Y) 1= \
sound. Since the simulations are started near their respectiéé*,Y)- The equipartition theorem dictates the mean-square
liquid and vapor values, the bulk density values shown ir@MPlitude for each interfacial excitation mode,
Fig. 3 all attained equilibrium values quickly. However, the
interface structure did not equilibrate until the simulations
had been run for the much longer times shown in Table I.
An important quantity characterizing the interface is the
width. The intrinsic width of an interface is due to the inter- and summing over all allowed modes, one gets
mixing of the two phases, which always occurs to a certain

KeT
~ > 2 _ B
([¢(a)]*) eIy (6)

degree at finite, subcritical temperatures. In addition to this _ keT [madq

mixing, capillary-wave theory5] predicts that thermal fluc- (1813 = 5 f -, (7)
tuations of the location of the interface will contribute to the A7y dmin

total, cross-section averaged, measured width. This broaden-

ing depends primarily on the surface tension, the tempera- _ kgT L

ture, and the cross-sectional size of the interface, and the 27y "\ By’ ®)

spatial dimension. As an example, capillary-wave theory
states that any two-dimensional crystal is unstable againsthereq,,=27/L andqu.=27/B,. Note that both lower
thermal fluctuation$24]. and upper cutoffs are required to prevent the value of the
Fluctuations in/(x,y), the mean location of the interface integral from diverging. The long-wavelength cutoff;,, is
in the z direction, induces fluctuations in the total area of thedetermined byL; [25]. The interpretation of the short-
interface and can be easily determined by expanding thgavelength cutoffy,. is not as clear. Wernest al.[15,16]
shape of the interface to first order. This approximation ishave studied the dependenceBy for polymer-polymer in-
accurate provided the interface is smooth, with no overterfaces and suggeB, scales inversely with the molecular
hangs. The free energy of the interface is the product of itgveight. However, the exact nature of this short-wavelength
surface area and an interfacial energy densitywhich is  cutoff remains an open question.
assumed to be independent of local curvature. Fluctuations |n both simulations and experiments, the quantity mea-
due to capillary waves have an energy cost due to the insured is theotal interfacial width, which includes contribu-
crease in the surface area of the interface. The resulting inions from the intrinsic width and the broadening due to
terfacial Hamiltonian can be expressed as the product of sugapillary-wave fluctuations. The two effects can be distin-
face tension times the increase in interfacial area guished if one assumes that capillary-wave fluctuations are
decoupled from the intrinsic profile. Therefore, the total in-

H{{) = yf dx dy{ /1+ ‘9_5 /1+ a_g“_l}, &) terfe}ce.prpfi!e‘lf(z) may pe expressed as a convolution of
X ay the intrinsic interface profile/(z) and the effect due to cap-

illary waves[17],

1.1 .
— Fit i}
1 « =120 :f B
.« L=200 V()= | i(z-2)P(20)d2. 9)
&~ 09 * L=34 o
° I=Ha Here, P(zp) is the probability of finding the interface a,
0.8 2 =940 ie
» L=1340 '
0.7 l Lo
0.2 04 0.6 0.8 1 P(zp) = J J dx dyd[ £(X,y) —Zo]. (10)
i I-xl—y o Jo

FIG. 3. Coexistence curve: bulk density values are obtaine
from tail values of interfacial liquid/vapor density profiles. The
curve is a best fit using the following expressidi®], 0.5(p,

dI'he interfacial order parameter profile(z) is related to the
cross-section averaged density profilg) by the function

+py)0°=0.544-0.21KgT/ e and (OL—py) T3 =A[1
—(TIT)1%%8 The best fit parameters ar&=1.07 and T, V(2)= o(2)— pL+ pv a
:1085€/kB pL—py 2 ,
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which scales the density profile so thE{z) varies between 0
—1 and 1. The variance of the derivative of the total profile o
dW¥(z)/dz=V' can be used as a measure of the width of the

interface. The variance of a distributidns given by

o0

f wzzf(z)dz

J’:f(z)dz

wheref(q) is the Fourier transform of(z). Making use of
the convolution theorem and Eq&) and (12) it can be
shown thaf17]

_ —(ddg?)T(@)lg-0
f(0)

v[f]= . (12

vV ]=v[¢']+V[P],

L
B_o .

13

KgT
2_ 2, B
+_
A=Agts In

25 3 35 4

. 4.5 5
In(Ljo)

FIG. 4. VarianceA? versus IrL for T=0.8 (square} 0.9 (tri-
angles, and 1.0e/kg (circles. The open and solid symbols are
obtained using hyperbolic tangent and error function fits to the in-
terfacial profiles, respectively. Lines are linear least-squares fits to
the error function data.

wherep, (z) andpj(z) are the normal and transverse com-
ponents of the pressure tensor, respectively. The factor of
one-half accounts for the two interfaces in the system. Note
that Eq.(16) is only valid for liquid-vapor or liquid-liquid

The squared widths of the total and intrinsic interfacial Pro-systems. If the interface is between liquid or vapor and a

files have been defined a8=v[¥'] and A%Ev[zp’], re-

solid Eq.(16) does not apply since a solid can support stress.

spectively. Note that the average squared fluctuations of theg eyaluate the integral we divide the system into slabs of

interface about its mean location in tkedirection can be
directly identified ag|Z|?)=v[P]. Thus, our choice of mea-

width Az=0.20. The components of the pressure tensor in
each slab are obtained using the virial expressions for the

sure for the interfacial width clearly shows that the total in-yressure
terfacial width can be written as the sum of an intrinsic part

and a contribution due to capillary-wave fluctuations.

In order to verify this prediction, we performed several
simulations on different system sizes. Traditionally, the order

parameter interfacial profile has been fit with(z)
=tanh(Z/w,) or an error function erf(‘rz/w,). Using our

data we can test these two fitting functions and the resulting

predictions fory. Another reason for fitting our results for

1 i
< > Z—‘U'(rij>>, 17

z)= kKeT—
pJ_( ) <pn> B \V; (57n rij

1 0.5(x +y7)
= KnT—— U 7u
PI(2)=(pn)ks Vn<(%:,n o

U’(rij)>.
(18

W (z) to one of these two functions is that we found we canHere V,, is the volume andp, the density of slam. The

determine a value foA? more accurately than by extracting
it directly from the data; once the fitting parametersf tf)
have been determined|f] can be easily calculated. The
two different fitting functions we tested are

HZ) |

fe(z,we)=erf( W

) (14
2z
ft(Z’Wt) = tan"( W) .

t

For these two functions, the variance of each in terms of the

associated widthws,'s are

v[fl]=w2/2m,
A2 (15)
v[f/]=m?w?/48.

Using Eq.(13) the surface tensiow,,, can be calculated

from fits of the size dependence on the width of the interface

angle brackets denote a canonical ensemble average and the
summation overi(j),n means that at least one particler |

is in slabn. If both i andj are in the same slab then the entire
contribution of the pair is in slah. If i andj are in different
slabs then their contribution is split evenly between the slabs.

The simulations are performed for three temperatufes,
=0.8, 0.9, and 1.@/kg. This range of temperatures is se-
lected because at lower temperatures the interfacial width is
comparable to the average interparticle distance, and there-
fore is difficult to measure accurately. The upper bound is set
by T.~1.08%/kg [23]. For each value of, the profiles are
ifit to both f,’s described above. Near the interface, the fitting
functions can hardly be distinguished. In fact, some studies
have used an error function for theoretical derivations while
using a hyperbolic tangent function to fit their daiat,2Q.

We fit our interfacial profiles for data near the interface
and data deep into the bulk liquid and vapor regions. There
is noa priori requirement that a liquid-vapor density profile
must be symmetric about the center of the interface. How-
ever, we detected no significant amounts of asymmetry. For
each temperature and system size, the simulations are run

To obtain an independent measure of the surface tension WEhtil the interfacial profiles show a constakt

calculatey,, [18,26],

1L,
?’pZEL [p.(2)—py(z)]dz, (16)

Figure 4 summarizes the analysis from our extensive mo-
lecular dynamics simulations of a liquid-vapor interface. For
both tanh and erf fits, the data confirm a logarithmic depen-
dence ofA? on system size. The temperature dependence of
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04 1
. 6[erf (‘/; Z/We)]
A0,3 —
L7 e S T J S N N W Oltanh @ z/w))
: = Y az
0.1 &y, (erf) ‘J
* %, (tanh)
0 0.8 0.85 0.9 0.95 1
T (e/kp) ]
FIG. 5. Surface tension vs temperatiiteResults for the surface 02 — gw
tensiony,, obtained from fitting interfacial profiles with a tanh or 0.15 0z
erf are compared to the valugg calculated from the components 0.1 ., d[tanh 2 z/w)l
of the pressure tensor. The error function results are in excellent 0.05 9z
agreement withy, while the tanh results are systematically 15% J

too low. They, value forT=0.85 is taken from Re{19]. The y, 0
value for T=0.95 is calculated from a single simulation with
=41.%.

z/w,

FIG. 6. Results for an unweighted fit of a tanh function to a

. . . . error function forw,=1.
the interfacial surface tensions calculated from our simula- €

tions are shown in Fig. 5. We compare these values of thbave also shown that the more robust method of extracting
surface tension withy,, obtained from the components of the second moment is through fits to an error function, since
the pressure tensor, represented by solid squares. The agrésing a hyperbolic tangent leads to systematic errors.

ment betweery, andy,, obtained from the error function fits  The results presented here are for an isolated liquid-vapor
is very good. Using the tanh fits we obtain surface tensionéterface. The width of the liquid and vapor regions were
that are systematically 15% lower than those from the errofarefully chosen so that there was no interference between
function fits, which follows from their larger slopes shown in the two interfaces. An interesting extension of this work is to
Fig. 4. Thus we obtain the somewhat unsettling result thaftudy the effect of a nearby substrate on an interface. The
the value of the\? and hencey,, depends on the form of the effect of a wall on the interface can be modeled by adding a

o - - - : tential energy term to the interface Hamiltoniafid]
fitting function used to fity(z). However, the estimated vari- pot . X '
ance of the fits is in the range 0.001 to~0.0001 with a mzlwaﬂegﬁ?sdtse?rg ;[2 E::a?llcstjlaezgzbgmi?\te; :gt?nmt;r;acf)tzggal
ratio of the estimated variance between the tanh and error : . 1 by Integ 9 P

: -__energy between the microscopic constituents of two macro-
functions close to one for all temperatures and system sizes,.

To investigate the systematic discrepancy between {hRcoPIC objects, i.e., the interface and a semi-infinite wall. For

- . , Ppure LJ interactions, the potential energy is proportional to
tan_h and erf fits, we performed an unwe|ghf[ed fitof a hyperA/dz' whereA is the Hamaker constaf27]. The Hamaker
bolic tangent function to data generated with an error func- oo ) .
tion. The results are shown in Fig. 6. The integrand in theconstant contains information about the strength of the mi-

numerator of the variance is plotted zgor both functions. croscopic potential, geometrical factors, and macroscopic

The integral of each of these functions is proportionakfo properties of the wall. Since this additional term in the

From Fig. 6 one can see that the tails in the integrand of th|e-|am|lton|an Is quadratic i, 74 can therefore be diagonal-

) . L ized by a Fourier transform and the derivation of the
tanh function contribute more significantly than the error__ S
: capillary-wave spectrum is similar to the one presented here.
function, hence the larger measured values\éffrom the

tanh fits. We conclude that the tails of interfacial profiles areThe effect of the substrate is to cut off the long wavelength

. . capillary-wave fluctuations so that® no longer depends on
better captured by fits to an error function. : . .
. . L for smalld. The interplay betweeh andd is an inter-

In this paper, we presented results of extensive molecular! .. . . : :
. ! : o . esting question for which computer simulations such as these
dynamics simulations of liquid-vapor interfaces. Our data .

. . St . can directly address.

confirm the capillary-wave description of the interface struc-
ture between a Lennard-Jones liquid and its vapor phase. We thank Frank van Swol for helpful discussions. Sandia
When measuring the interfacial width by using second mois a multiprogram laboratory operated by Sandia Corpora-
ments of the interfacial profile derivatives, we can extracttion, a Lockheed Martin Company, for the United States De-
values for the surface tension that agree very well with calpartment of Energy under Contract No. DE-ACO04-
culations from the components of the pressure tensor. W84AL85000.
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