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Escape from intermittent repellers: Periodic orbit theory for crossover
from exponential to algebraic decay
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We apply periodic orbit theory to study the asymptotic distribution of escape times from an intermittent
map. The dynamical zeta function exhibits a branch point which is associated with an asymptotic power law
escape. By an analytic continuation technique we compute a pair of complex conjugate zeroes beyond the
branch point, associated with a preasymptotic exponential decay. The crossover time from an exponential to a
power law is also predicted. The theoretical predictions are confirmed by numerical simulation. Applications to
conductance fluctuations in quantum dots are discu$§dd63-651X99)13812-1

PACS numbegps): 05.45-a, 73.23+b

I. INTRODUCTION good estimate of the crossover time, which will be surpris-
ingly high.
Exponential distribution of escape times from chaotic
scattering systems should be expected only if the associated Il. ESCAPE AND PERIODIC ORBITS

repeller is hyperbolic. For intermittent repellers one expects .
Much of the early work on cycle expansi¢n] was con-

asymptotic power law decdy,2]. Nevertheless, in numeri- ith ; i I
cal simulations one often observes what appears to be a péfsned with escape frorthyperbolig repellers, so we can

fect exponential3,4]. As we will show here, the crossover to follow Ref.[7] rather closely when deriving the basic formu-

a power law may be hard to detect, because the crossov!aarS relating escape to the periodic orbiis OT the repe!ler. Sy
. o Sider a one-dimension&lD) map, on some interva with L
time may be so long to preclude any descent statistics.

i<sL—-1.
The importance of intermittency cannot be overempha—monomne branche§ (x) where 0=<i<L—1. Each branch

. . o g . f.(x) is defined on an intervdl,. A generating partition is
sized. A generic Hamiltonian system exhibits a mixed phas 1(X) ! 9 gp

) . L . en given byCM={l4,I;...1,_;}. We want the map to
space structure. A typical trajectory is intermittently trappedaymican unrestricted symbolic dynamics. We therefore re-

close to the stable islandS]. But even ergodic billiards may quire all branches to map their domdfif{l;)=1 onto some

exhibit intermittency, typically if they have neutrally stable j iapyval 1 5c® coveringC. A trajectory escapes when-
orbits. Popular billiards such as the Stadium and the Singkyer some iterate of the mage C(D),

billiards are of this type. _ _ . The nth level partition C(™W={I,;n,=n} can be con-

A quantum dot is an open scattering system in two dimenstrycted iteratively. Here are words of lengtm built from
sions, obtained by connecting leads to a cavity. Inspired byhe alphabetd={i;0<i<L—1}. An interval is thus defined
quantum chaos research, one likes to contrast shapes of thgcursively according to
cavity corresponding to chaotic motion, such as the stadium,
with shapes corresponding to integrable motion, such as to quzfi‘l(lq), (N)
the rectangle or the square. Both extreme cases are sensitive
to naturally occurring imperfections and one naturally endsvhereiq is the concatenation of lettér with word g. A
up with mixed phase space systems where one componeobncrete example will be given in E¢L6) and Fig. 1. Next
hopefully dominates. Consequently, the signals of underlydefine the characteristic function for th¢h level partition
ing chaos or integrability do not show up in as clear cut
manner as one would have hoped for. m

So far, most of the published analysis of these problems XM= xg(X), 2
has been numerical and heuristic. In this paper, we obtain a
from the periodic orbit theory quantitative predictions con-

. T . where

cerning the asymptotic distribution of escape times from an
intermittent map. We will demonstrate thatpeeasymptotic 1 xel
exponential escape law is associated with a pair of complex Y (X):{ 4 3
conjugate zeroes of the zeta function. These zeros will be d 0 xelg.
computed with a resummation technique introduced in Ref.
[6]. The truly asymptotic escape distribution will be a powerAn initial point surviving n iterations must be contained in
law, and is associated with a branch point of the zeta func€ ™. Starting from an initialnormalized distribution p(x)
tion. The strength of this power law will also be provided by we can express the fraction that survivegerations as
the resummation scheme, with the exponent determined from
the analytic form of the marginal fixpoint. The relative mag- _ n
nitudes of the pre-exponential and the power law will yield a I'h= J po(x) XM (x)dx. 4
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1 and can be rewritten as a sum over primitive periodic orbits
77 (periodnp) and their repetitions
0.8 ¢
7/
Ve o
7/ n rn
0.6 ’ 2 2 (10)
= 4 =1 A
= e P
04f W/ 7 f,(x)
’ It is closely related to the trace of the Perron-Frobenius
02 /.7 operator
7
0 - 6“ rn
g 0)'(5 ! antr£“=f dx o[ x—f"(x)]=2 n, >, P,
P r=1 |AL— 1|
| (11
| | By introducing the zeta function
0 1
oo lot o I l(Z) ]___[ ( ) (12)
p |Ap|
| | | | | | |
= e T e Z, can be expressed as a contour integral
FIG. 1. The intermittent maj16) for the parameter values d
=0.7 andp=1.2. The map is defined on the interdalBelow the = " —log gl(z)) dz (13
map is also shown the partitiod®={1,,1,}, ¢®, andc®. 2mi dz

We choose the distributiopy(x) to be uniform on the inter- where the small contouy encircles the origin in negative

val I. The survival probability is then given by direction.
" The expansion of the zeta function to a power series is
usually referred to as eycle expansian
—a> |1 (5) Y el ep
where Y 2=, ¢, (14)
:fdx=|||_ (6)  This representation converges up to the leading singularity.
|

Its domain of convergence is therefore usually larger than

. - . that of the product representatidt2), which diverges at
Assuming hyperb(sllcny the size of can be related tothe o rrivial) zeroes. If the zeta functiofiX(2) is analytic in

stability Aq=(d/dx)f"(x)|,q of periodic orbitq according  a disk extending beyond the leading zexp then the peri-

to odic orbit sumz,, and hence the survival probability,,

1 will decay asymptotically as

[1gl=bg. (7

| Ayl Zy~zy"=e ", (15)

whereb,=0(|l]), can be bounded close to the sizelof

This restilts from the fact thaid) (1) =1, (i) the smallness Wherex=Inz is the escape rate.

of ||q| and (|||) the fact that derivative is bounded by the We will introduce |nterm|ttency in connection with a spe-

assumption of hyperbolicity. We will eventually relax this cific model. We then consider an intermittent mesp>f(x)

assumption, but for the moment we will stick to it. with two branches I(=2), wherel is chosen as the unit
The survival fraction can now be bounded by a sum oveinterval

periodic orbit according to

m 4 (n)

fo(X)=x(1+p(2%)%) xelg={x;0=x<¢},
(x)=
N)E Iy <r <c2(N)Z A

(8) fi(x)=2x—1, xel;={x;1/2<x=<1}.
d (16)

for all n>N.

- . . _ The map is intermittent i5>0 and allows escape #>1.
The periodic orbit sum in Eq8) will be denotedZ,,

The map is shown in Fig. 1, together with some of its parti-
") tions. The right edge of the left branth, here denoted, is

2 LE 9) defined implicitly byfy(£)=1. The trajectory escapes when
T | Al Zn £(s)<x<i.
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In view of this, the numerical results strongly suggest Rat
stays bounded, and that, for this particular syst€min Eq.
(8) can be chosen a8;=0.5 andC, presumably close to
unity. This is a surprisingly low price to pay for the compli-
cation of intermittency.

The sizes of the intervalgn has no relation whatsoever to
the stability of the cycle Q(being unity. We exclude the
intervals|yn from our considerations bpruning the fixed
point from the zeta function

1.25f

0.75f

_ an
' 1(2):1_[ (1_m). (21

p#0

0.5
The contribution fromlyn to I',, can be added separately if

required. Since the results rely on summation along periodic
orbits, it might break down for some choices of the initial
distribution pg(X).

FIG. 2. The quantityR, plotted for the sequencgs= 10¢ and
p=110° versus lengtm,, .

The intermittent property is related to the fact that the lll. RESUMMATION AND SIMULATION

cycle Ois neutrally stablef’(0)=1. Consequently, cycle  After having argued that the survival probabilitiEs still
stabilities can no longer be exponentially bounded Withcan pe bounded close to periodic orbit suFswe turn to
length. This loss of hyperbolicity makes it difficult to relate {he problem of computing the asymptotics of these quanti-

the survival probabilityl’, to the periodic orbit sunZ,.  ties. The coefficients of the cycle expansidd) for the map
Indeed, Eq(7) is brutally violated in some cases, as can be(16) decay asymptotically as

realized from the following example. The problem of inter-

mittency is best represented by the family of periodic orbits 1
10, It follows from Eqs.(1) and (16) that |l =2|1o4. It Cn~ e (22)
can be showi6] that |l gx|~1/kYs and thus n

1 which induces a singularity of the type {1z)** in the zeta
g~ == (17)  function [6]. If 1/s is an integer, the singularity is (1
Kkl —2)%log(1-2).
To evaluate the periodic orbit sum it is convenient to con-
which should be compared with the asymptotic behavior okider a resummation of the zeta function around the branch
the stabilities pointz=1:

o

1 _— . - _
VAo~ g (18 g*l(z):zo ciz'=i§0 ai(l—z)'+(1—z)l’si§O bi(1-2)'.
(23)

The difference in power laws seems to spoil every possi- . ) o
bility of a bound such as Eq8). However, Eq.(7) is not N practical calculations one has only a finite number of co-

necessary to establish a bound such as(8q.lt suffices if ~ €fficientsc;, O<i<n. of the cycle expansion at disposal.
the ratio Heren, is the cutoff in(topologica) length. In Ref.[6] we

proposed a simple resummation scheme for the computation
1A, e of the coefficientsa; and b; in Eq. (23). We replace the
Rpy="—> > |15k (190 infinite in Eq.(23) sums by finite sums of increasing degrees,
Np k=1 n, andn,, and require that

stays bounded. That it to say that it suffices if #hesrage Na Ny

sizeof the intervals along a cycle can be related to the sta- > a(l-2)'+(1-2)¥> b(1-2)

bility, rather than each interval separately. H&alenotes =0 1=0

the cyclic shift operatoS(p=s;,S,S,) = S$,S,,S1. We check ne

this numerically on two sequences®ldnd 116, the former = z ciZ +0(Z" ). (24)
=0

being most prone to intermittency. The result is plotted in

Fig. 2. We note that for both sequencBg,appear to tend to ) : s

well defined limits, where 10exhibit the largest deviation ©One proceeds by expanding {ljz) and (1-2) around
from unity. Indeed, it is reasonable to assume that the s&&=0, skipping all powersz""* and higher. Ifn,+n,+2

quence 10 provides a lower bound =n.+1 one is then left with a solvable linear system of
equations yielding the coefficients andb; . It is natural to
R,>lm Ry,  Vp. (20) require thatn,+ 1/s—n,/ <1 so that the maximal powers of

ks the two sums in Eq(24) are adjacent. Then, for each cutoff
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FIG. 3. The ratioby/ay versus cutoff lengthn, .
FIG. 4. The real and imaginary part of Zp versus cutoff
length n, the integersn, and n, are uniquely determined, !engthnc.
and one can study convergence of the coefficiapendb; ,
or various quantities derived from thefsee beloy, with  scheme, for various value of the cutoff length. Again we

respect to increasing values of . note that the analytic continuation technique works quite sat-
If the zeta function is entiréexcept for the branch cuthe  isfactorily.
periodic orbit sumZ,, can be written The probability of escaping at iterationis
Z,=> z’”+i z " iIog(l(z) dz. (25 =T, T (27)
n = @ 27i Yout dz . Pn n-1 n-

The sum is over all zeroes, of the zeta functiofassuming  We get for this distribution
they are not degeneratand the contoury,, goes round the
branch cut in anti clockwise direction. If poles and/or natural

boundaries are present, expressi@» must be modified Xo ", 0<N<Nggss,
accordingly. _

The leading asymptotic behavior is provided by the vicin- P~} bl 1 L Neross<N. (28)
ity of the branch poinz=1, and is found to bé8] ap s2 ['(1-1/s) pl+is

7 N@E# ! n—oo. (26) Here we have neglected the intenigh, having the same

asymptotic decay law as the periodic orbit sdm. Due to
the uncertainty in the bound$) it can be neglected.

The relevant ratidg/ay, obtained from the resummation The crossoven=ng,sstakes place when the two terms in
scheme, versus cutoff length, is plotted in Fig. 3. In all  Eq. (28) are of comparable magnitude. For our standard set
numerical work we have used the paramet+d.7 andp of parameters f=1.2, s=0.7) it is found to beng.qss
=1.2 and computed all periodic orbits up to length 20. The~300.
convergence in Fig. 3 is perhaps not overwhelming but we To check our predictions we run a simulation of the sys-
should bear in mind that we study a quantity which wouldtem. The result can be seen in Fig. 5. We note that the slope
diverge in a conventional cycle expansion; we are not merelpf the exponential, the power and magnitude of the power
accelerating convergence as in R], we are actually at- |aw, as well as the crossover time agrees very well with our
tempting an analytic continuation. predictions.

There is also a pair of complex conjugate zerags; Xo A reader still in any doubt on the effectiveness of a re-
*iy, beyond the branch cut. They contribute both to thesummed cycle expansion should consider the following. The
residue sum in Eq.25) and to the integral around the cut in simulation in Fig. 5 averaged over &.hitial points, yet, in
Eq. (25). But since their imaginary partsy, are small, they itself the result would not be very conclusive. A direct evalu-
will, in effect, contribute a factok, " to the periodic orbit ation of Z,, up to sayn=600 would require roughly £@°
sumZ,. This zero will dominateZ,, in some range &n. periodic orbits. We have not bothered to perform such a
<N¢ossbefore the asymptotic power law sets in. cross check. But a resummed cycle expansion provides reli-

In Fig. 4 we study the convergence of the real and imagi-able answers with a length cutoff as low as=15, corre-
nary part of zy obtained from the resummation schemesponding to 4719 prime cycles. Admittedly, we benefited
above, for different cutoffs1.. The zero is computed by from knowing the asymptotic power law of the cycle expan-
Newton-Raphson iteration of the left hand side of E2f),  sion. However, if this is not the situation, this power law is
with coefficientsa; and b; provided by the resummation easily extracted if one uses stability orderirg].
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FIG. 5. Distribution of escape times obtained from simulation ~ FIG. 6. The real and imaginary part of the leading zgrversus
(shaky curvand the pre-exponentiéull line) and the asymptotic ~ the thermodynamic parametgt
power law(dashed ling obtained from resummation.
Hamiltonian systems with a mixed phase space structure
IV. A ZERO IS CUT IN TWO [2,12].

S An immediate application concerns conductance fluctua-
The occurrence of a dominating zero beyond the branch PP

point is, in fact, very natural and probably generic for a widetonS in quantum dot§13]. The Fourier transforn€(x) of

class of open systems. Consider the one-parameter family i€ correlation functiorC(Ak) =(T(K)T(k+Ak)),, where
zeta functions T(K) is the transmission as function of the Fermi wave num-

ber, can, after several approximations, be related to the es-
n ) cape distributiorp(L) [13]
P

czp=1I1 (1— (29
p |AP|B N o
C(x)~f dLp(L+x)p(L). (30
For small enougtB there is a leading zerm,(B) within the 0
domain of convergencézy(B)|<1. This is related to the
topological pressurg9,10] according toP(B) = —log Z,(B). If there is a crossover to a power lawpiiL) there will be an
For instanceP(0) is the topological entropy. For a certgén  associated crossover i8(x). For an intermittent chaotic
(actually the fractal dimension of the repejléhe zero col-  system, the crossover time may be very long—the quasiregu-
lides with the branch poing=1, splits into two, and the lar region component of phase space will not make itself
complex conjugate pair continues to move out beyond thaoticed until very long times. If the elastic mean free path of
branch point. This is an example of a phase transitiorelectrons is much shorter than the length corresponding to
[10,11. the crossover time, the quasiregular component will never ve
In Fig. 6 we plot the logarithm of the leading zésp  detected in this type of experiment. Or the other way around,
[—InZy(B)] versusB. It is obtained from a resummation a small deviation from an integrable structure induces cha-
analogous to the one discussed above, see[Bft can be  otic layers in phase space. This chaotic layer may lead to
interpreted as the topological pressure only as long it is reabxponential escape for small times, and the experimental out-
come may very well resemble predictions for fully chaotic
V. MESOSCOPIC DISCUSSION Systems. o
In experiments gweak magnetic field is a more natural
The particular form of the distribution of escape timescontrol parameter than the Fermi energy. Instead of the dis-
does depend on the initial distributigiy(x). In this paper tribution of dwelling times one has to consider the distribu-
we have restricted ourselves to a uniform initial distribution.tion of enclosed areas, a related but more subtle concept
To model chaotic scattering one must imagine that particlesvhich we plan to address in future work. One has observed
can be injected according to any distribution. For examplelorentzian shapépredicted for chaotic systemsf the so
one can construct a chaotic scatterer from a bounded billiardalled weak localization peak even in near integrable struc-
by drilling holes anywhere on the boundary and injectingtures[14]. This has been attributed to naturally occurring
particles with any conceivable distribution of angles. Thisimperfections[15,16 and rhymes well with the classical
may even effect the asymptotic power 1dd2]. Periodic  considerations above. Admittedly, we have now moved far
orbit theories can also account for other initial distributionsfrom our original intermittent map and entered the realm of
than uniform. However, the preceding discussions about respeculation. What we do want to point out in this paper is
lating periodic orbit sums to survival probabilities warns usthat these kind of problems are well suited for periodic orbit
to be cautious when doing so for intermittent systems. As icomputations—zeta functions are powerful tools for making
appears, the general rule of thumb, first an exponential, thelong time predictions, even for intermittent chaos, once the
a cross over to some power law, can be extended to opgmroblems of analytical continuation can be overcome.
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