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Dependence of thermal conductivity on discrete breathers in lattices
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We study the properties of heat conduction in chains of coupled particles subjected to different anharmonic
on-site potentials. Particular emphasis is placed on the role of breathers in saturation of the thermal conduc-
tivity for chains with hard anharmonicity. When the chain particles are subject to on-site potentials with soft
anharmonicity, we find a characteristic temperature, below which the conductivity decreases but while above
which it increases.@S1063-651X~99!05912-7#

PACS number~s!: 05.45.2a, 05.70.Ln, 44.10.1i, 05.60.2k
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A general and challenging problem is to understand m
roscopic phenomena and their statistical properties in te
of deterministic microscopic dynamics and, in particular,
connect macroscopic irreversibility with time reversible ev
lution of a system of interacting particles. There is still gre
interest in the properties of heat conduction in a chain
~linearly or nonlinearly! coupled nonlinear oscillators. Re
cent works@1–5# have aimed at obtaining, on a microscop
level, the Fourier heat law, according to which the heat fl
through the chain is proportional to the temperature grad
~normal thermal conductivity!. It is known that in integrable
systems such as a harmonic chain@6#, the Toda lattice, and
others@4# a temperature gradient is not formed and theref
they do not obey the Fourier heat law. Nonintegrability is
necessary condition for a finite~normal! thermal conductiv-
ity. However, as shown recently for the Fermi-Pasta-Ul
@1# and the diatomic Toda chain@5#, the existence of a tem
perature gradient does not necessarily mean the validit
the Fourier law. The nonintegrability of these systems le
to formation of a linear temperature gradient, but with a h
flux proportional not toN21 but to N2a, 0,a,1, with N
the chain length.

Other one-dimensional nonintegrable systems exist, h
ever ~so-called ding-a-ling@7# and ding-dong@8# models!,
that have a finite thermal conductivity. Recently@2#, Hu, Li,
and Zhao have found that in the Frenkel-Kontorova~FK!
model a linear temperature gradient is formed and the h
flux is proportional toN21. Their general conclusion is tha
the phonon-lattice interaction is the key factor in the Four
law, no matter whether the interparticle coupling in the F
model is harmonic or anharmonic.

The lack of details on the heat conduction mechanism
chains with on-site potentials provides a motivation for t
present work. We will show that the anharmonicity of
on-site potential is a sufficient condition for finite therm
conductivity, no mather whether it is soft or hard. The b
havior of thermal conductivity with temperature is studi
for a number of standard on-site potentials, and we show
hard on-site anharmonicity leads to conductivity decre
with temperature. We explain this effect through nonline
localized mode~discrete breather! formation, that accumu-
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late the energy of thermal fluctuations and inhibit therm
transfer. A more detailed investigation of the behavior of t
thermal conductivity with temperature in the FK model
also presented in our study.

We consider the Hamiltonian of harmonically couple
particles subject to an on-site potential in the following d
mensionless form:

H5(
n

F1

2
u̇n

21
1

2
~un112un!21v0

2V~un!G , ~1!

where an overdot stands for differentiation with respect
dimensionless timet and un5un(t) is the displacement o
the nth atom of the chain from its equilibrium position. Th
on-site functionV(u) is normalized byV9(0)51, so thatv0
measures the dimensionless eigenfrequency of a partic
the on-site potential. Besides the harmonic case withV(u)
5u2/2, this report will describe results for the sinh-Gordo
~SHG! potential

V~u!5coshu21 ~2!

with hard anharmonicity, and two potentials with soft anh
monicity: the bounded single-well~BSW! potential

V~u!5
1

2
~12sech2u!, ~3!

representing a family of reflectionless potentials@9#, and the
periodic sine-Gordon~SG! potential~in the FK model!

V~u!512cosu. ~4!

In order to study the heat conduction in a finite cha
consisting ofN particles, we split it into three segment
using the lateral segments withN0 particles as thermal res
ervoirs ~baths or thermostats! of the the Langevin type with
different temperaturesT1 ~left! and T2 ~right!. We choose
the Langevin reservoir because of the recent study@3#, ac-
cording to which the Nose´-Hoover thermostat@10# appears
6610 © 1999 The American Physical Society
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not to be appropriate for simulations of the thermodynam
limit. The corresponding equations of motion have the st
dard discrete form

ün5un1122un1un212V8~un!

for the internal segment (n5N011, . . . ,N2N0) and

ün5un1122un1un212V8~un!2gu̇n1jn
6

for the lateral segments with the ‘‘1’’ superscript for n
5N011, . . . ,N2N0 and the ‘‘–’’ one for n5N2N0
11, . . . ,N. Here a prime stands for differentiation,g is the
relaxation coefficient, andjn

6 is white noise driving the lat-
eral segments and defined in the standard fluctuat
dissipation manner̂ jn

6(t)&50, ^jn
1(t1)jn

2(t2)&50, and
^jk

6(t1)j l(t2)&52gT6dkld(t12t2).
The system of equations of motion was integrated num

cally. After thermal equilibrium was reached, the local te
perature profileTn5 limt→`(1/t)*0

t u̇n
2(t)dt and the local

heat fluxJn5 limt→`(1/t)*0
t j n(t)dt through the chain were

established, wherej n5u̇n(un212un11)/2. The valuesv0
51, g50.1, N0550, andN5150, 200, 300, 500 were use
and the time of numerical integration wast5106.

This method of thermalization allows us to introduce t
boundary conditions properly. The local temperature pro
Tn depicted in Fig. 1 shows that in the internal chain segm
N0,n<N2N0, transfer of thermal energy takes place. T
temperature gradient has a linear form and the local heat
does not depend on the specific chain site, i.e.,Jn5J. This
allows us to define the thermal conductivity

k~N1!5JN1 /~TN0112TN2N0
! ~5!

with N15N22N0 being the length of the internal segmen
The dependence ofk on N1 for the three anharmonic on-sit
potentials~2!, ~3!, and ~4! is given in Table I. As follows
from this table, for each anharmonic potential, doubling
length of the internal segmentN1 practically does not chang
k(N1). Therefore, there exists a limitk5 limN1→`k(N1)

corresponding to the thermal conductivityk at the mean tem-
peratureT5(T11T2)/2. Note that the thermal conductivit
can also be found through the Green-Kubo formula

FIG. 1. Profile of local temperatureTn in the chain subjected to
the SG potential (N5300, N0550, T150.6, andT250.5).
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k5 lim
t→`

lim
N→`

1

NT2E0

t

c~t!dt, ~6!

where c(t)5^J(0)J(t)& is the correlation function of the
total heat fluxJ(t)5(nj n(t).

In order to find the functionc(t) in Eq. ~6!, we have
considered a finite cyclic chain consisting ofN52000 par-
ticles, embedded into a Langevin bath. After the therm
equilibrium with the thermostat has been reached, the th
mostat was removed and then the dynamics of the isola
chain was studied. To increase the accuracy of finding
correlation function, its averaged value was taken over 5
different realizations of initial thermalization of the chai
The numerical integration of the chain dynamics has sho
that for each of the potentials~2!, ~3!, and~4! at all values of
temperatureT.0, the correlation functionc(t) in the limit
t→` tends to zero with exponential decay as illustrated
Fig. 2. The infinite integral in the Green-Kubo formula~6!
converges and this results in finite values of thermal cond
tivity. The two ways of findingk give very similar values as
illustrated by Table I.

Consider now the dependence of the heat fluxJ on the
temperature differenceDT5T12T2 . To this end, we
choose a finite chain ofN5300 particles with zero tempera
ture at the right end of the chain (T250), so thatDT
5T1 . The heat flux can be defined in another way, nam
as the energy released at the right lateral segment due to
dampingg: J̄5g(n5N2N011

N Tn . The numerical integration

of the equations of motion confirms thatJ̄ equals the hea

TABLE I. The thermal conductivityk calculated according to
Eq. ~5! against the internal segment lengthN1 (T150.6 andT2

50.5) and the conductivitykGK calculated according to the Green
Kubo formula ~6! at T50.55 for the chain with the three on-sit
potentials given by Eqs.~2!, ~3!, and~4!.

on-site k k k k kGK

potential N1550 N15100 N15200 N15400

SHG 10.17 10.90 10.86 11.14 10.60
BSW 27.50 32.30 33.44 33.65 36.51
SG 17.33 17.43 18.26 18.31 17.66

FIG. 2. Time dependence of the natural logarithm of the cor
lation function c(t) calculated at the mean temperatureT5(T1

1T2)/250.55.
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flux in the internal region of the chain:Jn5 J̄, n5N0
11, . . . ,N2N0.

The dependence of the heat fluxJ̄ on the temperature
differenceDT is presented in Fig. 3. As can be seen fro
this figure, the magnitude of the heat flux increases mo
tonically with temperature. In the chain with the harmon
on-site potential the heat flux is proportional to temperatu
This is due to the fact that in the linear chain the Fourier l
is not established but the chain attains throughout~except in
the contact points! the average contact temperature@6#. The
anharmonicity of the potential results in slowing down t
increase of the heat flux. For the potentials BSW and
with soft anharmonicity, this decrease becomes maxima
DT50.5 that corresponds to the binding energy of the ch
with the substrate formed by the on-site potentials. Howe
further increase of temperature leads to increasing the s
of growth: Disconnection of the chain from the substra
occurs and in the high-temperature limit the chain becom
isolated. Completely different behavior is observed in
chain with the hard anharmonic potential~2!. Here, atDT

→` the heat fluxJ̄ tends to a finite value: a saturation o
curs because the magnitude of the flow cannot exceed a
tain maximal value.

In order to clarify the saturation effect in chains with ha
anharmonicity, we note that in addition to extended line
small-amplitude oscillations~phonons!, nonlinear large-
amplitude strongly localized modes~so-called discrete
breathers; for a review see Ref.@11#! can exist in the chain
In order to investigate the role of breathers on the ther
conductivity, we calculate the power-density spectra of th
mal fluctuations for different types of anharmonicity. For t
chain with the harmonic on-site potential, this spectrum
given analytically:E(v)52v/pA(v22v0

2)(v1
22v2), v0

,v,v1, wherev1 is the upper edge of the phonon ban
v1

25v0
214, and depicted by curve 1 in Fig. 4~a!.

This figure also represents the typical power spectra
culated numerically in the case of hard anharmonicity giv
by Eq. ~2!. At low temperature (T50.05), the spectrum o
~small-amplitude! anharmonic thermal fluctuations prac

FIG. 3. Dependence of the heat fluxJ̄ on temperature difference
DT5T12T2 in the chains with the harmonic~curve 1!, the soft
BSW ~curve 2!, soft SG~curve 3!, and hard SHG~curve 4! on-site
potentials (N5300, N0550, T15T, andT250).
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cally coincides with that in the chain with the harmonic p
tential~compare curves 1 and 2!. However, for high tempera
ture (T52.05), the spectrum is shifted to the high-frequen
region as illustrated by Fig. 4~b!. In addition to phonons, in
this spectrum there exist high-frequency localized nonlin
oscillations, discrete breathers, whose frequency exceedsv1.
The energy of a breatherEb monotonically increases while
its width D decreases with increase of the frequency. Fr
the equationEb(v)52TD(v) one can determine the fre
quency vb(T), at which the energy distribution in th
breather localization region corresponds to the energy le
of thermal fluctuations. The breathers with this frequen
should have the greatest probability of formation in the th
malized chain. Therefore, as clearly demonstrated by F
4~b!, the power spectrum has a maximum at this frequen
At T52.05 more than half the total energy is in therm
oscillations with frequencyv.v1. Thus, one can conclud
that there is a large contribution of breathers to thermal
pacity of the chain at high temperatures. For hard anhar
nicity of the on-site potential, the breathers appear to
strongly localizedstandingoscillations. They cannot contrib
ute to transfers of thermal energy and, as a result, therm
zation of breathers results in an effective reduction of th
mal conductivity of the chain.

In order to show the presence of high-frequency stand
breathers in a thermalized chain, let us consider the t
evolution of the thermalized chain with the initial temper
ture T52.05. We chose a finite chain consisting ofN5500
particles and place it in the Langevin heat bath. After t
thermalization of the chain is complete, we removed
bath, but introduced some damping at the chain ends@12#.
Such a numerical integration of the equations of motion
shown that after absorption of allmobile excitations by the
chain ends, in the internal segment of the chain, a stand

FIG. 4. Power spectra of thermal fluctuationsE(v) in the chains
with harmonic and hard anharmonic on-site potentials.~a! Analyti-
cal form of the spectrum for the harmonic chain~curve 1! given for
comparison with a typical realization of the spectrum compu
numerically at temperatureT50.05 for the chain with the hard
SHG anharmonicity~curve 2!. ~b! A typical realization of the spec-
trum computed numerically atT52.05 ~curve 3!. Line 4 represents
the breather frequencyvb(T) that corresponds to the position of th
peak in the spectrum.
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breather still appeared to be present as illustrated by Fig
this is in agreement with Peyrard’s study@13#.

Dependence of the thermal conductivityk on the mean
temperature of the chainT5(T11T2)/2 is presented in Fig
6. In the chains subjected to the BSW and SG potentials
T,0.55 the conductivityk monotonically decreases with in
crease of temperature. AtT50.55, a minimum is reache
and further temperature increase leads to augmentationk.
At T50.55, the energy of thermal fluctuations becom
greater than the binding energy of the chain with the s
strate. The chain becomes increasingly disconnected f
the substrate, so that in the limit of high temperatures
acquires the infinite conductivity of an isolated harmon
chain. In the chain with the hard SHG potential, disconn
tion of the chain from the substrate is impossible. In t
case, the contribution of high-frequency standing breath
in the chain thermalization, which prevent the heat cond
tion, rapidly increases with temperature. As a result, the
crease of temperature results in a monotonic decrease o
thermal conductivity;k→0 if T→`. This result is in good
agreement with the effect of saturation of heat conduct
demonstrated by curve 4 in Fig. 3.

FIG. 5. Formation of a standing breather from thermal fluct
tions of the chain. Initially~at t50), the temperature of the chai
was T52.05. In order to avoid reflection effects, the chain en
include damping (N5500, N0550, andT15T250).
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In conclusion, we have shown that a chain of coup
particles each of which is subject to ananharmonicon-site
potential, independently of the sign of anharmonicity, ha
finite ~i.e., normal! heat conduction. In the presence of ha
anharmonicity~as in the SHG model!, the thermal conduc-
tivity tends monotonically to zero with increasing of tem
perature. This phenomenon is connected with thermaliza
of high-frequencystandingbreathers. When the chain pa
ticles are subject to aboundedon-site potential~which nec-
essarily contains soft anharmonicity!, there exists a critical
value of temperatureTc corresponding to the binding energ
of the particles with the on-site~substrate! potential. At T
,Tc , the thermal conductivity monotonically decreases w
temperature, while atT.Tc it increases monotonically, an
at T5Tc , the chain becomes disconnected from the s
strate.

Three of us~G.P.T., A.V.S., and A.V.Z.! acknowledge
partial support of INTAS-96-158. Work at Los Alamos
supported by the U.S. DOE.
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FIG. 6. Thermal conductivityk against the mean temperatureT
of the chains with the soft BSW~curve 1!, soft SG~curve 2!, and
hard SHG~curve 3! on-site potentials.
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