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Dependence of thermal conductivity on discrete breathers in lattices
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We study the properties of heat conduction in chains of coupled particles subjected to different anharmonic
on-site potentials. Particular emphasis is placed on the role of breathers in saturation of the thermal conduc-
tivity for chains with hard anharmonicity. When the chain particles are subject to on-site potentials with soft
anharmonicity, we find a characteristic temperature, below which the conductivity decreases but while above
which it increases.S1063-651X99)05912-7

PACS numbds): 05.45—-a, 05.70.Ln, 44.106:i, 05.60—k

A general and challenging problem is to understand maclate the energy of thermal fluctuations and inhibit thermal
roscopic phenomena and their statistical properties in termigansfer. A more detailed investigation of the behavior of the
of deterministic microscopic dynamics and, in particular, tothermal conductivity with temperature in the FK model is
connect macroscopic irreversibility with time reversible evo-also presented in our study.
lution of a system of interacting particles. There is still great We consider the Hamiltonian of harmonically coupled
interest in the properties of heat conduction in a chain offarticles subject to an on-site potential in the following di-
(linearly or nonlinearly coupled nonlinear oscillators. Re- Mensionless form:
cent works[1-5] have aimed at obtaining, on a microscopic
level, the Fourier heat law, according to which the heat flux
through the chain is proportional to the temperature gradient
(normal thermal conductivily It is known that in integrable

systems such as a harmonic chgsi, the Toda lattice, and \here an overdot stands for differentiation with respect to
others[4] a temperature grgdlent is not formc_ed and th?re.for%imensionless time and u,=u,(t) is the displacement of
they do not obey the Fourier heat law. Nonintegrability is athe nth atom of the chain from its equilibrium position. The
necessary condition for a fini@orma) thermal conductiv- 5 _site functiorV(u) is normalized byv”(0)=1, so thatw,

ity. However, as shown recently for the Fermi-Pasta-Ulamyeasyres the dimensionless eigenfrequency of a particle in
[1] and the diatomic Toda cha[i5], the existence of a tem- e on-site potential. Besides the harmonic case With)

perature gradient does not necessarily mean the validity of \;2/> thjs report will describe results for the sinh-Gordon
the Fourier law. The nonintegrability of these systems 'ead%SHG) potential

to formation of a linear temperature gradient, but with a heat
flux proportional not toN~ 1 but toN~ ¢, 0<a<1, with N V(u)=coshu—1 )
the chain length.

Other one-dimensional nonintegrable systems exist, ho
ever (so-called ding-a-lind7] and ding-dong 8] models,
that have a finite thermal conductivity. Recert®}, Hu, Li,
and Zhao have found that in the Frenkel-Kontord¥) 1
model a linear temperature gradient is formed and the heat V(u)==(1—secRhu), (3)
flux is proportional toN . Their general conclusion is that 2
the phonon-lattice interaction is the key factor in the Fourier
law, no matter whether the interparticle coupling in the FKrepresenting a family of reflectionless potentig$ and the

1., 1
H=2 |50+ 5 Una— U+ odV(un) |, (1)

With hard anharmonicity, and two potentials with soft anhar-
monicity: the bounded single-welBSW) potential

model is harmonic or anharmonic. periodic sine-GordoSG) potential(in the FK model
The lack of details on the heat conduction mechanism in
chains with on-site potentials provides a motivation for the V(u)=1-cosu. (4)

present work. We will show that the anharmonicity of an

on-site potential is a sufficient condition for finite thermal In order to study the heat conduction in a finite chain
conductivity, no mather whether it is soft or hard. The be-consisting of N particles, we split it into three segments,
havior of thermal conductivity with temperature is studiedusing the lateral segments witly particles as thermal res-
for a number of standard on-site potentials, and we show thairvoirs (baths or thermostat®f the the Langevin type with
hard on-site anharmonicity leads to conductivity decreaselifferent temperature¥ . (left) andT_ (right). We choose
with temperature. We explain this effect through nonlinearthe Langevin reservoir because of the recent s{@]yac-
localized mode(discrete breathgrformation, that accumu- cording to which the Noseloover thermostaf10] appears
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FIG. 1. Profile of local temperatufE, in the chain subjected to
the SG potential =300, Ny=50, T, =0.6, andT_=0.5).

not to be appropriate for simulations of the thermodynamic
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TABLE I. The thermal conductivityx calculated according to
Eq. (5) against the internal segment lendth (T, =0.6 andT_
=0.5) and the conductivitkgk calculated according to the Green-
Kubo formula(6) at T=0.55 for the chain with the three on-site
potentials given by Eqg2), (3), and(4).

on-site K K K K KGK
potential  N;=50 N;=100 N;=200 N,;=400
SHG 10.17 10.90 10.86 11.14 10.60
BSW 27.50 32.30 33.44 33.65 36.51
SG 17.33 17.43 18.26 18.31 17.66
1 t
k=Ilim lim — | c(7n)dr, (6)
t—oe N—oo T2J0

limit. The corresponding equations of motion have the stan-

dard discrete form

Un=Up41—2Up+ Uy 1=V (Up)
for the internal segmennE=Ng+1, ... N—Ng) and
un=Un+l_2un+un—1_V,(un)_'yun"_gr?
for the lateral segments with the+" superscript forn
=Np+1,...N=Ny and the “=" one for n=N—Ng

+1,... N. Here a prime stands for differentiatiop,is the
relaxation coefficient, and,, is white noise driving the lat-

where c(t)=(J(0)J(t)) is the correlation function of the
total heat fluxJ(t) == ,j,(t).

In order to find the functiorc(t) in Eq. (6), we have
considered a finite cyclic chain consisting lf=2000 par-
ticles, embedded into a Langevin bath. After the thermal
equilibrium with the thermostat has been reached, the ther-
mostat was removed and then the dynamics of the isolated
chain was studied. To increase the accuracy of finding the
correlation function, its averaged value was taken over 500
different realizations of initial thermalization of the chain.
The numerical integration of the chain dynamics has shown
that for each of the potential®), (3), and(4) at all values of
temperaturelT >0, the correlation functiore(t) in the limit

eral segments and defined in the standard fluctuatiory, . tends to zero with exponential decay as illustrated in

dissipation manner &, (t))=0, (&, (t1)&, (t,))=0, and
(& (t) &(t2))=2yT+ 64 8(t1—to).

Fig. 2. The infinite integral in the Green-Kubo formul@
converges and this results in finite values of thermal conduc-

The system of equations of motion was integrated numeritivity. The two ways of finding« give very similar values as
cally. After thermal equilibrium was reached, the local tem-ijllustrated by Table |I.

perature profiIeTn=Iime(1/t)f})Uﬁ 7)d7 and the local
heat quxJn=IimHm(llt)f},jn(r)dr through the chain were
established, wherg¢,=u,(U,_;—Up+1)/2. The valueswq
=1, y=0.1, Ny=50, andN= 150, 200, 300, 500 were used
and the time of numerical integration was 1.

This method of thermalization allows us to introduce the

Consider now the dependence of the heat fluan the
temperature differenceAT=T,—T_. To this end, we
choose a finite chain dfi=300 particles with zero tempera-
ture at the right end of the chainT(=0), so thatAT
=T, . The heat flux can be defined in another way, namely
as the energy released at the right lateral segment due to the

boundary conditions properly. The local temperature profiledampingy: J= '}/Ew:NfN(ﬁlTn- The numerical integration

T, depicted in Fig. 1 shows that in the internal chain segmengf the equations of motion confirms thatequals the heat
No<n=N-—N,, transfer of thermal energy takes place. The

temperature gradient has a linear form and the local heat flux

does not depend on the specific chain site, 1g=J. This
allows us to define the thermal conductivity

k(N1)=INy/(Tng 1~ Tn-n,) ©)

with N;=N-—2N, being the length of the internal segment.

The dependence &f on N, for the three anharmonic on-site
potentials(2), (3), and (4) is given in Table I. As follows

from this table, for each anharmonic potential, doubling the

length of the internal segment; practically does not change
x(N4). Therefore, there exists a Iimik=|ileHwK(N1)
corresponding to the thermal conductivityat the mean tem-

peratureT = (T, +T_)/2. Note that the thermal conductivity
can also be found through the Green-Kubo formula

0 100 200 300

t

FIG. 2. Time dependence of the natural logarithm of the corre-
lation function c(t) calculated at the mean temperature (T,
+T_)/2=0.55.
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FIG. 3. Dependence of the heat flion temperature difference . . .
AT=T,—T_ in the chains with the harmonicurve 1, the soft FIG. 4. Power spectra of thermal fluctuatidb&w) in the chains

BSW (curve 2, soft SG(curve 3, and hard SHGcurve 4 on-site Witlhf harm??ki]c and r;ard afmh;ahrmr(:nic on?siteh p.otentiéii)sAnalyfti-
potentials =300, No=50, T, =T, andT_—0). cal form of the spectrum for the harmonic chéiirve 3 given for

comparison with a typical realization of the spectrum computed
. . . R numerically at temperatur@=0.05 for the chain with the hard
f_:_ui( n tple_ ,I\Imemal region of the chaind,=J, n=No SHG anharmonicitycurve 2. (b) A typical realization of the spec-
T 0- — trum computed numerically at=2.05(curve 3. Line 4 represents
The dependence of the heat fldxon the temperature the breather frequenay,(T) that corresponds to the position of the
differenceAT is presented in Fig. 3. As can be seen frompeak in the spectrum.

this figure, the magnitude of the heat flux increases mono-

tonically with temperature. In the chain with the harmonic .41y coincides with that in the chain with the harmonic po-
on-site potential the heat ﬂ.ux is p_roporuongl to temperatureyeig| (compare curves 1 and.However, for high tempera-
Thls is due to the fact that in the Ilne_ar chain the Fourier law e (T=2.05), the spectrum is shifted to the high-frequency
iS not establlshed but the chain attains througheutept in region as illustrated by Fig.(8). In addition to phonons, in
the contact poinfsthe average contact temperatyiéd. The g spectrum there exist high-frequency localized nonlinear

anharmonicity of the potential results in slowing down theoscillations, discrete breathers, whose frequency exaeeds

increase of the heat flux. For the potentials BSW and SGrhe energy of a breathd®, monotonically increases while

with soft anharmonicity, this decrease becomes maximal gfs igth D decreases with increase of the frequency. From
AT=0.5 that corresponds to the binding energy of the chalqhe equationE,(»)=2TD(w) one can determine the fre-
with the substrate formed by the on-site potentials. However, ency wy(T), at which the energy distribution in the

further increase of temperature leads to increasing the spegfleaiher ocalization region corresponds to the energy level
of growth: Disconnection of the chain from the substrate

. . o i of thermal fluctuations. The breathers with this frequency
pc?utrsdang n ﬂﬁ Tlgr(lj—_;fempetrabtu;]e I|.m|t.the bcham ge.cort?]%hould have the greatest probability of formation in the ther-
Ic:‘sr?a?new.ith (t)rzgphz‘radyanlhaerrrir(])nicepg;g(r)l[[(éls). ?—|§reervzt A'_Ir_' €malized chain. Therefore, as clearly demonstr_ated by Fig.

iy ' 4(b), the power spectrum has a maximum at this frequency.

— the heat fluxJ tends to a finite value: a saturation oc- At T=2.05 more than half the total energy is in thermal
curs because the magnitude of the flow cannot exceed a cejscillations with frequencys> w;. Thus, one can conclude
tain maximal value. that there is a large contribution of breathers to thermal ca-

In order to Clarify the saturation effect in chains with hard pac|ty of the chain at h|gh temperatures_ For hard anharmo-
anharmonicity, we note that in addition to extended Iinearnicity of the on-site potential, the breathers appear to be
small-amplitude oscillations(phonong, nonlinear large-  strongly localizedstandingoscillations. They cannot contrib-
amplitude strongly localized modesso-called discrete yte to transfers of thermal energy and, as a result, thermali-
breathers; for a review see R¢L1]) can exist in the chain. zation of breathers results in an effective reduction of ther-
In order to investigate the role of breathers on the thermaia| conductivity of the chain.
conductivity, we calculate the power-density spectra of ther- |n order to show the presence of high-frequency standing
mal fluctuations for different types of anharmonicity. For thepreathers in a thermalized chain, let us consider the time
chain with the harmonic on-site potential, this spectrum iseyolution of the thermalized chain with the initial tempera-
given analytically: E(w) = 2w/ (0’ — w§)(wi— 0®), o  ture T=2.05. We chose a finite chain consistingh# 500
<w<wj, Wherew; is the upper edge of the phonon band, particles and place it in the Langevin heat bath. After the
wi=w§+4, and depicted by curve 1 in Fig(a} thermalization of the chain is complete, we removed the

This figure also represents the typical power spectra calbath, but introduced some damping at the chain di@%
culated numerically in the case of hard anharmonicity giverSuch a numerical integration of the equations of motion has
by Eqg. (2). At low temperature T=0.05), the spectrum of shown that after absorption of athobile excitations by the
(small-amplitud¢ anharmonic thermal fluctuations practi- chain ends, in the internal segment of the chain, a standing
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FIG. 5. Formation of a standing breather from thermal fluctua-
tions of the chain. Initially(at t=0), the temperature of the chain 00 05 1 15 e
was T=2.05. In order to avoid reflection effects, the chain ends T

include damping =500, Ny=50, andT,=T_=0).
FIG. 6. Thermal conductivitx against the mean temperature
f the chains with the soft BSWturve 1), soft SG(curve 2, and

breather still appeared to be present as illustrated by Fig. 5, ) ;
P P y 9 ard SHG(curve 3 on-site potentials.

this is in agreement with Peyrard’s stuf3].

Dependence of the thermal conductivikyon the mean
temperature of the chaih= (T, +T_)/2 is presented in Fig.
6. In the chains subjected to the BSW and SG potentials fo
T<0.55 the conductivityk monotonically decreases with in-
crease of temperature. At=0.55, a minimum is reached

and further temperature increase leads to augmentatian of tivity tends monotonically to zero with increasing of tem-

At T=0.55, the energy of thermal fluctuations becomes,o oy re This phenomenon is connected with thermalization

greater than the binding energy of the chain with the sub-Of high-frequencystandingbreathers. When the chain par-

strate. The chain becomes increasingly disconnected fro'{i‘cles are subject to houndedon-site potentialwhich nec-

the substrate, so that in the limit of high temperatures Itessarily contains soft anharmonigitthere exists a critical

aﬁquires tr?e iﬂﬁnite ck?nguc;ivi;y of an isolatelddharmomcvalue of temperatur&. corresponding to the binding energy
chain. In the chain with the hard SHG potential, disconnec ¢ . icl ith th e ial AtT
tion of the chain from the substrate is impossible. In this_ the particles with the on-sitésubstrate potential. At

o . i <T,, the thermal conductivity monotonically decreases with
case, the contribution of high-frequency standing breathers.,_° y y

in the chain thermalization, which prevent the heat Conduc_emperature, while &[>T it increases monotonically, and

. S o P .“at T=T., the chain becomes disconnected from the sub-
tion, rapidly increases with temperature. As a result, the IN<trate
crease of temperature results in a monotonic decrease of the =

thermal conductivity;x—0 if T—e. This result is in good Three of us(G.P.T., A.\V.S., and A.V.Z.acknowledge
agreement with the effect of saturation of heat conductiorpartial support of INTAS-96-158. Work at Los Alamos is
demonstrated by curve 4 in Fig. 3. supported by the U.S. DOE.

In conclusion, we have shown that a chain of coupled
articles each of which is subject to anharmonicon-site
gotential, independently of the sign of anharmonicity, has a
finite (i.e., normal heat conduction. In the presence of hard
anharmonicity(as in the SHG modgl the thermal conduc-
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