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Numerical evidence for the existence of a low-dimensional attractor and its implications
in the rheology of dilute suspensions of periodically forced slender bodies
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We provide numerical evidence for the existence of a low-dimensional chaotic attractor in the rheology of
dilute suspensions of slender bodies in a simple shear flow. The rheological parameters which characterize the
stress deformation behavior of the suspension are calculated based on appropriate averages over the orientation
vectors of the slender bodies. The system considered in this work, therefore, exhibits chaos in experimentally
measurable averages over a large number of uncoupled chaotic oscillators. The numerical demonstration that
these parameters may evolve chaotically may thus have important consequences for both chaos theory and
suspension rheology. We also provide plausible explanations for the existence of a low-dimensional chaotic
attractor in the rheological parameters in terms of the expressions for the rheological parameters and the
coupling between individually chaotically evolving orientations and the expressions for the rheological param-
eters.[S1063-651X99)05712-9

PACS numbds): 05.45—-a, 05.70.Fh

INTRODUCTION of chaotic attractors for the evolution of the orientation vec-
tors. For the case of two-dimensional time-dependent flows,
The importance of the field of suspension rheology, botrHheir equations for the evolution of the orientation vectors
as a scientific discipline and for its various technologicaldecouple, and hence chaos is not possible. For the three-
applications, has been widely recognized. The properties glimensional flows they studied, the equations of the evolu-
fluid suspensions of small particles depend generally on théon of the orientation vectors can be written in terms of a
nature of the fluid, the properties of the suspension particlegundamental matrix governed by a linear set of equations
and the degree of isotropy of the suspension. For examp|gylth periodic coefflc'lt_ants, and hence these equations do not
the physical properties of heterogeneous media like metdHloW for the possibility of chaos.

alloys, composites, polymer solutions, electrorheological flu- D_emonstratlog of IChaOt'Ct dyngmlcs In suspension rhetol- i
ids, etc. are influenced mostly by the properties of the conldY IS @ recent deveiopment, and remains an area as yet no

stituent materials and the manner in which they are distriblcully explored. Ramamohaet al. [11] were the first to show

uted. In order to obtain a wide variety of properties with thethat the orientation of slender rods in a simple shear flow
) . . o y ot prop . —under the action of an external periodic force varies chaoti-
same constituent materials, it is thus necessary to obtain

d . f ori ion distributi f th . (‘?ally for a certain range of values of the parameter corre-
wide yarlety of orientation |str[ L!tIOI’lS of t e COHS_“tuer.‘t sponding to the external force. They also showed that visco-
materials. For a complete description of the orientation dist,atric material functions, which are indicators of the

tribution of the particles in a suspension, one must considegg|lective behavior of all the particles in a suspension, also

many influencing factors, such as the nature and type of thexhipit chaotic dynamics when the orientations of individual
underlying fluid or flow, particle-particle interactions which particles evolve chaotically.

are a result of the disturbance that the presence of each par- |n this work we explore in more detail certain aspects of
ticle in the suspension produces on all the surrounding patthe chaotic behavior of the rheological parameters that seem
ticles in the medium; and the effect of Brownian diffusion to have broader implications for the collective behavior of
resulting from the bombardment of the suspension particlespatially extended dynamical systems. The system consid-
by the surrounding fluid molecules. A number of models ofered, namely, the system of a periodically forced suspension
suspensions incorporating one or more of these factors haw# orientable particles in a simple shear flow, is a physically
been proposed to describe the orientations of the particles irealizable example of a spatially extended system in which
a suspension, and various applications of these models hauedividual oscillators may evolve chaotically. The most
been reported in the literatuf@—5]. Szeri and co-workers popular model systems for studying the time evolution
discussed the possibility of periodic and quasiperiodic attracmechanisms of spatially extended systems are coupled map
tors for the orientation vectors in two-dimensional time- lattices, cellular automata, and lattices of coupled ordinary
dependent flows and in three-dimensional recirculating flowndifferential equations. However, even for these simple sys-
fields in a series of papef§—10. The type of flow fields tems little is known about the behavior of spatial averages
they considered in their work do not allow for the possibility when the local dynamics is chaotic. Two types of behavior
have been noted; in one class of oscillators these averages
settle down to stationary behavior, and in the other they ex-
*Author to whom correspondence should be addressed. FAXhibit robust fluctuations. The system we consider in this
0471 490186; 0471 491712. work represents an example of a spatially extended system of
Electronic address: ram@cstrltrd.ren.nic.in individually chaotically varying oscillators, for which suit-
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able spatial averageSheological parametersalso evolve In the above equationg and ¢ are the polar and azimuthal

chaotically. angles made by the unit vector which represents the orienta-
Spatially extended dynamical systems have recently betion of the particle at the instant A typical slender rod has

come a subject of extensive research. There are only a felength 2 and radiusa. k;, k,, andk; are the components of

results in the literature, even for these simple systems, corthe orientation-independent part of the external torque «cand

cerning the behavior of the spatial averages of such systenis the frequency of the external driver. The undisturbed ve-

when the local dynamics is chaotic. The possibility of thelocity profile of the flow is chosen ag = yyi wherey is the

spatial averages of individually chaotically varying oscilla- shear ratey is they coordinate, andlis the unit vector in the

tors also varying chaotically has only recently been dis-x direction. Since the rheological parameters of suspensions

cussed12]. In this paper, we present numerical evidence forof orientable particles are generally determined by the orien-

the existence of a low-dimensional chaotic attractor for theations of the particles alone, and are unaffected by their

rheological parameters of the suspension, with the number dgafanslatory motion, we choose a coordinate system which

orientation vectors varying from 16 to 484. The variation of moves along with the particle and thus neglect any transla-

the number of the orientation vectors from 16 to 484 impliestory motion of the particle. The singularity in E¢L) for ¢

that the dimension of the system considered varies from 3#hay be removed for computational purposes by taking

to 969. This is because the evolution of each orientation= ¢ sin 6. The above equations are dimensionless and scaled

vector is governed by a set of two coupled nonautonomouas follows:

nonlinear ordinary differential equations. We provide nu-

merical evidence that the invariant properties of the attractor Length |

remain unchanged even when we increase the number of

! ) . i Velocity |;
orientation vectors. We present plausible explanations for 4
these results in terms of the forms of the averages represent- V2
ing the rheological parameters and the nonlinear coupling of Force 8 1
the averages and individual orientations. R
3v2 " Min(zr)
CHAOS IN SUSPENSION RHEOLOGY Torque 8 1
o — ¥y~
We use the results of Batcheldr3], as modified by Berry 32 In(2r)
and Russ€]14], for the equations governing the dynamics of Time
a slender body in an infinite expanse of fluid. These equa- =
tions have physical meaning in the case of dilute suspensions Y

in which particle-particle interactions are neglected. Physi-

- . . 3 < ‘ TR . . i i
callyt)thlsdcorrgsp?nﬁs to thel I|m_ntI ;1’ where .h ';Htgg where 7 is the solvent viscosity, is half the length of the
humber density of the particles in the suspension ., rod, andr is the aspect ratio of the particle. In this system the
half the length of the slender body. Since we neglect particle

icle | i the rheological ; : orientation of the particles evolves chaotically for certain
particle interactions, the rheological parameters represent aYénges of values of the parametkis k,, andk; and initial
erages over the instantaneous orientations of the particl

I The rheoloaical i h d d Tdnditions ofd and ¢ [11]. The system shows a quasiperi-

alone. 1he rheclogical parameters snow no dependence UpQly;. yansition to chaos in this range. In this system, transient
the spathl d|str|bpt|on of thg particles in the Q|Iute limit, chaos also exists, originating from the collision of a stable
sihce partlcle-p_artlc_le Interactions are not tak_en_ Into account, ,, -haqtic attractor with a chaotic attractor. The existence of
Hence the spatial distribution of the particles is immaterial agch complex behavior in this system, which is the simplest
long as the distripution IS uniform with parucle; per unit ¢ 5 class of systems, is indicative of ,the possibility for the

volume. The particles are assumed to be sufficiently smal lass of systems considered to exhibit a wide variety of cha-

that the poundaries O.f thg physical apparatus containing thgtic properties. Further, this system falls into that class of
suspension do not significantly affect the rheology of thesystems for which fluctuations in averages may exist, as dis-

_bulk;])f tze suspensiog. :]'helexperifmentzlill fea?il?ility Odetu?%/'cussed by Bunimovich and Jiafg?]. Chaotic dynamics ex-
Ing the dynamics and rheology of small particies under ibited by similar systems shows potential for practical ap-
effect of constant external force fields has been demonstrat ications like particle separation based on shE2® and
by a number of authorgl5-20. The extension to periodic o : :

N the possibility of intelligent rheologj22].
external forces, as studied in this paper, should not pose any Since the results of computations of the evolution of the

ad(EIJln(énaltﬁﬁlculnesd._t_ . imple shear fl th above system of equations are not easily accessible to experi-
nder these conditions n a SImple shear Tow, e equag, q i, verification, the effects of these chaotic orientation

tions governing the dy”‘?‘m'cs of a periodically forced Slenderdistributions on rheological parameters like the viscometric

body in spherical coordinates alrkl] material functions were also studi¢®3]. The apparent vis-
cosities and normal stress differences are important material
functions which characterize the rheology of a suspension in
shear flows, and which can be measured by a viscometer. For
periodically forced dilute suspensions of non-Brownian slen-
der rods in a simple shear flow, these material functions have

1) expressions in terms of certain orientation averages as given
below[notations as in Eq1)] [23]:

6=v2 sin 6 cosé sin ¢ cose+ (k4 cos@ cosg

+k, cosé singp— ks sinf)coq wt),

sing CcoSs¢
Tsing K

d=—v2sirt ¢+| —k 25

cog wt).
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[ 71]=T7%sin*0 sir? 2 )+ 300/2k, cog wt) Here, the discretization of th@¢ space is used to distribute
_ _ o the particles initially, and this distribution becomes closer to
X[(sin*@ sing cos'p)—(sindsing)] the continuous uniform distribution as we increase the num-

ber of orientation vectors. The evolution of each of the dis-

. 4 .
+75/2kz codyt)(sin 05|n22¢)+75f2k3 cog wt) tributed particles was then calculated using the evolution

X (sin @ sin 20 sin 2¢), (20  equations(1) with a standard Runge-Kutta method with an
adaptive step sizE25]. Each one of the orientation averages
[ 7,]="T75sin* 6 sir? 2¢) + 150/2k, coq wt) at timet is calculated using the orientation description of the
) ) 81 particles at time according to Eq(6). The numerical
X(sin*6 sin 2¢ cos¢) + 300/2k, cog wt) integration of Eq.(1) in single precision was shown to be
X[(SiMP 0 sit b cose) — (sin 6 coseh) ] equivalent to treating Eq€1l) as Langevin equations with

weak Brownian motion, as Kumar was able to reproduce the

+ 75v2k5 cog wt)(sin 4 sin 26 sin 2¢), (3) results of Leal and Hinch3] (also see Ref[23]) for weak
Brownian motion. Note the nonlinear coupling between the

[ 71]=150 (sin* 6 cog ¢ sin 2¢) — (sirP 6 cos 4 sin 2¢)] expressions for the rheological parameters, namely @is.
] ] (5), and the equations for the evolution of the individual
+300/2k, cog wt)[(sin*f cos’p) — (sin 6 cose) orientation vectors, namely, Eq&l). We note that both of
— (sin 6 cos¢ cog 6) ]+ 300/2k, oS wt) these sets of equations_conta_in the paramd¢§r§<2, and
ks, and hence the nonlinear interaction between these pa-
X[(sin®6 sin ¢ cog ) —(sind sin¢p cos )] rameters can result in a low-dimensional chaotic attractor for
) the rheological parameters.
+300v2k; cod wt)[(sin’ g cos’ ¢ cose) +(cose) As a first step in analyzing the effects of the chaotic dy-
—(co$h)], (4) namics on the rheology, in this work we have studied a sus-
pension of slender rods with the number of directions of
_ IV i _lei ; alignment varying from 16 to 484. Kumar and Ramamohan
[72]=150(sin B sirt'e sin 2¢) <S|n20cos°’05|n 2¢)] [23] provided numerical evidence for the existence of chaos
+ 30012k, cog wt)[(Sinté sirf¢ cose) in the rheological parameters whip=k;=0 andk,, vary-

ing in the range &k,=<0.30 in steps of 0.01, when the par-

—(sin6 cos’¢ cos¢)]+300/2k cog wt) ticles are aligned in 81 directions. However, Kumar and Ra-

><[<sin303in3¢>—<cos¢9)—<sinasin¢>co§9)] mamohan[23] did not provide numerical evidence for the
existence of a low-dimensional attractor in their work.
+300/2k5 cod wt)[(Sir?  sir? ¢ cosh) + { cosh) Hence, in this paper, we consider the typical casgsks

=0 andk,=0.21, withw=1. We studied the time series of
[71], [72], [#m1], and [7,] by taking a minimum of

+0.4d i i inq ti
The angular brackets represent orientation averages JF(.loz. ) number of data points with asamp""!g ting,
which is chosen such that the autocorrelation time lies be-

guantities over various possible orientations of the particles. 1 and 10. wheris th imate di : fth
Kumar[24] studied the case when the particles are aligned i \Wween L an , WNEIEIS the approximate dimension ot the
81 various directions, and evaluated the averages by di ittractor of the time series of the appropriate rheological pa-

o ; ; ; ameter. In order to eliminate the possibility of any transients
glrslt ézi:]rlggt;]f;efilsggci]m;? 5 tl)yg[r;jos.aTms gj]s t\;\?ﬁ e?rg one byirn the chaotic case, we eliminated the first 15000 points of
y YAy ey y

the Poincaresection from the time series. All the tests were
a=costb, for i=01,...,9 performed using the software “Chaos Data Analyzer Profes-
sional Version 2.1” of the Academic Software Library of the
and American Physical Society.

—(cos'h)], )

bj=—-1+j(—cosm+cos0/9, for j=0,1,...,9,
RESULTS AND DISCUSSION

and the rang¢0,2m] of ¢ into nine equal intervals of width  \ye estimated the correlation dimension of the attractor
2m/9. He started off from a set of 81 particles uniformly  ging the Grassberger-Procaccia algorithm with a minimum
distributed in phase space initially with one particle in each ¢ 1o+04 points [26,27 (Fig. 1). We also performed a
bin. Each particle, in principle, can represent an infinite UMty e nearest neighbors test, and found that after an embed-
ber of particles aligned in a common direction. #(¢;)  ging dimension of 34, the number of false nearest neigh-
describes the particle orientation at time for i, j bors reduced to a plateau near z¢Fig. 2. We also per-

=1.2,...,81,then the orientation average &(6,#) al  formed a nonlinear prediction test, and found that with an
time tis given by embedding dimension of around 5 or 6, the nonlinear predic-
_ _ tion error decrease(Fig. 3). We also performed a principal

(B(6,¢))= JJB(0,4)3(6-6) (¢~ ¢)d(cosb)d¢ component analysis of the time series for each of the four

JJ8(6—0;)5(p— ¢;)d(cosh)d¢p rheological parameters, and found that there were about three
9 9 principal eigenvalues of the correlation matfiig. 4). Upon
_ iz B(6;,d). (6) increasing the number of initial orientation vectors, we found
8li=1 =1 b that the fractal dimension of all the rheological parameters
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FIG. 3. Plot of the average prediction error of the time series of

_ FIG. 1. Plot showi_ng the determination of the correla_tion dimen-the parameteli,] when the particles are aligned in 400 directions
sion of the rheological parametér;] when the particles are . k;=k3=0, ky=0.21, andw=1.

aligned in 400 directions fok;=k3;=0, k,=0.21, andw=1.

initial conditions of[ 711, [ 72], [ #1], and[ »,], were more
settled down to values between 3.5 and &. 5). All the 1 joqq similar and positive. The Lyapunov exponents and

tests were performed on each of the four time series, and t%rrelation dimension of these parameterskior0.21 when

results were consistent. . : . : ; : :
. . e particles are aligned in 400 directions are given in Table
We have treated the case of the number of directions onh P 9 9

glignmgnt equal to 400 separately, and have studied this case Some typical phase-space plots, the plots of time deriva-
in detail for each parameter. In each case, we observed th Le X' versusX at each data point; Return maps, the plot of

there were no sharp peaks n the probability dlstrlbutlon,.ancg\]/e values of the time series versus the previous value of the
that the data could not be fitted by lower order polynomialSy;e series when its derivative is equal to a constant for the

The power spectra of the data, which show broadband noisg, o gical parameters when the particles are aligned in 400

also confirm the existence of the chaos in the rheologicalj e tions are given in Figs. 6 and 7. The range of the values
pafameters. We also observed th:_;\t_the Lyapunov expone xplored by 7,1, [ 7,], [71] and[ 7,] remains more or less
which is a measure of the sensitivity of the system to its

1

% False nearest neighbors
Eigen values

Embedding Dimension

Number

FIG. 2. Plot of percentage false nearest neighbors of the param- FIG. 4. Plot of the eigenvalues of the correlation matrix of the
eter[ »,] with embedding dimension when the particles are alignedparametef 7,] when the particles are aligned in 400 directions for
in 400 directions fok,;=k3=0, k,=0.21, andw=1. ki=k3=0, k,=0.21, andw=1.
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38 |- 4

36 .

Correlation Dimension

34 .

32 L : 1 L i L ! " | s
100 200 300 400 500

o

Number of directions of alignment mean. The remaining set of orientation vectors do not con-

il

| 4
J

0 Iy 50

FIG. 6. Phase-space plot pf;;] when particles are aligned in

400 directions fok; =k3;=0, k,=0.21, andw=1. Plot of[ ;] vs
derivative off n,].

tribute significantly to the values dfy.], [ 7,], [71], and

FIG. 5. Plot of the correlation dimension fp#, ] as a function [ 7] and can be considered as contributing a noise term to

of the number of directions of alignment of the particles kar  the rheological parameter. This coupled with the structure of

= k3: 0, k2: 021, andw= 1.

the attractors observed for aligned distributions reported in

Ref. [28], led probably to only a fraction of the orientation
same with an increasing number of initial orientation vectorsvectors playing significant roles in the final attractor. This
Figure 8 shows a plot dfy, ] versug »,] for different num-  fraction of significant orientation vectors thus may be gov-
bers of initial orientations, indicating that the range of valueserned by a system of the dimension observed in this work,
explored by ;] and[ ,] remain approximately the same. while the remaining directions contribute only a noise term.

We generated six sets of surrogate data for the parametéfote the nonlinear coupling between the expressions for the

[#1]. This was done by randomizing the phase of the timerheological parameters, namely, E¢B—(5), and the equa-

series such that the resulting data had the same power speisns for the evolution of the individual orientation vectors,
trum and autocorrelation, but a different probability distribu-namely, Eqs(1). We note that both these sets of equations
tion. We observed that the mean of the dimension of the sefontain the parameteks, k,, andks, and hence the non-

of surrogate data waso3away from the dimension of the
original data, and the dimension of the data was in all cases
lower than the dimension of the surrogate data sets, and thus
the existence of nonlinear structure is statistically significant.
To provide some reasoning for the reduction of a system
of 949 dimensions to an attractor of about 3.6 dimensions,
we plotted[ 71], [ 2], [ 71], and[ 7»] as functions ofg and
¢ (Fig. 9). We observe from these figures that there are a
number of peaks and valleys in each of the plots, so that only
a fraction of the orientations at any instant contribute signifi-
cantly to values of 1], [ 721, [ 71], and[ 5] away from the

TABLE I. Lyapunov exponents and correlation dimension for
the parameter§ 7,1, [7.], [71], and [7,] for k;=k3=0, k,
=0.21, andw=1 when the particles are aligned in 400 directions.

[71] [ 72] [71] [72]
Correlation 3.620 3.557 4.167 3.234
dimension
Lyapunov 0.276 0.150 0.250 0.208
exponent

50

]

=]

0 50

Previous [n,]

FIG. 7. Return map of ;] when particles are aligned in 400

+0.007 +0.006 +0.006 +0.007 directions fork;=k3=0, k,=0.21, andw= 1. Plot of[ ;] vs the

previous value of ;] when its derivative is a constant.
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sions under conditions in which individual particles show
60 - chaotic dynamics provide an excellent model system to in-
vestigate the various possibilities of spatiotemporal chaos
and nontrivial collective behavior. The system of a dilute
suspensionr(I®<1) of periodically forced weak Brownian
slender rods in a simple shear flow is a model system in
which individual particles in the chaotic parametric regimes
of their orientations constitute individually chaotically vary-
ing uncoupled oscillators. For nonspherical particles, the ori-
entation averages discussed above, over a finite number of
orientations, represent averages over an infinity of oscilla-
tors, since in a distribution with particles aligned in only a
few common directions each particle can in principle repre-
sent an infinite number of particles aligned along the same
direction. Our results presented above show that a system of
uncoupled oscillators can settle down to a low-dimensional
attractor of appropriate averages, and may be the first ex-
ample of a physically realizable system, showing evidence of
low-dimensional chaos in appropriate experimentally mea-
surable averages.

The study of the rheology of a dilute suspension of sphe-
roids in a simple shear flow as a model system to study
aspects of spatiotemporal chaos has several advantages over
other model systems. First, unlike the various systems con-
sidered in the literature, the present system is a physically
realizable one. Second, it allows the consideration of orien-
tation averages over finitely many orientations, in place of
spatial averages over an infinite number of spatial positions,
since, in an aligned suspension, each particle can represent a
large number of particles aligned along the same direction.
Third, the time scale of the fluctuations of the oscillators in
real time can be adjusted to any desired value by suitably
adjusting the shear rateHence if chaos can be shown to be
possible in dilute suspensions of periodically forced sphe-
roids, this may be the first system to demonstrate the possi-
bility of nontrivial chaotic collective behavior. Fourth, in the
case of periodically forced suspensions of spheroids, indi-
vidual particles can, in principle, be controlled to oscillate
chaotically as desiref23,28}; also, for orientation averages,
“the law of large numbers” is not, in principle, applicable.
Fifth, in suspension models of spatially extended systems,
the effect of local correlations can be incorporated by con-
sidering particle-particle interactions, and nearest neighbor

0 5 10 15 20 25 30 coupling can be approximated by weak interactions in suffi-

ciently dilute suspensions. Sixth, the conditions under which

(b) [n4] appropriate spatial averages of a spatially extended system
vary chaotically can be studied by considering the conditions
under which the orientation averages of individually chaoti-
cally varying orientations vary chaotically; numerical simu-
lations for the latter are likely to be simpler than those for
other models considered so far in the literature. Seventh, the
. . _ . dependence of the rheological parameters on the orientations
linear interaction between these parameters can result inj& gych that only a fraction of the orientations contribute
low-dimensional chaotic attractor for the rheological param-gjgnificantly to the rheological parameters. This, coupled
eters[29,30. with the nonlinear interaction between the expressions for
the rheological parameters and the expressions for the indi-
vidual spheroids in terms of the parametkys k,, andks,
provides a plausible explanation for the evolution of the

Suspension rheology provides a standard physically reakheological parameters being governed by a low-dimensional
izable system of a spatially extended system, and suspemttractor.

50 ~

[n 2]

30

10+

(a)

60

n 2]

20

FIG. 8. (8 Plot of [ 1] vs[ 7] when particles aligned in 225
directions fork;=k3=0, k,=0.21, andw=1. (b) Plot of [ ;] vs
[ 2] when particles aligned in 400 directions fkf=k3=0, k,
=0.21, andw=1.

IMPLICATIONS FOR CHAOS THEORY
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FIG. 9. Plot of[ 7,1, [ 7], [71], and[ 7»] as functions of and ¢ for k;=k;=0, k,=0.21,w=1, andt=0.

CONCLUSION rameters which represent averages over a large number of
We have reviewed our results reqarding the existence c)lf_lncoupled chaotic oscillators. The advantages of this ex-
. : 9 g the Oample system over existing ones as an ideal model system to
chaos in the rheological parameters of periodically force d f : | ch d vial coll
dilute suspensions of slender rods or spheroids in simplStu y aspe_cts ° spaﬂotemporq chaos and nontrivial collec-
. ; five behavior have also been discussed.
shear flow. An example of a physically realizable system has
been presented to show that a spatially extended system of
uncoupled chaotic oscillators can exhibit a chaotic nontrivial ACKNOWLEDGMENTS
collective behavior. Numerical evidence for the existence of

a low-dimensional attractor in the rheological parameters has The authors wish to thank Dr. K. Satheesh Kumar and Dr.
also been presented. This system may be the first example 6f V. Anil Kumar for useful discussions. Three of the au-

a physically realizable system which may show low-thors(K.R., K.A., and J.D. wish to acknowledge CSIR, In-
dimensional chaos in suitable experimentally measurable patia, for financial support.
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