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Chaotic alternation of waves in ring lasers

M. Clerc and P. Coullet
INLN, 1361 Route des Lucioles, 06560 Valbonne, France

~Received 14 April 1999!

We intend to give an analytic description of the mechanisms involved in the periodic and chaotic wave
alternation frequently observed in ring lasers. A set of amplitude equations is derived from the Maxwell-Bloch
equations. These equations are studied analytically and numerically.@S1063-651X~99!03112-8#

PACS number~s!: 05.45.2a, 42.60.Mi, 42.65.2k, 42.50.Md
a

th

ve
er
n
ar
te
o
n

he
li

th
a
W
de
he
n
ch

m

r-
ng

-
y

ob-
orm
of
I. INTRODUCTION

Ring lasers exhibit very interesting complex longitudin
dynamical behaviors@1–3#. The difficulty in analyzing these
behaviors using simple equations is related to the fact
secondary instabilities occur very close to threshold@4#. In
ring lasers, theoretical models predict stable traveling wa
close to threshold. Although they are observed in exp
ments, their range of stability is quite narrow. Periodic a
chaotic alternation of right- and left-traveling waves appe
to be a more robust dynamical behavior in such a sys
@5–9#. A good qualitative understanding of the mechanism
alternation was carried out by using Galerkin approximatio
of the equations of Maxwell-Bloch for the classB lasers
@10,11#. In this paper we intend to reduce asymptotically t
Maxwell-Bloch equations to a simple set of quadratic amp
tude equations. This model allows us to study in detail
mechanism of the transition from traveling waves to altern
ing waves and the nature of the chaotic behaviors itself.
first reduce the Maxwell-Bloch equations to the amplitu
equations. The study of the elementary solutions and t
codimension one and~two! bifurcations are considered i
detail. A qualitative comparison with experiments in whi
the detuning is varied is presented.

II. FROM MAXWELL-BLOCH
TO QUADRATIC AMPLITUDE EQUATIONS

The Maxwell-Bloch equations which describe the dyna
ics of longitudinal modes in ring lasers are given by@12#
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whereE, P, andN represent, respectively, the suitably no
malized linearly polarized electric field, the correspondi
polarization, and the population inversion.k,g' ,g i , are the
damping constants,D the detuning,g a constant which char
acterizes the atoms, andD0 the pump parameter. Instabilit
sets in when the pump exceeds a critical valueD0,c
[4g'k/g$11@D2/2(g'1k)2#%.
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Close enough to the onset, the amplitude equations
tained using the standard asymptotic analysis take the f
of two coupled cubic Landau equations. The amplitudes
the right- and left-going waves are defined as
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They obey the amplitude equations
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g i
~ uAu212uBu2!A,
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FIG. 1. Bifurcation diagram associated wit
Eq. ~6!. The solid lines correspond to the bifurca
tions of standing waves (I SW), traveling waves
(I TW), and periodic alternating waves (I PAW).
The dotted line corresponds to the heteroclin
bifurcation which connects the two mixed wave
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For positivem̃, right-going and left-going waves are the on
stable solutions of the coupled equations.

Amplitude equations which contain richer behaviors a
obtained wheng i is of the order«. The bifurcation equations
become quadratic and include then two new amplitudesN0
andN2,
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The quadratic amplitude equations take the form

] tA5mA1eia~N0A1N̄2B!,

] tB5mB1eia~N0B1N2A!,

] tN252N22ĀB, ~6!

] tN052N02$ uAu21uBu2%,

wherem5m̃/g i .
These amplitude equations possess solutions which

easily identified as follows:~i! Traveling waves~TW! which
describe the propagation of a pure left- or right-going wa
e

re

;

~ii ! mixed waves~MW!, which are the superposition of right
and left-traveling waves with different amplitudes;~iii !
standing waves~SW!, which correspond to the superpositio
of right- and left-traveling waves with equal amplitudes;~iv!
periodic alternating waves~PAW!, which represent a time
dependent periodic oscillation of the amplitudes of the rig
and left-going wave amplitudes;~v! chaotic alternating
waves~CAW!, which represent a time-dependent chaotic
cillation of the amplitudes of the right- and left-going wav
amplitudes. TW, MW, and SW solutions have simple an
lytical expression, while PAW can be only obtained appro
mately, close to the parameter value where they bifurc
from SW. CAW are computed numerically. Their existen
can be deduced from general results of the dynamical
tems theory.

Right-going TW solutions are given by

A5R exp@2 i ~m tana!t#, B50, N050, N252R2,
~7!

whereR5m/cos(a) and a similar expression whereA andB
are exchanged for the left-going traveling waves. TW so
tions are stable for smallm, sinceN0 and N1 can be adia-
batically eliminated in this parameter range. The adiaba
elimination fails close toa5p/2 because the real part of th
reduced equation vanishes. TW lose their stability on a l
noted I TW (m5cot2 a) in Fig. 1. This bifurcation leads to
the appearance of MW solutions.

The study of the other solutions simplifies if one uses
following change of variables which reduces the dimens
of the dynamical system from seven to five:A
[R cos(f/2)eiu, B[R sin(f/2)eiw, N2[Seix, N05N, and
z[w2u2x. The reduced amplitude equations then read

] tR5@m1N cos~a!#R1SRsin~f!cos~a!cos~z!,

] tf52Ssin~a!sin~z!12Scos~f!cos~a!cos~z!,

] tS52S2
R2

2
sin~f!cos~z!, ~8!
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] tN52N2R2,

] tz5S cotS f
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2 D sin~a1z!

1
R2

2S
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MW solutions are explicitly given by

A[R cosS f

2 Deiu, B[R sinS f

2 Deiw,

N0[Seix, N252R2,

where
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~9!
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sin~a!2@2m23 cos~a!2#

cos~a!2@3 cos~a!221#
,

tan2~z!5
2m23 cos~a!2

@3 cos~a!221#
,

and z[w2u2x. MW bifurcate from TW on the curvem

5cot2 a and from SW on the curveI SW (m5 3
2 cos2 a). The

bifurcation from SW is a pitchfork bifurcation correspondin
to the breaking of the parity symmetry (x→2x). The bifur-
cation changes from supercritical to subcritical at the tricr
cal point noted bya5arccos(1/A3) andm5 1

2 .
SW solutions are given by

A[R
A2

2
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2
eiw, N0[Seix, N252R2,

where
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2
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f56
p

2
, w2u2x52np.

SW lose their stability in two different ways, as follows.
~i! On the lineI SW (m5 3

2 cos2 a), their instability leads
to the appearance of MW through a pitchfork bifurcatio
The symmetry-breaking amplitudex is defined by
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-

.
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It satisfies the amplitude equation
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H 2

3
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3 J ,

~13!

with h5m2 3
2 cos2 a.

~ii ! On the lineI PAW (m5 3
4 , a>p/4), the instability of

SW leads to a stable limit cycle through a supercritic
Andronov-Hopf bifurcation. The amplitude of the PAW
defined as
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whereV5Atan2a21/2 andh5m2 3
4 .

The two bifurcations interact at the pointm5 3
4 , a

5p/4, where the two bifurcation lines intersect. This po
corresponds to a codimension-2 Bogdanov-Takens bifu
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FIG. 2. Reconstructed phase portrait using t
amplitude of the right-going wave (t55). ~a!
Parameters close to the Bogdanov Take
codimension-2 bifurcation.~b! Parameters close
to the instability line of traveling waveI TW .
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tion. Close tom5 3
4 , a5p/4, the five-dimensional amplitud

equations reduces to a second-order differential equation
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wheree5m2 3
4 , h5a2(p/4), and
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and
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2m

cosa~21 cos2f cos2z!
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~19!
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m cosf cosz

cosa~21 cos2f cos2z!
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The unfolding of this codimension-2 bifurcation contai
SW and MW solutions and the PAW solution and their
furcations. A particularly interesting bifurcation, which fu
ther organizes the parameters space occurs when the
cycle ~PAW! becomes a heteroclinic loop@13# which con-
nects the MW solutions. Close to the bifurcation, the alt
nation period diverges logarithmically. The linem524a,
where the Andronov heteroclinic bifurcation occurs, can
continued numerically as it is shown in Fig. 1. For lar
values of m this line coincides asymptotically with th
TW-MW transition line. The Jacobian operator evaluated
the MW solution, for parameters values corresponding to
Andronov bifurcation, possesses three real eigenvaluesl1 ,
l1, andl2 and a complex onelc . These eigenvalues contro
the topology of the limit cycle and its stability in the neig
borhood of the Andronov bifurcation. In the vicinity of th
codimension-2 bifurcation,l1.0.l1.Re(lc).l2 and
ul1u,ul1u; the PAW solution is stable and connects M
solutions in a monotonous way@see Fig. 2~a!#. Above the
point notedS(m50.856, a50.7553) in Fig. 1 one hasl1

.0.Re(lc).l1.l2 and ul1u,uRe(lc)u. In this range of
parameters, the limit cycle is stable, but it connects the M
solutions with damped oscillations@see Fig. 2~b!#. Thus the
it

-

e

t
e

heteroclinic bifurcation appears to be of Shilnikov type
this case. Since the limit cycle is stable, chaotic behaviors
ruled out in the vicinity of the heteroclinic bifurcation@14# as
Fig. 3 shows. Nevertheless, chaotic behavior character
by the formation of multiple horseshoes can be expected
finite distance from the heteroclinic bifurcation. These ch
otic behaviors are indeed observed numerically@cf. Fig.
3~b!#. Experimentally, under certain conditions periodic do
bling route chaos was observed@5#. By increasing the detun
ing, while fixing the pump parameter, one observes the
lowing scenario: in a very limited range of variation of th
detuning one observes stable traveling waves which bec
unstable and give rise to PAW. If one continues to incre
the detuning, one then observes the transition towards CA
Finally, a too large detuning extinguishes the laser afte
regime in which stable standing waves should be observ

The difficulties in analyzing the Maxwell-Bloch equation
using amplitude equations come from the quasireversible
ture of the problem@15#. The degeneracy of reversible sy
tems is generally removed when the damping and forcing
taken into account. Here we have privileged a sim
asymptotic limit which contains many of the phenomena o
served in real experiments. Some important aspects are m
ing, nevertheless, as, for example, the damped oscillat
generally observed near the laser threshold@5,9#. A simple
way to recover these important aspects consists in cons
ing a more general asymptotic limit in which all dampin
coefficients are of the same order of the distance from thre
old. Within this new asymptotic, the amplitude equatio
read

] ttA5mA2~k1 iD!] tA1eia~N0A1 N̄2B!,

] ttB5mB2~k1 iD!] tB1eia~N0B1N2A!,
~20!

] tN252N22 ĀB,

] tN052N02$uAu21uBu2%.

Obviously these equations contain richer dynamical
haviors since they reduce to the amplitude equations
cussed in this paper in the limitg i1k@g' .

III. CONCLUSION

We have reduced asymptotically the Maxwell-Bloc
equation to a simple set of quadratic amplitude equati
characterized by two parameters. This model allows us
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FIG. 3. ~a! Projection of the Poincare´ map
defined by a constant amplitude of the left-goin
wave (B51) for m54. ~b! Temporal signal of
the intensity ofuAu21uBu2, uAu2, and uBu2 in the
chaotic regime (a50.74, m51).
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study in detail the mechanism of the transition from travel
waves to alternating waves and the nature of the cha
behaviors. The validity of the set of quadratic amplitu
equations includes the classC laser, where we also have
qualitative agreement with the experiments@5#.
un

s

ic
ACKNOWLEDGMENTS

The authors acknowledge Ca´tedra Presidencial and th
EU through a TMR grant FMRX-CT96-0010. One of u
~P.C! acknowledges the support of the ‘‘Institut Universitai
de France.’’
n.

L.
@1# A. Newell and J. Moloney,Nonlinear Optics ~Addison-
Wesley, Redwood, CA, 1992!.

@2# F. Aronowitz, inLaser Applications, edited by M. Ross~Aca-
demic, New York, 1971!, Vol. 1, p. 133.

@3# P. Khandokhin and Ya. Khanin, J. Opt. Soc. Am. B2, 226
~1985!.

@4# J. White, Phys. Rev.137, A1651 ~1965!.
@5# D. Y. Tang, R. Dykstra, and N. R. Heckenberg, Opt. Comm

126, 318 ~1996!.
@6# D. Y. Tang, M. Li, J. Malos, N. R. Heckenberg, and C. Weis

Phys. Rev. A52, 717 ~1995!.
.

,

@7# D. Y. Tang, J. Pujol, and C. Weiss, Phys. Rev. A44, 717
~1991!.

@8# G. Lippi, J. Tredicce, N. Abraham, F. Arecchi, Opt. Commu
53, 129 ~1985!.

@9# N. V. Kravtsov and E. G. Lariontsev, Quantum Electron.24,
841 ~1994!.

@10# H. Zeghlache, P. Mandel, N. B. Abraham, L. M. Hoffer, G.
Lippi, and T. Mello, Phys. Rev. A37, 470 ~1988!.

@11# L. M. Hoffer and N. B. Abraham, Opt. Commun.74, 261
~1986!.

@12# A. E. Seigman,Laser~University Science Books, Mill Valley,



er

6594 PRE 60M. CLERC AND P. COULLET
1986!.
@13# J. Guckenheimer and P. Holmes,Nonlinear Oscillations, Dy-

namical System and Bifurcations of Vector Fields~Springer-
Verlarg, New York, 1983!.

@14# A. Arneodo, P. H. Coullet, E. A. Spiegel, and C. Tress
 ,

Physica D14, 327 ~1985!; L. P. Shil’nikov, Math. U.S.S.R.
Sbornik6, 427 ~1968!.

@15# M. Clerc, P. Coulet, and E. Tirapegui, Phys. Rev. Lett.~to be
published!.


