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Chaotic alternation of waves in ring lasers
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We intend to give an analytic description of the mechanisms involved in the periodic and chaotic wave
alternation frequently observed in ring lasers. A set of amplitude equations is derived from the Maxwell-Bloch
equations. These equations are studied analytically and numer{&l963-651X99)03112-§

PACS numbgs): 05.45-a, 42.60.Mi, 42.65-k, 42.50.Md

[. INTRODUCTION Close enough to the onset, the amplitude equations ob-
tained using the standard asymptotic analysis take the form

Ring lasers exhibit very interesting complex longitudinal : . .
4 . i s . of two coupled cubic Landau equations. The amplitudes of
dynamical behaviorEl—-3]. The difficulty in analyzing these tpe right- and left-going waves are defined as

behaviors using simple equations is related to the fact thal

secondary instabilities occur very close to thresHdl In E 0
ring lasers, theoretical models predict stable traveling waves € ,
close to threshold. Although they are observed in experi- | P |=| 0 |+—=A(T)ellt+wdt=kd
ments, their range of stability is quite narrow. Periodic and N Do.c 2VK
chaotic alternation of right- and left-traveling waves appears 1
to be a more robust dynamical behavior in such a system
[5-9]. A good qualitative understanding of the mechanism of 2Ak .
alternation was carried out by using Galerkin approximations 1~ (k+7v,) +12x
of the equations of Maxwell-Bloch for the cla& lasers 0
[10,11). In this paper we intend to reduce asymptotically the
Maxwell-Bloch equations to a simple set of quadratic ampli- € (L + 00tk
tude equations. This model allows us to study in detail the + WB(T:L‘")G ¢
. .. . K
mechanism of the transition from traveling waves to alternat-
ing waves and the nature of the chaotic behaviors itself. We 1 0
first reduce the Maxwell-Bloch equations to the amplitude 2A K €2
equations. The study of the elementary solutions and their - (K_’_—)HZK - 0
codimension one an@wo) bifurcations are considered in v Y |A|2+|B|?
detail. A qualitative comparison with experiments in which 0
the detuning is varied is presented. , 0
~ g2 0 | 4o(ed). 7
Il. FROM MAXWELL-BLOCH Y —
TO QUADRATIC AMPLITUDE EQUATIONS AB
The Maxwell-Bloch equations which describe the dynam-They obey the amplitude equations
ics of longitudinal modes in ring lasers are given[iy] .
- ela
PE  PE 2P JE A= puA— 7H(|A|2+2|B|2)A,
2 al g |
9B=uB ela(|A|2+2|B|2)B 3
%P P , Y '
— =2y, ——[vi+(1+A)7]JP—gNE (1)
at? ot where
N P _
E=—7||(N—Do)+E(E+nP), = No—Ny o rpe 2 Pe = _aDo= Do)
’ Kty  a’+b? a’+b?
whereE, P, andN represent, respectively, the suitably nor- 3
malized linearly polarized electric field, the corresponding ,_ 9(y.+x) - A(k=—71)
polarization, and the population inversiof.y, ,y|, are the A(y, + ) *+[A(k—y) 1P (y,+x)2'
damping constantg) the detuningg a constant which char-
acterizes the atoms, aml, the pump parameter. Instability Ag(y2—K?)
sets in when the pump exceeds a critical valDg, b= = . (4)
=4y, klg{1+[A%2(y, + k)?]}. My, + )+ [A(k—y,)]%
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CAW
—_—
=1
%’ FIG. 1. Bifurcation diagram associated with
o 7 Eq. (6). The solid lines correspond to the bifurca-
ﬁ tions of standing wavesl §,), traveling waves
o (I+w), and periodic alternating waved plw)-
= PAW i The dotted line corresponds to the heteroclinic
|_ I bifurcation which connects the two mixed waves.
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For positiver, right-going and left-going waves are the only (i) mixed wavegMW), which are the superposition of right-
stable solutions of the coupled equations. and left-traveling waves with different amplitudesii)
Amplitude equations which contain richer behaviors arestanding wavesSW), which correspond to the superposition
obtained whery is of the ordet. The bifurcation equations ~Of right- and left-traveling waves with equal amplitudés)
become quadratic and include then two new amplitudgs ~Periodic alternating wave€*AW), which represent a time-

andN,, dependent periodic oscillation of the amplitudes of the right-
and left-going wave amplitudes(v) chaotic alternating
E 0 0 waves(CAW), which represent a time-dependent chaotic os-
Pl=| 0 |+ EyH(NOJFNZe—isz) 0 cillation of the amplitudes of the right- and left-going wave

amplitudes. TW, MW, and SW solutions have simple ana-
lytical expression, while PAW can be only obtained approxi-
€ € ) ook mately, close to the parameter value where they bifurcate
+ \/—A T= 7t ellt+ogt=kd from SW. CAW are computed numerically. Their existence
K ” can be deduced from general results of the dynamical sys-
1 tems theory.
2A Kk . Right-going TW solutions are given by
- ——+i2k
(k+7vy1) A=Rexf —i(utana)t], B=0, Ny=0, N,=-R?
0 (7)

1 whereR= u/cos() and a similar expression whefeand B
_ 2A K are exchanged for the left-going traveling waves. TW solu-
B(T)e'lredttid | ————— 4j2, tions are stable for smajk, sinceNy andN; can be adia-
KY| (k+71) batically eliminated in this parameter range. The adiabatic
0 elimination fails close tax= /2 because the real part of the
+0o(€d). (5)  reduced equation vanishes. TW lose their stability on a line
notedlty (w=cofa) in Fig. 1. This bifurcation leads to
The quadratic amplitude equations take the form the appearance of MW solutions.
The study of the other solutions simplifies if one uses the
following change of variables which reduces the dimension

N Do.c 1

+

A= uA+e“(NoA+N,B),

9B=uB+e%(NoB+N,A), of the dynamical system from seven to fiveA
=Rcos(¢/2)e'?, B=Rsin(¢/2)e'?, N,=SéX, Ny=N, and
aN,=—N,—AB, (6) {=¢—6—x. The reduced amplitude equations then read
No=—No—{ |A|?+|B|?}, R=[p+Ncoga)]R+SRsin(¢)cog a)cog (),
whereu=uly; . drp=2Ssin(@)sin({) + 2Scod $)cod a)cog £),

These amplitude equations possess solutions which are
easily identified as follows(i) Traveling wavegTW) which
describe the propagation of a pure left- or right-going wave;

2

R
9S=—S— - sin(¢)cod (), 8
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HN=—N—-R?,

sin(a+ )

&tg’:Scot(g sin(a—g“)—Star(%

2

R® .
+5g sin(¢)sin({).
MW solutions are explicitly given by

A=R co{ ;) el B= Rsin(g) e,

No=S€X, Np=-R?
where

M
i 2 2
(1+ w) Coia)

R2
S=— 5 sin(¢)cod ),

R%=

. C)
sin(a)?[2u— 3 coga)?]

cos(9)= coda)[3 coga)®—1] '

2u—3 cosa)?

()= ,
tarf(é) [3coga)’—1]

and {=¢— 60— y. MW bifurcate from TW on the curve:

=cof’ a and from SW on the curvieyy, (u= 3 cog a). The
bifurcation from SW is a pitchfork bifurcation corresponding
to the breaking of the parity symmetry-& —x). The bifur-
cation changes from supercritical to subcritical at the tricriti-

cal point noted byx=arccos(1{/3) andu=1 .
SW solutions are given by

2 2 .
Angew, BERge"P, No=SéX, N,=-R?
where
2
R2 2'LL _R_

~3 coga)’ S= 2
_ (10
(j):ii, p—60—x=2nm.

SW lose their stability in two different ways, as follows.

(i) On the linel gy (u=2% cog a), their instability leads
to the appearance of MW through a pitchfork bifurcation.

The symmetry-breaking amplitudeis defined by

o

X (2 coda—5coga+1)

sina 2 tana X%
+4{= X+ — SIna COSa
CcoSa 3 77c05a 6

COSa)

sina
+ (higher-order terms (11

and
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2u
cosa(2+ cofep coy)’

R*(¢,0)=—N(6,)=

(12)
JL COS¢ COS{

cosa(2+ cofep codl)

S(¢.0)=~

It satisfies the amplitude equation

. 1 2 a3 co2 1)x3
X=———9——1-px— coSa(3coga—1)—=1,
cof a— sir? a |3 g 3
(13

with 7=u—3 cog a.

(i) On the linelpay (=3, a=mu/4), the instability of
SW leads to a stable limit cycle through a supercritical
Andronov-Hopf bifurcation. The amplitude of the PAW is
defined as

o)

[/ Y —
ERRRTT I e
. (1— coda)+2iQ(cofa— cosf‘a)A3
4802 sirfa cofa
(7+37coda—28coa)+i0(22coda—6 coda)
- 4802 sirfa coSa
(5 coda+1)+4iQ(coda— cofa)

960 %sirfa cofa

A+

x| Al2PA+

+c.c+ (higher-order terms

_ 1
3
A ](cota(l—iZQ)

(14
and
2u
R =—N -~
(#.0) (#.0) cosa(2+ cofe coy)’
(15
_ M COS¢ cos{
(0= cosa(2+ cofgpcos {)
It obeys the amplitude equation
B n 209
GA= ( 60 sifa | 3 )
_(7+23 coda—30codw) A2
240 coSa sirfa
Q —
8 (cofa— cosa) A, 16

240 cofa sirfa

whereQ = \tarfa—1/2 andnp=pu— %.

The two bifurcations interact at the poini=3, «
= 1/4, where the two bifurcation lines intersect. This point
corresponds to a codimension-2 Bogdanov-Takens bifurca-
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o
o

FIG. 2. Reconstructed phase portrait using the
amplitude of the right-going waverE5S). (a)
Parameters close to the Bogdanov Takens
codimension-2 bifurcation(tb) Parameters close
IAIR(t+1) to the instability line of traveling wavér .

IAFR(t+21)

0

w

IA(Y) o3

0.42 0.32

AR 0% 042 |AP(t+r)

tion. Close tou=3, a= w/4, the five-dimensional amplitude heteroclinic bifurcation appears to be of Shilnikov type in
equations reduces to a second-order differential equation, this case. Since the limit cycle is stable, chaotic behaviors are
ruled out in the vicinity of the heteroclinic bifurcati¢t4] as

K= f(s—ZXZ)X— n 38 X4 X_3 17) Fig. 3 shows. Nevertheless, chaotic behavior characterized
3 73 6’ by the formation of multiple horseshoes can be expected at a
finite distance from the heteroclinic bifurcation. These cha-
wheree=pu—%, n=a—(w/4), and otic behaviors are indeed observed numerictlf. Fig.
- 3(b)]. Experimentally, under certain conditions periodic dou-
(d’) et ﬁ+2 “ 1 . X_3+ ﬂ+ Exi@) ( 1) bling route chaos was observgs]. By increasing the detun-
) 3 K 1 9 6 3 1 ing, while fixing the pump parameter, one observes the fol-
lowing scenario: in a very limited range of variation of the
N )-(_(4_€+2 y 2 NS EXZX—XXZ) ( 2) detuning one observes stable traveling waves which become
3 7 0 3 3 0 unstable and give rise to PAW. If one continues to increase
the detuning, one then observes the transition towards CAW.
+ higer-order terms (18 Finally, a too large detuning extinguishes the laser after a
regime in which stable standing waves should be observed.
and The difficulties in analyzing the Maxwell-Bloch equations
using amplitude equations come from the quasireversible na-
R%(,0)=—N(,0)= 24 ' ture of the probleni15]. The degeneracy of reversible sys-
cosa(2+ cog ¢ cos{) tems is generally removed when the damping and forcing are
(19) taken into account. Here we have privileged a simple
U COSch COSL asymptotic limit which contains many of the phenomena ob-
S(p,0)=— . served in real experiments. Some important aspects are miss-
cosa(2+ cos'¢ cos’{) ing, nevertheless, as, for example, the damped oscillations

generally observed near the laser threstél@]. A simple
way to recover these important aspects consists in consider-
ing a more general asymptotic limit in which all damping

ther organizes the parameters space occurs when the li o) effici_en_ts are of the same ord_er of the distance from th_resh-
cycle (PAW) becomes a heteroclinic lodd3] which con- re(;dWIthln this new asymptotic, the amplitude equations

nects the MW solutions. Close to the bifurcation, the alter-

The unfolding of this codimension-2 bifurcation contains
SW and MW solutions and the PAW solution and their bi-
furcations. A particularly interesting bifurcation, which fur-

nation period diverges logarithmically. The line= —4«, I A= uA—(k+iA) A+ e YUN-A+ N,B

where the Andronov heteroclinic bifurcation occurs, can be WA= pA= (K FTA) G (No 2B),
continued numerically as it is shown in Fig. 1. For large 9 B=puB—(k+iA)dB+e*(NyB+N,A)

values of u this line coincides asymptotically with the " ‘ 0 2 (20)

TW-MW transition line. The Jacobian operator evaluated at
the MW solution, for parameters values corresponding to the
Andronov bifurcation, possesses three real eigenvalues aNo=—Ng—{|Al2+|B|2}

N1, and\, and a complex onk.. These eigenvalues control tro 0 '

the topology of the limit cycle and its stability in the neigh-  opyiously these equations contain richer dynamical be-
borhood of the Andronov bifurcation. In the vicinity of the nhayiors since they reduce to the amplitude equations dis-
codimension-2  bifurcation ,>0>A;>Re(\¢)>X, and  cyssed in this paper in the linity + x>y, .

[N |<|\4q]; the PAW solution is stable and connects MW
solutions in a monotonous wdgee Fig. 2a)]. Above the
point notedS(u=0.856, =0.7553) in Fig. 1 one has
>0>Re(\o)>N;>\, and |\, |<|Re(\)|. In this range of We have reduced asymptotically the Maxwell-Bloch
parameters, the limit cycle is stable, but it connects the MWequation to a simple set of quadratic amplitude equations
solutions with damped oscillatiofsee Fig. 20)]. Thus the characterized by two parameters. This model allows us to

dN,=—N,— AB,

[ll. CONCLUSION
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