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Excitability and coherence resonance in lasers with saturable absorber

Johan L. A. Dubbeldam,1,* Bernd Krauskopf,2 and Daan Lenstra1
1Faculty of Sciences, Vrije Universiteit, De Boelelaan 1081, 1081 HV Amsterdam, The Netherlands
2Department of Engineering Mathematics, University of Bristol, Bristol BS8 1TR, United Kingdom

~Received 15 July 1999!

We show that a laser with a saturable absorber, described by the Yamada model, displays excitability just
below threshold. A small perturbation, for example, a small input pulse, can trigger a single high output pulse,
after which the system relaxes back to the off state. In order to study possible applications, such as pulse
reshaping and clock recovery, approximate expressions are given for the excitability threshold and the delay
between input and output pulses. Under the influence of optical noise, the system displays coherence reso-
nance: below threshold the laser produces pulse trains with minimal jitter for a particular optimal noise level.
This all-optical coherence resonance allows direct experimental verification.
@S1063-651X~99!02712-9#
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I. INTRODUCTION

The notion of excitability comes from biology and chem
istry where excitable systems have been known for so
time now@1#. Spreading excitation waves were observed i
great variety of reaction diffusion systems, such as card
muscle tissue and the Belousov-Zhabotinsky reaction@2#.
Excitability is also an important concept in neuronal mod
ing, where it is considered to constitute the mechanism
hind the spiking behavior of nerve cells@1,3#. More recently,
excitability has also been found in optical systems, namel
nonlinear cavities with temperature-dependent absorp
@4#, lasers with optical feedback,@5# and lasers with a satu
rable absorber@6#.

Following the biology literature@1,7#, a system is said to
beexcitableif it is at an attracting equilibrium state, but ca
be triggered by a sufficiently large but still small perturbati
to produce a large amplitude excursion, after which the s
tem settles back to the attractor in what is called therefrac-
tory phase. After the refractory phase, the system can
triggered again. There are essentially two known types
excitability. First, there is excitability due to an S-shap
slow manifold in slow-fast systems as in the FitzHug
Nagumo model of neuron spiking@1,3,7# as sketched in Fig
1~a!. A ~sufficiently large! perturbation can bring the syste
from the attractor to the white dot in the phase portrait on
left. From there the system makes a quick jump to the ri
branch of the slow manifold, which it then traces before
jumps back to the left branch and relaxes back to the att
tor. This leads to a square-shaped pulse as sketched o
right of Fig. 1~a!. Second, there is excitability due to a
attractor close to a saddle point on an attracting invar
circle @8,9# as sketched on the left in Fig. 1~b!. The fact that
the attractor and the saddle point are close together m
that the system is close to a saddle-node bifurcation o
limit cycle ~also called infinite period saddle-node bifurc
tion or codimension-1 homoclinic saddle-node bifurcatio!.

*Author to whom correspondence should be addressed. F
131-20-444-7899. Electronic address: dubbeldm@nat.vu.nl
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A perturbation moving the system across the saddle poin
the white dot results in a large amplitude excursion arou
the invariant circle. This corresponds to a single pulse
sketched on the right side of Fig. 1~b!. There may be severa
pairs of attractors and saddle points on the invariant cir
with the possibility of multistability@10#. Note that in both
types of excitability the amplitude of the excursion is ind
pendent of the perturbation, because the slow manifold
the invariant circle determine the maximum of the puls
respectively.

In this paper, we study excitability in a semiconduct
laser with a saturable absorber modeled by the Yam
model@11#. This system, which is of a slow-fast nature, co
stitutes a simple model forQ switching in semiconductor
lasers. Its dynamics and bifurcations were recently studie
much detail in Ref.@6#, where it was noted that the system
excitable just before threshold. Here we study this type
excitability and the dynamical consequences thereof. T

:

FIG. 1. Three types of excitable systems sketched as phase
traits ~left column!, together with the respective time series of t
response to a perturbation~right column!: the classical S-shape
slow manifold as in the FitzHugh-Nagumo equation~a!, an attractor
close to a saddle point on an attracting invariant circle~b!, and the
excitability of a laser with absorber studied here.
6580 © 1999 The American Physical Society
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PRE 60 6581EXCITABILITY AND COHERENCE RESONANCE IN . . .
situation is sketched in Fig. 1~c! and can be explained a
follows. The off solution withI 50 is an attractor, but a
perturbation can push the system above the stable man
to the white dot in the phase portrait on the left. From th
the system produces a single intensity pulse and then rel
slowly back to the off solution by creeping along the slo
manifold $I 50%. The pulse is very short compared to th
refractory phase, as is sketched on the right side of Fig. 1~c!.
In the Yamada model there is no upper limit to the height
a pulse, which turns out to depend linearly on the energy
the input pulse; see later sections for more details. Si
self-pulsations have been found in semiconductor lasers
in the stripe@11–13# and the longitudinal configuration@14#,
we expect this excitability to be detectable experimentall

Excitability in this laser has a number of potential app
cations. The laser could be used as an optical switch, w
reacts only to sufficiently high optical input signals. Th
could be used for clock recovery. The main application
investigate here is pulse reshaping: a small wide input p
can trigger a large short output pulse. We numerically inv
tigate this and show that the shape of the output puls
independent of the shape of the input pulse. The pulse he
depends on the energy of the input pulse, but also on
parameter values, and in particular on the gain and abso
relaxation rateg @15#. By exploiting the slow-fast nature o
the system, we derive analytical expressions for theexcit-
ability threshold, the minimal perturbation needed to trigg
the system, and for the delay between input and ou
pulses. Finally, we show that spontaneous emission does
excite the system when operated sufficiently far bel
threshold, so that pulse reshaping appears to be possible
realistic, noisy setting.

An effect closely related to excitability, and with potenti
applications for jitter reduction of pulse trains, iscoherence
resonance~CR!. Below threshold the laser produces nois
induced pulse trains, and CR is the effect that their cohere
is maximal for a particular noise level. Coherence resona
~in some sense a special case of stochastic resonance~SR!
@16–19#! has recently been studied in a number of syste
In Ref. @10# it is shown that a two-dimensional dynamic
system with an invariant circle@much like in Fig. 1~b!# can
show CR. In the FitzHugh-Nagumo system@20# and in the
Hodgkin-Huxley neuron model@21#, CR due to excitability
of type ~a! in Fig. 1 has been found. Recently, CR has be
reported experimentally in a semiconductor laser with opt
feedback and noise in the pump source, which is proba
due to excitability of type~b! in Fig. 1 @9#.

Here we show that a laser with a saturable absorber
plays all optical CR. This is a consequence of the excitabi
of type ~c! in Fig. 1, and we expect CR to be observab
experimentally. When optical noise is injected into the la
below threshold, the system produces a train of pulses. T
is a minimum of the jitter of this pulse train, which is cle
evidence that the system displays CR. There may very w
be future applications of this effect for generating coher
pulse trains, for example for optical communication syste

We proceed as follows. In Sec. II, the Yamada system
introduced and its basic dynamics and bifurcations are
cussed as needed here. In Sec. III, excitability below thre
old is discussed together with its use for pulse reshaping
Sec. IV, we first study the influence of spontaneous-emiss
ld
e
es

f
f
e
th

h

e
e
-
is
ht
e
er

ut
ot

n a

-
ce
ce

s.

n
l

ly

s-
y

r
re

ll
t

s.
is
s-
h-
In
n

noise and then we show that the system displays coher
resonance when optical noise is injected. We finally dr
conclusions in Sec. V.

II. DYNAMICS OF THE YAMADA MODEL

The starting point of our analysis is the Yamada mo
without noise. This three-dimensional dynamical system
governed by the dimensionless equations

Ġ5g~A2G2GI !,

Q̇5g~B2Q2aQI!, ~1!

İ 5~G2Q21!I ,

whereG models the gain,Q the absorption, andI is the laser
intensity. The parameters in Eqs.~1! have the following
meaning:A is the bias current of the gain,B is the amount of
absorption, anda describes the differential absorption rel
tive to the differential gain. The parameterg describes the
relaxation rate of the gain and the absorber and it is sm
typically of the order of 1023. The Yamada model is there
fore a slow-fast system, whereG and Q are the slow vari-
ables andI is the fast variable. The plane$I 50% is invariant
under the flow and at the same time a slow manifold of
system. This model is valid for two types of lasers wi
absorber: the two-segment laser and the stripe laser. Fo
two-segment laser, in which the gain and the absorber
spatially separated in the longitudinal direction, the dec
times in the gain and the absorber need to be of the s
order. For the stripe laser, in which the absorber is con
tuted by the unpumped regions accompanying the gain
gion on both sides in the transversal direction, the diffus
between the gain and the absorber needs to be neglig
Self-pulsating lasers of either type satisfying these assu
tions are readily available.

The complete dynamics of Eqs.~1! was obtained in Ref.
@6#. Here we concentrate on the parameter regime for wh
the system shows excitability. This is why we fix the abso
tion parameters to realistic values for aQ-switched laser. We
chooseB55.8 anda51.8 for the remainder of this pape
but any values ofB and a would do as long asB(a21)
.1. The exact value ofg is then not important, and for an
g,0.05 the behavior of the laser is qualitatively as sketch
in Fig. 2.

In the bifurcation diagram in the (A,I ) plane as presente
in Fig. 2, we plot in boldface the maximum of the intensityI
versus the pump currentA for the fixed value ofg50.04.
The dashed curve corresponds to unstable behavior as
plained below. There are three bifurcationsS, T, andH di-
viding theA line into four regions, denoted by 1 through
of different dynamics as presented by the four sketches
phase portraits. Note that the missing direction is alwa
attracting, so that two-dimensional phase portraits suffice@6#.
In Fig. 2 we plot the gainG horizontally and the intensityI
vertically; the slow manifold$I 50% is at the bottom of each
phase portrait. In region 1 the only attractor is the off so
tion, the attractor on$I 50%. In the saddle-node bifurcation
two saddle points are born, so that the phase portrait in
gion 2 still has the off solution as the only attractor. In t
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6582 PRE 60DUBBELDAM, KRAUSKOPF, AND LENSTRA
absence of an external perturbation, the laser is off. H
ever, a single small perturbation can bringI above the stable
manifold of the lower saddle point. This results in a sing
pulse inI, after which the laser settles back to the off so
tion; compare Fig. 1~c!. In other words, the laser is excitab
in region 2 for pump currents betweenS andT. The ampli-
tude of the perturbation needed to create a pulse decreas
A is increased: the system is ‘‘most excitable’’ just before
thresholdT. At T there is a homoclinic bifurcation practicall
simultaneous with a transcritical bifurcation@6#. As a conse-
quence, a stable limit cycle appears and the lower sa
point vanishes, which physically means that the laser s
pulsates in region 3. The pulsations finally increase in f
quency and become more sinusoidal before disappearin
the Hopf bifurcationH. In region 4 there is a single attracto
with positive intensity, which corresponds to cw output
the laser.

III. EXCITABILITY

The laser with a saturable absorber is excitable be
threshold in region 2 when its phase portrait is as sketche
the respective panel of Fig. 2. We now study this type
excitability in more detail. First, we consider the reaction
the laser to different input pulses. Second, we derive
proximate expressions for the excitability threshold and
delay between incoming and outgoing pulses, which sho
that the laser becomes indeed ‘‘more excitable’’ the close
threshold it is operated.

A. Pulse reshaping

To find the exact influence of perturbations introduc
into the system, we perform numerical simulations of E
~1! for the fixed value ofA56.5 ~just before threshold! and
for g50.001.~Recall that we setB55.8 anda51.8.! Three

FIG. 2. The dynamics of a laser with absorber. The bifurcat
diagram in the (A,I ) plane features the three bifurcationsS, T, and
H, which divide theA axis into four regions of qualitatively differ-
ent phase portraits as sketched.~Attractors are boldfaced.!
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different ~triggering! input pulses were introduced into th
system: ad pulse, a block pulse, and a Gaussian pulse.
Fig. 3 we present the three output pulses for the three dif
ent triggering pulses. In Fig. 3~a! the input pulse is very shor
(d peak signal!, leading to a large output pulse. In Fig. 3~b!
the input pulse is a block pulse of the same energy as thd
pulse. The resulting output pulse is practically equal to t
for thed input pulse. Moreover, the delay between the inp
pulse and the output pulse is equal for both cases. Finally
Fig. 3~c! the input is a Gaussian pulse. The energy contai
in the Gaussian pulse is a little greater than for the pertur
tions ~a! and ~b!. This is necessary because, due to its m
global nature, part of its energy is lost before it can contr
ute to triggering. Figure 3~c! shows that the produced outpu
pulse has the same shape as before in panels~a! and ~b!,
although it appears after a somewhat longer time. This in
cates that the system is perturbed to a point closer to
stable manifold, which forms the excitability threshold.

The fact that for a perturbation with long tails, such as t
Gaussian pulse, more energy is required to reach the e
ability threshold, can be explained as follows. The ene
contained in the tails is in some sense lost, because the
tensity rise in the system due to the added intensity from
tails is canceled by the intensity decrease due to the syste
relaxation towards the stable equilibrium or ‘‘off-state’’ wit
coordinates (G,Q,I )5(A,B,0). Physically this means tha
the tails of a perturbation should be short with respect to
relaxation time of the gain and absorber, because otherw
relaxation will be the dominant process in the perturbat
tails.

The discussion above illustrates that the delay betw
the incoming and outgoing pulses, defined as the time dif
ence between the produced output peak and the input p
maxima, is an important quantity. We numerically obtain
the delay for different values of the perturbation amplitudeI 0
of a Gaussian input pulse. In Fig. 4~a! the delay is depicted
as a function ofI 0. It goes to infinity when the exitability
threshold is approached and is a decreasing fu

n

FIG. 3. Three different input pulses and the resulting out
pulses for A56.5, g50.001, B55.8, a51.8. The perturbation
amplitude I 0 is 14 for thed pulse and 0.014 for the block an
Gaussian pulse.
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PRE 60 6583EXCITABILITY AND COHERENCE RESONANCE IN . . .
tion of I 0. The amplitude of the output pulse was also o
tained by numerical simulation and is displayed in Fig. 4~b!.
As was mentioned before, the amplitude of the output pu
is not constant, but depends linearly on the amplitude of
input pulse relative to the excitability threshold. This can
understood as follows. All incoming pulses with sufficient
large amplitudes to trigger the system will experience
same net gain. Due to the slow evolution of the absorber
the gain, they only saturate after the output pulse attaine
maximum, since heregGI andagQI are of order 1. Clearly,
there will not be a linear dependence of the output amplit
on the triggering pulse for very large triggering pulses due
the saturation effects, but we still expect that this linear
pendence can be observed experimentally for sufficie
small input pulses.

B. Excitability threshold and delay

In this rather technical section, we concentrate on find
analytical expressions for the excitability threshold and
delay between incoming and outgoing pulses. Geometrica
the excitability threshold is determined by the distance
tween the attractor and the stable manifold of the sad
point; see Fig. 1~c!. To derive an analytical expression of th
excitability threshold, we make use of the slow-fast nature
the system, meaning that the gain and the absorber evolv
a much longer time scale than the intensity. The method
multiple scales@22# from singular perturbation theory wa
used in Ref.@15# to obtain an asymptotic expression for th
period of the pulsations for a laser operating very close to
lasing threshold. However, in our present setting the sys
is perturbed by an order 1 perturbation~the excitability
threshold is of order 1!, as can be seen from the numeric
computations in Fig. 5. This is why we use a differe
method, which, however, also uses the slow-fast nature
the system.

We assume that the system is initially at the equilibriu
state (G,Q,I )5(A,B,0) and that att50 ad shaped trigger-
ing signalI pert5I 0d(t) is applied to the system. The assum
tion of a d pulse can be relaxed and it is sufficient that t
incoming pulse is of a much shorter duration than the rel
ation time of the gain and the absorber. Because of the s
evolution of the gain and the absorber, we can solve Eqs~1!
for G andQ in the first-order approximation indG anddQ
by substituting

G5A1dG, Q5B1dQ

FIG. 4. The delay~a! between a Gausssian input pulse and
output pulse as a function of the amplitudeI 0. The dots denote the
numerical results and the solid curve represents the analytica
pression fortd of Eq. ~13! for I 0

th51.3. The output pulse amplitud
~b! depends linearly on the perturbation amplitude relative to
excitability threshold.
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into Eqs.~1!, which leads to the following expressions fo
the gain and the absorber:

G5A2gAF E
0

t

egt8I ~ t8!dt8Ge2gt,

~2!

Q5B2gaBF E
0

t

egt8I ~ t8!dt8Ge2gt.

These expressions are only valid whenG differs only a little
from A, andQ only a little fromB. Substituting Eqs.~2! into
Eqs.~1! gives after differentiation the second-order differe
tial equation for the intensity,

Ï I 2 İ 21gI İ 5g@~A2B21!1~aB2A!I #I 2. ~3!

The initial conditions of Eq.~3! areI (0)5I 0, which implies
that İ (0)5(A2B21)I 0. Introducing rescaled variable
y(t)5I (t)/I 0 and defininga5B112A, we can rewrite Eq.
~3! in the more suitable form

ÿy2 ẏ21gyẏ52gay21g~aB2A!I 0y3,
~4!

y~0!51, ẏ~0!52a.

All terms linear ing except they3 term on the right-hand
side of Eq.~4! are small, so Eq.~4! is reduced to

ÿy2 ẏ25g~aB2A!I 0y3, y~0!51, ẏ~0!52a, ~5!

which can be solved exactly by assuming a solution of
form

ẏ5 f ~y!. ~6!

From the initial conditions ony it follows that f (1)52a.
Substituting the expression forẏ into Eq. ~4!, we obtain

~ f 2!82
2 f 2

y
52g~aB2A!I 0y2, ~7!

where the prime indicates differentiation with respect toy.
Equation~7! can be solved as

e

x-

e FIG. 5. The excitability threshold as a function of the pum
parameterA. The dots denote numerical data, the dashed curv
the first-order approximationI 1

th of Eq. ~10!, and the solid curve is
the second-order approximationI 2

th of Eq. ~12!.
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6584 PRE 60DUBBELDAM, KRAUSKOPF, AND LENSTRA
f ~y!52Aa222g~aB2A!I 012g~aB2A!I 0y y. ~8!

From Eq.~8!, y(t) can be obtained by integration as

y~ t !5
b22a2

b2 F11tan2S f02
Ab22a2

2
t D G , ~9!

where we introducedb2 andf0 defined by

b252gI 0~aB2A!, f05arctanS a

Ab22a2D .

The minimal perturbation amplitude necessary to trig
the system, or to bring the system above the stable man
of the saddle, is determined by the requirement of the e
tence of a nontrivial~positivey) solution of ẏ50. In terms
of gain and absorption this means that there must be s
instance for which the gain exceeds the total loss, wh
means that the plane$G2Q2150% must be crossed. Such
solution is only possible if they-independent term under th
square root in Eq.~8! is less than zero. The excitabilit
threshold is therefore the value ofI 0 for which this term
vanishes. This gives the first-order approximation for the
citability threshold,

I 1
th5

a2

2g~aB2A!
5

~B112A!2

2g~aB2A!
. ~10!

This expression can be improved by realizing that
largest error comes from the first-order approximation
gain and absorption in Eq.~2!. Using Eq.~9!, one obtains the
second-order approximation forG andQ,

G5A2
gAe2gt

aB2A F ~aB2B21!E
0

t

egt8I ~ t8!dt8

1E
0

t
Aa22b21b2yI~ t8!egt8dt8G ,

Q5B2
gaBe2gt

aB2A F ~aB2B21!E
0

t

egt8I ~ t8!dt8

1E
0

t
Aa22b21b2yI~ t8!egt8dt8G .

The differential equation~4! in the second order approxima
tion becomes

ÿy2 ẏ21gyẏ52gay21gI 0y3~aB2B21!

1gI 0Ab2y1a22b2y3 ~11!

with the same initial condition as in Eq.~4!. Solving Eq.~11!
in the same way as Eq.~4! gives a second-order approxim
tion of the excitability threshold,

I 2
th5

a2

2g~aB2B21! S 12
2a

3~aB2A! D
1

a

aB2B21 F12 lnS 2g

a D G , ~12!
r
ld
s-

e
h

-

e
f

where the last term on the right-hand-side is due to theg ẏy
andgay2 terms.

In Fig. 5 these two expressions for the excitability thres
old are compared with the excitability threshold obtain
numerically. This demonstrates that Eq.~10! is a fairly good
approximation to within 10%, and the second-order appro
mation given by Eq.~12! is accurate to within 5%.

A first-order approximation of the delay between incom
ing and outgoing pulses can be obtained as follows. W
the system is above threshold, the time at whichẏ changes
sign, which we calltd , can be found by integrating Eq.~6! or
using Eq.~9!, which gives

td5
2

AS 12
I 0

th

I 0
D @2g~aB2A!I 0#

arctanS 1

AS 12
I 0

th

I 0

D .

~13!

This time td constitutes the dominant contribution to the d
lay, because the contribution of the output pulse duration
the delay is usually much smaller and can therefore be
glected. In Fig. 4~a!, the numerically obtained values for th
delay of a Gaussian triggering pulse are compared with
delay timetd given by Eq.~13!, into which we substituted
the numerically obtained value for the threshold intensityI 0

th .
Notice the good agreement between the two.

IV. THE EFFECT OF NOISE

Here we consider the effect of spontaneous emission
injection noise in the excitability regime and ultimately u
injection noise to trigger the system and obtain a series
pulses. In order to study spontaneous-emission noise an
dicate how noise terms enter the evolution equations,
start from the nonscaled equations

Ṅ15Jp2
N1

ts
2g1~N12Nt1!S,

Ṅ252
N2

ts
2g2~N22Nt2!S, ~14!

Ṡ5@g1~N12Nt1!1g2~N22Nt2!2G0#S1Rsp1Fs~ t !.

Here the number of electron-hole pairs in the pumped reg
is denoted byN1, the number of electron-hole pairs in th
unpumped region byN2, and the number of photons byS.
Further,Jp is the pump current andG0 is the inverse photon
lifetime. The transparency values for the gain and the
sorber areNt1 and Nt2, respectively. The carrier lifetime is
ts and the differential gain in region one is given byg1,
while g2 denotes the differential absorption in region tw
The dimensionless pump parameterA is related to the bias
pump currentJp by

A5
g1ts

G0
S Jp2

Nt1

ts
D .

The noise termsRsp andFs(t) are as in Ref.@13# given by
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Rsp5
bN1

ts
, ^Fsp~ t1!Fsp~ t2!&52RspSd~ t12t2!.

By performing a transformation as in Ref.@6# and by adding
a termK inj(t) for injected optical noise, Eqs.~14! are trans-
formed into

Ġ5g~A2G2GI !,

Q̇5g~B2Q2aQI!, ~15!

İ 5~G2Q21!I 1bsp~G1P!1D1Ksp~ t !1K inj~ t !.

The stochastic term representing the Gaussian spontan
emission satisfies

^Ksp~ t1!Ksp~ t2!&52bsp~G1P!Id~ t12t2!, ^Ksp~ t !&50.

Furthermore,P is a constant term~transparency offset o
gain! given byP5Nt1g1 /G0, which is numerically equal to
2.466 in our simulations. The spontaneous emission n
strength as given by thebsp factor is typically of the order of
1025 for semiconductor lasers@13#. Finally, K inj(t) is opti-
cally injected Gaussian noise satisfying

^K inj~ t1!K inj~ t2!&52DId~ t12t2!, ^K inj~ t !&50.

HereD denotes the strength of the injection noise. The s
tem with only injection noise is equivalent to the system
described in Ref.@23#.

In all numerical simulations we takea51.8, B55.8, A
56.5, andg50.001, corresponding to the following value
of the nonscaled variables@12#: Nt156.723107, Nt259.0
3107, ts53.0 ns andg151.43531028 ps21, g252.252
31028 ps21, and finallyG050.3 ps21 andJp513.0 mA.

We remark that numerical simulations show qualitative
the same effects independent of the realization of the no
This demonstrates an insensitivity of the model to the p
ticular implementation of noise.

A. Spontaneous-emission noise and the noise threshold

In order to study the influence of spontaneous-emiss
noise, we setD equal to zero in Eq.~15!. To find its effect on
the output pulse shape and the excitability threshold, we
formed numerical simulations of Eqs.~15! for several values
of the spontaneous-emission factorbsp. We found that
spontaneous-emission noise does not lead to signifi
changes in the excitability threshold and the amplitude of
outgoing pulse. This can also be illustrated by the followi
argument. If one considers once more the phase portra
Fig. 2 in the excitability regime 2, it can be seen that t
noise needs to be at least strong enough to bring the inte
above the stable manifold at the lowest possible barrier. T
barrier is given by the position of the saddle point, which l
in the $G2Q2150% plane and has theI value

I sp5
2B212a1aA

2a

2
A~B111a2aA!224~11B2A!a

2a
,

ous

se

-
s
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n

r-

nt
e
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ity
is
s

which is numerically equal to 0.102 for our parameter v
ues. The value ofI sp can be considered as the value of t
noise threshold. If Eq.~15! is transformed into a Fokker
Plank equation@24,25#, the Kramers escape time from th
point (G,Q,I )5(A,B,0) to (A,B,I sp) can be calculated as

Tesc5
1

DE
0

AI sp
dx e0.3x2/DE

0

x

dy e20.3y2/D. ~16!

Numerically this givesTesc'101324 for D51025, which
shows that spontaneous emission by itself is not capabl
exciting the system.~For comparison, note thatTesc'20 for
D50.01.! One should notice that the values ofI sp andTesc
depend on the parameters and particularly on the pump
rent. Very close to threshold (A→T), I sp and Tesc become
practically zero. This means that sufficiently close to t
thresholdT, spontaneous emission can excite the system
produce a sequence of pulses. However, here we are i
ested in values ofA sufficiently far below the thresholdT,
where spontaneous emission cannot trigger the system.
conclude that for ordinary values ofbsp, the excitable laser
below threshold can be used for pulse reshaping and n
filtering.

An interesting topic for future research is the idea of se
triggering a laser with a saturable absorber in the excitab
regime. When a part of each produced output pulse is
back into the laser after an excursion through a fiber, thi
expected to produce very regular output pulses, whose
quency is tunable by changing the length of the fiber. N
that this is different from self-seeded gain switched las
@26#, because the pump current is constant and the pulse
produced byQ switching.

B. Coherence resonance

In the region of excitability, we numerically simulate
Eqs. ~15! ~with noise! by a simple forward Euler algorithm
and averaged over at least 2000 cycles. Throughout all si
lations, we fixedB55.8, a51.8, andg50.001; the sponta-
neous emission was set tobsp51.031025 and the pump
current wasA56.50, which is well in the excitability region
@6.06,6.8#. We then considered the influence of inject
noise of variable levelD.

The injected noise, being much larger than spontaneo
emission noise, triggers the laser to produce pulse tra
three examples are shown in Fig. 6 for three different no
levels D. Coherence resonance manifests itself as an
creased coherence of the pulse train for a particular n
level. It is known that small pump noise in combination wi
a periodic driving of the pump current can produce SR
lasers with a saturable absorber@27#. Furthermore, CR due to
the addition of noise in the pump current has recently b
found in a laser with optical feedback@9#. However, in the
present setting adding noise to the pump current is not
efficient way of producing CR. Highly irregular pulses a
obtained and an unrealistically high noise level~of the order
of the dc pump current! is needed to produce an effect. Th
is why we study all optical CR.

The pulse train in Fig. 6~b! for D50.015 is most coher-
ent. This effect of CR is not easy to see from the time ser
but is evidenced by the corresponding power spec
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^S(n)&5^uI (n)u2& in Fig. 7, which were obtained by averag
ing over 100 different time series@ I (t)#. The signal-to-noise
ratio ~SNR! of the spectrum is defined asHp /(Dv/vp) and
can be used as a quantitative measure for CR. Here,Hp is the
relative height of the~first harmonic! peak in the spectrum
and (Dv/vp) denotes the relative width of the peak wi
central frequencyvp and full width at half maximumDv.
For D50.004, the spectrum~a! represented by the dashe
curve has a small peak and an SNR of 0.08. For a noise l
of D50.015, the spectrum~b! represented by the dotte
curve shows a narrow and high first-harmonic peak, wh
has an SNR of 3.28. Increasing the noise toD50.04 gives
the spectrum~c! represented by the solid curve, which has
SNR of 0.04. Notice that the first harmonic in the spectr
for D50.04 and the second harmonic forD50.015 are very
close together. The peak in the spectrum shifts toward hig
frequencies for increasingD, because stronger noise trigge
a new pulse faster; see also Fig. 8.

Notice that the amplitudes of the pulses decrease for
creasingD, since increasing noise implies faster triggeri
and consequently less time for the gain to recover betw

FIG. 6. Time series ofI (t) for a laser with fixed spontaneou
emission ofbsp51.031025 and for three different values of th
injected noise level show CR. ForD50.004,DR ~a! the average
pulse repetition time is 6837, forD50.0155DR ~b! it is 2063, and
for D50.04.DR ~c! it is 1014.

FIG. 7. Evidence of CR in the power spectra for the three d
ferent time series in Fig. 6. ForD50.004~a! the SNR is 0.08, for
D50.0155DR ~b! the peak is highest and the SNR is 3.28, and
D50.04 ~c! the SNR is 0.28.
el

h

n

er

-

n

two consecutive pulses. Because the gain cannot get ne
unsaturated value, the amplification is reduced. This effec
clearly demonstrated in Fig. 8, where a two-dimensional p
jection of the trajectories on the (G,I ) plane is depicted. As
the noise is increased, the system is excited for smaller
ues ofG. Notice also that the uncertainty in the~maximum!
pulse amplitude and in theG value for which the system is
excited increases withD; see Figs. 6 and 8.

Another way to quantify these observations of CR is
study the pulse repetition timestT and their fluctuations. The
coherence of the pulse train is given by the normalized t
ing fluctuations or jitter@20#,

R5
s tT

^tT&
. ~17!

Heres tT
is the standard deviation of the total pulse repetiti

time, usually referred to as jitter in pulsating lasers. In t
presence of CR, the normalized jitterR has a minimum for a
particular noise level. This is indeed the case for the la
with an absorber considered here as can be seen from F
from which the value ofDR'0.015 can be found. We re

-

r

FIG. 8. Two-dimensional projection of orbits in phase space
the (G,I ) plane for the three time series of Fig. 6, namely forD
50.004~a!, D50.015~b!, andD50.04 ~c!.

FIG. 9. The jitter R as a function of the injection noise fo
constantbsp51.031025.
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mark that this value is close, but does not exactly coinc
with the value ofD for which the SNR attains its maximum
because amplitude fluctuations contribute to the SNR@28#.
The evidence of CR as a function of the injected noise le
D discussed above is immediately verifiable by experime

To explain the presence of CR in the Yamada model,
divide the pulse repetition timetT5ta1tc into the activation
time ta , the time needed for the noise to trigger a pulse, a
the relaxation timetc , which is the time including the puls
needed by the system to relax so that eventually a new p
can be triggered. It is not possible to determine from the ti
series which part of the timetT constitutesta and which part
tc ; for this one needs to consider the orbit in phase spa
see Fig. 8. The different timesta and tc and their respective
standard deviations have different dependence on the n
level. The activation time decreases with increasing no
which is in fact a Kramers escape rate problem@24,29,30#.
For low noise levels,ta constitutes the dominant contributio
to tT and ^ta

2&'^ta& @20#, so thatR is close to unity. When
the noise is increased̂ta& decreases, as does^ta

2& until ^tc&
constitutes the dominating contribution tôtT& and ^tc

2&
.^ta

2&. The dependence of^tc& and its fluctuations onD can
be estimated by using singular perturbation theory@15#,
which shows that^tc& decreases with increasing nois
whereaŝ tc

2& slightly increases for sufficiently large values
D, so thatR increases again. This consideration ofta and tc
accounts for the minimum inR that constitutes CR.

The dependence oftc and its fluctuations on the noise ha
the following physical explanation. When there is very litt
noise, each time the system gets triggeredG and Q have
about the same values, namely those where the excitab
threshold is minimal, that is, close to the saddle point. T
system is excited when the gain and the absorber relax
wards their unsaturated valuesA and B, respectively, as in
Fig. 8~a!. When the noise level is increased, the system g
excited before reaching the vicinity of the saddle point. T
means that the system has less time to relax, and the gain
the absorber have not recovered to their unsaturated va
but remain at a certain degree of saturation as in Figs.~b!
and 8~c!. Notice the direct connection between the value
the gain andtc : the smaller the gain at the moment of exc
ing a new pulse, the less gain there is for the output pu
and the shorter istc . However, the fluctuations intc do not
depend so sensitively on the noise level, but are appr
mately constant~slightly increasing with increasing noise!.
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Finally we mention that injected noise also has an infl
ence just above threshold. From previous studies of the
fects of noise in lasers with a saturable absorber in the s
pulsating regime~above threshold! as performed in Refs
@23,31,12#, it is known that noise has the effect of increasi
the self-pulsation frequency. This shows up as a kink in
frequency versus pump current curve@23,31# and can be in-
terpreted as the ghost of excitability: the system is kicked
the limit cycle in regime 3 of Fig. 2 by noise before
reaches the ‘‘take-off point’’ where a new pulse would beg
in the absence of noise. In other words, the next pulse ar
earlier than it would without noise. This constitutes an in
rect experimental confirmation that the system is excitab

V. CONCLUSIONS

We studied excitability and coherence resonance in
~semiconductor! laser with a saturable absorber as describ
by the Yamada model. A numerical study showed that
system can be triggered by a small input pulse to produc
single large output pulse whose shape is independent o
perturbation. The amplitude of the output pulse was dem
strated to depend linearly on the amplitude of the input pu
relative to the excitability threshold. Furthermore, we ga
analytical expressions for the excitability threshold and
delay between incoming and outgoing pulses. Typical val
of the spontaneous-emission factor will not influence
properties of the output pulses noticeably, so that the ex
ability reported here appears to be suitable for pulse resh
ing.

When sufficiently strong optical noise is injected, the sy
tem shows coherence resonance. The noise results in a
train with minimal jitter for a particular level of injected
noise. This all optical CR was explained as a direct con
quence of the excitability of the system and allows expe
mental verification.

Practical applications of excitability and CR, for examp
clock recovery, pulse reshaping, and the production of t
able pulses, remain a subject for future investigations.
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