PHYSICAL REVIEW E VOLUME 60, NUMBER 6 DECEMBER 1999

Excitability and coherence resonance in lasers with saturable absorber
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We show that a laser with a saturable absorber, described by the Yamada model, displays excitability just
below threshold. A small perturbation, for example, a small input pulse, can trigger a single high output pulse,
after which the system relaxes back to the off state. In order to study possible applications, such as pulse
reshaping and clock recovery, approximate expressions are given for the excitability threshold and the delay
between input and output pulses. Under the influence of optical noise, the system displays coherence reso-
nance: below threshold the laser produces pulse trains with minimal jitter for a particular optimal noise level.
This all-optical coherence resonance allows direct experimental verification.
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[. INTRODUCTION A perturbation moving the system across the saddle point to
the white dot results in a large amplitude excursion around
The notion of excitability comes from biology and chem- the invariant circle. This corresponds to a single pulse as
istry where excitable systems have been known for someketched on the right side of Fig(d. There may be several
time now[1]. Spreading excitation waves were observed in gdairs of attractors and saddle points on the invariant circle
great variety of reaction diffusion systems, such as cardiawith the possibility of multistability{10]. Note that in both
muscle tissue and the Belousov-Zhabotinsky reacf@jp  types of excitability the amplitude of the excursion is inde-
Excitability is also an important concept in neuronal model-pendent of the perturbation, because the slow manifold and
ing, where it is considered to constitute the mechanism bethe invariant circle determine the maximum of the pulse,
hind the spiking behavior of nerve cell,3]. More recently, — respectively.
excitability has also been found in optical systems, namely in In this paper, we study excitability in a semiconductor
nonlinear cavities with temperature-dependent absorptiofaser with a saturable absorber modeled by the Yamada
[4], lasers with optical feedback5] and lasers with a satu- model[11]. This system, which is of a slow-fast nature, con-
rable absorbef6]. stitutes a simple model fo® switching in semiconductor
Following the biology literatur¢1,7], a system is said to lasers. Its dynamics and bifurcations were recently studied in
be excitableif it is at an attracting equilibrium state, but can much detail in Ref[6], where it was noted that the system is
be triggered by a sufficiently large but still small perturbationexcitable just before threshold. Here we study this type of
to produce a large amplitude excursion, after which the sysexcitability and the dynamical consequences thereof. The
tem settles back to the attractor in what is called riéfeac-
tory phase After the refractory phase, the system can be
triggered again. There are essentially two known types of
excitability. First, there is excitability due to an S-shaped
slow manifold in slow-fast systems as in the FitzHugh-
Nagumo model of neuron spikirid,3,7] as sketched in Fig.
1(a). A (sufficiently large perturbation can bring the system
from the attractor to the white dot in the phase portrait on the
left. From there the system makes a quick jump to the right
branch of the slow manifold, which it then traces before it
jumps back to the left branch and relaxes back to the attrac-
tor. This leads to a square-shaped pulse as sketched on the
right of Fig. 1(a). Second, there is excitability due to an
attractor close to a saddle point on an attracting invariant
circle [8,9] as sketched on the left in Fig(). The fact that
the attractor and the saddle point are close together means A
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that the system is close to a saddle-node bifurcation on a ¢

limit cycle (also called infinite period saddle-node bifurca- £ 1. Three types of excitable systems sketched as phase por-
tion or codimension-1 homoclinic saddle-node bifurcation irajts (left column, together with the respective time series of the
response to a perturbatidnight column: the classical S-shaped
slow manifold as in the FitzHugh-Nagumo equatiaj an attractor
*Author to whom correspondence should be addressed. FAXclose to a saddle point on an attracting invariant citble and the
+31-20-444-7899. Electronic address: dubbeldm@nat.vu.nl excitability of a laser with absorber studied here.
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situation is sketched in Fig.(d) and can be explained as noise and then we show that the system displays coherence
follows. The off solution withl=0 is an attractor, but a resonance when optical noise is injected. We finally draw
perturbation can push the system above the stable manifolpnclusions in Sec. V.

to the white dot in the phase portrait on the left. From there

the system produces a single intensity pulse and then relaxes Il. DYNAMICS OF THE YAMADA MODEL

slowly back to the off solution by creeping along the slow
manifold {I =0}. The pulse is very short compared to the
refractory phase, as is sketched on the right side of Fig. 1
In the Yamada model there is no upper limit to the height o
a pulse, which turns out to depend linearly on the energy of G=»A-G-GlI
the input pulse; see later sections for more details. Since 4 )
self-pulsations have been found in semiconductor lasers both

The starting point of our analysis is the Yamada model
without noise. This three-dimensional dynamical system is
fgoverned by the dimensionless equations

in the stripe/11-13 and the longitudinal configuratidri4], Q=y(B—Q-aqQl), @
we expect this excitability to be detectable experimentally. ]
Excitability in this laser has a number of potential appli- I=(G-Q-1)I,

cations. The laser could be used as an optical switch, which
reacts only to sufficiently high optical input signals. This WhereG models the gainQ the absorption, antis the laser
could be used for clock recovery. The main application weintensity. The parameters in Eqél) have the following
investigate here is pulse reshaping: a small wide input pulseaningA is the bias current of the gaiB,is the amount of
can trigger a large short output pulse. We numerically invesabsorption, and describes the differential absorption rela-
tigate this and show that the shape of the output pulse ifve to the differential gain. The parametgrdescribes the
independent of the shape of the input pulse. The pulse heigfiglaxation rate of the gain and the absorber and it is small,
depends on the energy of the input pulse, but also on theypically of the order of 10°. The Yamada model is there-
parameter values, and in particular on the gain and absorb&pre a slow-fast system, whet@ and Q are the slow vari-
relaxation ratey [15]. By exploiting the slow-fast nature of ables and is the fast variable. The pla{é=0} is invariant
the system, we derive analytical expressions for ékeit-  under the flow and at the same time a slow manifold of the
ability threshold the minimal perturbation needed to trigger System. This model is valid for two types of lasers with
the system, and for the delay between input and outpu@bsorber: the two-segment laser and the stripe laser. For the
pulses. Finally, we show that spontaneous emission does nb¥0-segment laser, in which the gain and the absorber are
excite the system when operated sufficiently far belowspatially separated in the longitudinal direction, the decay
threshold, so that pulse reshaping appears to be possible irfignes in the gain and the absorber need to be of the same
realistic, noisy setting. order. For the stripe laser, in which the absorber is consti-

An effect closely related to excitability, and with potential tuted by the unpumped regions accompanying the gain re-
applications for jitter reduction of pulse trains,dsherence gion on both sides in the transversal direction, the diffusion
resonance(CR). Below threshold the laser produces noise-between the gain and the absorber needs to be negligible.
induced pulse trains, and CR is the effect that their coherencgelf-pulsating lasers of either type satisfying these assump-
is maximal for a particular noise level. Coherence resonanctions are readily available.
(in some sense a special case of stochastic resorn&mRe The complete dynamics of Eq€l) was obtained in Ref.
[16—19) has recently been studied in a number of systemd.6]. Here we concentrate on the parameter regime for which
In Ref. [10] it is shown that a two-dimensional dynamical the system shows excitability. This is why we fix the absorp-
system with an invariant circlemuch like in Fig. 1b)] can  tion parameters to realistic values foQaswitched laser. We
show CR. In the FitzHugh-Nagumo systd®0] and in the chooseB=5.8 anda=1.8 for the remainder of this paper,
Hodgkin-Huxley neuron moddR1], CR due to excitability —but any values oB and a would do as long a88(a—1)
of type (a) in Fig. 1 has been found. Recently, CR has beer>1. The exact value of is then not important, and for any
reported experimentally in a semiconductor laser with opticaly<<0.05 the behavior of the laser is qualitatively as sketched
feedback and noise in the pump source, which is probablyn Fig. 2.
due to excitability of typdb) in Fig. 1[9]. In the bifurcation diagram in theA(|) plane as presented

Here we show that a laser with a saturable absorber digh Fig. 2, we plot in boldface the maximum of the intendity
plays all optical CR. This is a consequence of the excitabilityversus the pump currem for the fixed value ofy=0.04.
of type (c) in Fig. 1, and we expect CR to be observableThe dashed curve corresponds to unstable behavior as ex-
experimentally. When optical noise is injected into the lasemplained below. There are three bifurcatioBsT, andH di-
below threshold, the system produces a train of pulses. Thendding the A line into four regions, denoted by 1 through 4,
is a minimum of the jitter of this pulse train, which is clear of different dynamics as presented by the four sketches of
evidence that the system displays CR. There may very welphase portraits. Note that the missing direction is always
be future applications of this effect for generating coherengttracting, so that two-dimensional phase portraits sufti¢e
pulse trains, for example for optical communication systemsln Fig. 2 we plot the gairG horizontally and the intensity

We proceed as follows. In Sec. II, the Yamada system igertically; the slow manifold1 =0} is at the bottom of each
introduced and its basic dynamics and bifurcations are disphase portrait. In region 1 the only attractor is the off solu-
cussed as needed here. In Sec. lll, excitability below thresttion, the attractor ofl =0}. In the saddle-node bifurcations
old is discussed together with its use for pulse reshaping. Itwo saddle points are born, so that the phase portrait in re-
Sec. IV, we first study the influence of spontaneous-emissiogion 2 still has the off solution as the only attractor. In the
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FIG. 3. Three different input pulses and the resulting output
pulses forA=6.5, y=0.001,B=5.8, a=1.8. The perturbation
amplitudel, is 14 for the § pulse and 0.014 for the block and

FIG. 2. The dynamics of a laser with absorber. The bifurcation .
Gaussian pulse.

diagram in the A,l) plane features the three bifurcatio8sT, and
H, which divide theA axis into four regions of qualitatively differ-
ent phase portraits as sketchégittractors are boldfaceq. different (triggering input pulses were introduced into the
system: aé pulse, a block pulse, and a Gaussian pulse. In
absence of an external perturbation, the laser is off. HowFig. 3 we present the three output pulses for the three differ-
ever, a single small perturbation can bringbove the stable €Nt triggering pulses. In Fig (8 the input pulse is very short
manifold of the lower saddle point. This results in a single(d Peak signal leading to a large output pulse. In FighB
pulse inl, after which the laser settles back to the off solu-the input pulse is a block pulse of the same energy asSthe
tion; compare Fig. (). In other words, the laser is excitable Pulse. The resulting output pulse is practically equal to that
in region 2 for pump currents betwe&andT. The ampii_ for the 8 input pulse. Moreover, the delay between the input
tude of the perturbation needed to create a pulse decreasesiidse and the output pulse is equal for both cases. Finally, in
Ais increased: the system is “most excitable” just before theFig- 3(c) the input is a Gaussian pulse. The energy contained
thresholdT. At T there is a homoclinic bifurcation practically in the Gaussian pulse is a little greater than for the perturba-
simultaneous with a transcritical bifurcatifé]. As a conse- tions (a) and(b). This is necessary because, due to its more
quence, a stable limit cycle appears and the lower saddliglobal nature, part of its energy is lost before it can contrib-
point vanishes, which physically means that the laser selfute to triggering. Figure &) shows that the produced output
pulsates in region 3. The pulsations finally increase in frePulse has the same shape as before in pai@land (b),
quency and become more sinusoidal before disappearing fthough it appears after a somewhat longer time. This indi-
the Hopf bifurcationH. In region 4 there is a single attractor cates that the system is perturbed to a point closer to the
with positive intensity, which Corresponds to cw output of stable manifold, which forms the eXCItabIIIty threshold.
the laser. The fact that for a perturbation with long tails, such as the
Gaussian pulse, more energy is required to reach the excit-
ability threshold, can be explained as follows. The energy
contained in the tails is in some sense lost, because the in-
The laser with a saturable absorber is excitable beforéensity rise in the system due to the added intensity from the
threshold in region 2 when its phase portrait is as sketched iffils is canceled by the intensity decrease due to the system’s
the respective panel of Fig. 2. We now study this type offélaxation towards the stable equilibrium or “off-state” with
excitability in more detail. First, we consider the reaction ofcoordinates G,Q,I1)=(A,B,0). Physically this means that
the laser to different input pu|ses_ Second, we derive apme tails of a perturbation should be short with reSpeCt to the
proximate expressions for the excitability threshold and thdelaxation time of the gain and absorber, because otherwise
deiay between incoming and outgoing puisesl which Showge'laxation will be the dominant process in the perturbation
that the laser becomes indeed “more excitable” the closer tdails.
threshold it is operated. The discussion above illustrates that the delay between
the incoming and outgoing pulses, defined as the time differ-
ence between the produced output peak and the input pulse
maxima, is an important quantity. We numerically obtained
To find the exact influence of perturbations introducedthe delay for different values of the perturbation amplitugle
into the system, we perform numerical simulations of Egsof a Gaussian input pulse. In Fig(a} the delay is depicted
(1) for the fixed value ofA=6.5 (just before threshojdand as a function ofl,. It goes to infinity when the exitability
for y=0.001.(Recall that we seB=5.8 anda=1.8.) Three threshold is approached and is a decreasing func-

lll. EXCITABILITY

A. Pulse reshaping
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FIG. 4. The delaya) between a Gausssian input pulse and the
output pulse as a function of the amplitude The dots denote the
numerical results and the solid curve represents the analytical ex-
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pression forty of Eq. (13) for Ig‘: 1.3. The output pulse amplitude
(b) plepgnds linearly on the perturbation amplitude relative to the FIG. 5. The excitability threshold as a function of the pump
excitability threshold. parameterA. The dots denote numerical data, the dashed curve is
tion of 1,. The amplitude of the output pulse was also ob-the first-order approximaltiolflh. of Eq. (10), and the solid curve is
tained by numerical simulation and is displayed in Figh)4 the second-order approximatioht of Eg. (12).

As was mentioned before, the amplitude of the output pulse . ] ]

is not constant, but depends linearly on the amplitude of thénto Egs. (1), which leads to the following expressions for
input pulse relative to the excitability threshold. This can bethe gain and the absorber:

understood as follows. All incoming pulses with sufficiently

large amplitgdes to trigger the system will experience the G=A— A Jteyt'l(t/)dt/ e M

same net gain. Due to the slow evolution of the absorber and 0

the gain, they only saturate after the output pulse attained its )
maximum, since hereG|l andayQI are of order 1. Clearly, t,

there will not be a linear dependence of the output amplitude Q=B-vyaB foeyt I(t)dt’ |e” .

on the triggering pulse for very large triggering pulses due to
the saturation effects, but we still expect that this linear detpege expressions are only valid werdiffers only a little
pende_nce can be observed experimentally for sufficiently,,, A, andQ only a little from B. Substituting Eqs(2) into
small input pulses. Egs.(1) gives after differentiation the second-order differen-
o tial equation for the intensity,
B. Excitability threshold and delay

In this rather technical section, we concentrate on finding =12+ yll=9[(A-B-1)+(aB-A)I]I% (©)
analytical expressions for the excitability threshold and the o - S
delay between incoming and outgoing pulses. Geometricallyl he initial conditions of Eq(3) arel(0)=1,, which implies
the excitability threshold is determined by the distance bethat 1(0)=(A—B—1)l,. Introducing rescaled variables
tween the attractor and the stable manifold of the saddlg(t)=I1(t)/I, and definingr=B+1—A, we can rewrite Eq.
point; see Fig. (c). To derive an analytical expression of the (3) in the more suitable form
excitability threshold, we make use of the slow-fast nature of

the system, meaning that the gain and the absorber evolve on Yy —y2+ yyy=— yay?+ y(aB—A)l4y3,
a much longer time scale than the intensity. The method of (4)
multiple scaleq22] from singular perturbation theory was y(0)=1, y(0)=—a.

used in Ref[15] to obtain an asymptotic expression for the

period of the pulsations for a laser operating very close to th@ll terms linear iny except they® term on the right-hand
lasing threshold. However, in our present setting the systemide of Eq.(4) are small, so Eq4) is reduced to

is perturbed by an order 1 perturbatigthe excitability

threshold is of order )1 as can be seen from the numerical  yy—y?=y(aB—A)loy®, y(0)=1, y(0)=—a, (5
computations in Fig. 5. This is why we use a different

method, which, however, also uses the slow-fast nature ofhich can be solved exactly by assuming a solution of the

the system. form
We assume that the system is initially at the equilibrium .
state G,Q,1)=(A,B,0) and that at=0 a § shaped trigger- y="f(y). (6)

ing signall ,e=1,6(t) is applied to the system. The assump- L . .
tion of a & pulse can be relaxed and it is sufficient that theF"om the initial conditions ory it follows that f(1)=—a.
incoming pulse is of a much shorter duration than the relaxSubstituting the expression fgrinto Eq. (4), we obtain
ation time of the gain and the absorber. Because of the slow 2f2

evolution of f[he gain and the absorb_er, we can solve Hgs. (f2) = S =2y(aB—A)l o2, @)
for G andQ in the first-order approximation idG and 6Q y

by substitutin
Y g where the prime indicates differentiation with respectyto

G=A+6G, Q=B+5Q Equation(7) can be solved as
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f(y)=—Ja?—2y(aB—A)l,+2y(aB—A)lgyy. (8)  where the last term on the right-hand-side is due tostig
_ . _ and yay? terms.
From Eq.(8), y(t) can be obtained by integration as In Fig. 5 these two expressions for the excitability thresh-

old are compared with the excitability threshold obtained
2 2
Bi-a pr-a? t)

y(t)= iz

1+tar?| do— > ) numerically. This demonstrates that Eg0) is a fairly good

approximation to within 10%, and the second-order approxi-
mation given by Eq(12) is accurate to within 5%.

where we introduceg? and ¢, defined by A first-order approximation of the delay between incom-
ing and outgoing pulses can be obtained as follows. When

the system is above threshold, the time at whicbhanges
sign, which we calty, can be found by integrating E(6) or
using Eq.(9), which gives

The minimal perturbation amplitude necessary to trigger

B2=2y15(aB—A), o= arctar( ﬁ) .

the system, or to bring the system above the stable manifold 2 1

of the saddle, is determined by the requirement of the exis-ty= = arcta =
tence of a nontrivialpositivey) solution ofy=0. In terms \/ 1- lo 2 v(aB— Al - lo

of gain and absorption this means that there must be some 1. [2¥(a o] 1.

. . . . 0 0
instance for which the gain exceeds the total loss, which (13

means that the plaf& — Q— 1= 0} must be crossed. Such a
solution is only possible if thg-independent term under the This timety constitutes the dominant contribution to the de-
square root in Eq(8) is less than zero. The excitability lay, because the contribution of the output pulse duration to
threshold is therefore the value &f for which this term  the delay is usually much smaller and can therefore be ne-
vanishes. This gives the first-order approximation for the exglected. In Fig. 4), the numerically obtained values for the
citability threshold, delay of a Gaussian triggering pulse are compared with the
5 ) delay timety given by Eq.(13), into which we substituted
|th= @ _ (B+1-A) . (10) the numerically obtained value for the threshold intenlsﬂ’ty
2y(aB—A) 2y(aB—A) Notice the good agreement between the two.

This expression can be improved by realizing that the

largest error comes from the first-order approximation of IV. THE EFFECT OF NOISE

gain and absorption in E2). Using Eq.(9), one obtains the Here we consider the effect of spontaneous emission and
second-order approximation f@ and Q, injection noise in the excitability regime and ultimately use
ot injection noise to trigger the system and obtain a series of
—A_ vAe _Rr_ ! S UTTIATTY pulses. In order to study spontaneous-emission noise and in-
G=A (aB—B—1) | e I(t")dt . . ) .
aB—A 0 dicate how noise terms enter the evolution equations, we

. start from the nonscaled equations
+Lml(t’)e7"dt’}, | "
Ni=Jp— Ts_gl(Nl_Ntl)Sa

yaBe "
~ aB-A

+ J;\/az—ﬂh ,87y|(t’)e7"dt’}.

Q=B (aB—B—l)foteyt'l(t’)dt’

N,
Ny= — 7_92(N2—Nt2)31 (14

S

S=[g1(N;—Ni3) + g2(Ny—Nip) =T o] S+ Re+ F(t).

The differential equatior4) in the second order approxima-

) Here the number of electron-hole pairs in the pumped region
tion becomes

is denoted byN,, the number of electron-hole pairs in the
unpumped region by,, and the number of photons &

ng g2 — 2 3 _RrR_
YY=y tyyy=—vyay“+yloy*(aB-B-1) Further,J, is the pump current anH, is the inverse photon
+7|0\/my3 (12) lifetime. The transparency values for the gain and the ab-

sorber areN,; and N,,, respectively. The carrier lifetime is
with the same initial condition as in E). Solving Eq.(11) ~ 7s and the differential gain in region one is given By,
in the same way as E@4) gives a second-order approxima- While g, denotes the differential absorption in region two.
tion of the excitability threshold, The dimensionless pump parameteis related to the bias
pump current, by
2" 2y(aB-B—-1)

a? 1 2a
3(aB—A)

. 017s Niq
A= [y (Jp Ts )

o 1| 2y
taB—B-1|- Mo

The noise termK, andF4(t) are as in Ref[13] given by
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BN, which is numerically equal to 0.102 for our parameter val-
Rep=——" (Fslt1) Fsft2)) =2RsSa(t; —t5). ues. The value ofg, can be considered as the value of the
s noise threshold. If Eq(15) is transformed into a Fokker-
By performing a transformation as in R¢6] and by adding Plank equatior{24,25, the Kramers escape time from the
a termK;(t) for injected optical noise, Eqs$14) are trans-  Point (G,Q,1)=(A,B,0) to (A,B,l) can be calculated as
formed into

: Tz [ "ax @220 [*gy g-09%0 (16)
G:fy(A_G—Gl), esc D 0 o .
Q=17y(B—Q-aQl), (15  Numerically this givesTe.~10'%4 for D=10 %, which
. shows that spontaneous emission by itself is not capable of
I=(G—Q—1)I+BsfG+P)+D+Kgft)+Kiy(t). exciting the system(For comparison, note that,s.~20 for

_ . . D=0.01) One should notice that the values Igf and T
The stochastic term representing the Gaussian spontaneogépend on the parameters and particularly on the pump cur-
emission satisfies rent. Very close to thresholdA(—T), |, and Ts. become
_ _ practically zero. This means that sufficiently close to the
(Kst)Kst2)) = 2B G+ P)I8(t1—t5),  (Kgf1))=0. thresholdT, spontaneous emission can excite the system and
Furthermore,P is a constant tern{transparency offset of pr?d(l;qe a Tequer;\ce ?}f pulsttas.f Hot\)’vaer’thheiﬁ Wehalgfa Inter-
gain given by P=N;;9,/T"g, which is numerically equal to ested in values oR sufliciently tar below the threshold,
@/here spontaneous emission cannot trigger the system. We

2.466 in our simulations. The spontaneous emission noisConclude that for ordinary values .., the excitable laser
strength as given by t factor is typically of the order of sp: ) .
9 g y thep ypically below threshold can be used for pulse reshaping and noise

10~ ° for semiconductor lasefd 3]. Finally, Kin(t) is opti-

o X i o filtering.
cally injected Gaussian noise satisfying An interesting topic for future research is the idea of self-
(Kin(t) Kin(t2))=2D18(t3—t,),  (Kin(1))=0. triggering a laser with a saturable absorber in the excitability

regime. When a part of each produced output pulse is fed

Here D denotes the strength of the injection noise. The sysback into the laser after an excursion through a fiber, this is
tem with only injection noise is equivalent to the system asexpected to produce very regular output pulses, whose fre-
described in Ref[23]. guency is tunable by changing the length of the fiber. Note

In all numerical simulations we take=1.8, B=5.8, A  that this is different from self-seeded gain switched lasers
=6.5, andy=0.001, corresponding to the following values [26], because the pump current is constant and the pulses are
of the nonscaled variabldd2]: N;;=6.72x10", N;,=9.0  produced byQ switching.
x 10, 7,=3.0 ns andg,;=1.435<10 8 ps !, g,=2.252
X108 ps !, and finallyI'(;=0.3 ps* andJ,=13.0 mA. B. Coherence resonance

We remark that numerical simulations show qualitatively _ L ) _
the same effects independent of the realization of the noise. N the region of excitability, we numerically simulated
This demonstrates an insensitivity of the model to the parEdS: (19 (with noise by a simple forward Euler algorithm
ticular implementation of noise. an_d average_d over at least 2000 cycles. Throughout all simu-

lations, we fixedB=5.8, a=1.8, andy=0.001; the sponta-

neous emission was set {B,= 1.0 10 ° and the pump
current wasA=6.50, which is well in the excitability region

In order to study the influence of spontaneous-emissiofi6.06,6.§. We then considered the influence of injected
noise, we seb equal to zero in Eq15). To find its effect on  noise of variable leveD.
the output pulse shape and the excitability threshold, we per- The injected noise, being much larger than spontaneous-
formed numerical simulations of Egd.5) for several values emission noise, triggers the laser to produce pulse trains;
of the spontaneous-emission fact@y,. We found that three examples are shown in Fig. 6 for three different noise
spontaneous-emission noise does not lead to significam¢vels D. Coherence resonance manifests itself as an in-
changes in the excitability threshold and the amplitude of thereased coherence of the pulse train for a particular noise
outgoing pulse. This can also be illustrated by the followinglevel. It is known that small pump noise in combination with
argument. If one considers once more the phase portrait & periodic driving of the pump current can produce SR in
Fig. 2 in the excitability regime 2, it can be seen that thelasers with a saturable absortja7]. Furthermore, CR due to
noise needs to be at least strong enough to bring the intensitie addition of noise in the pump current has recently been
above the stable manifold at the lowest possible barrier. Thifound in a laser with optical feedba¢R]. However, in the
barrier is given by the position of the saddle point, which liespresent setting adding noise to the pump current is not an

A. Spontaneous-emission noise and the noise threshold

in the{G—Q—1=0} plane and has thevalue efficient way of producing CR. Highly irregular pulses are
obtained and an unrealistically high noise let@l the order
| = —B-1-ataA of the dc pump currentis needed to produce an effect. This
P 2a is why we study all optical CR.
> The pulse train in Fig. ®) for D=0.015 is most coher-
_J(B+1lt+a-aA)’-4(1+B-Aa ent. This effect of CR is not easy to see from the time series,

2a ' but is evidenced by the corresponding power spectra



6586 DUBBELDAM, KRAUSKOPF, AND LENSTRA PRE 60

I 600
400
(a) I
200
0 20000 t 40000 400
1
300
200 (b)
100 200
0 20000 t 40000
I :
150
100 (c)
soJ
A gl
0 20000 t 40000 FIG. 8. Two-dimensional projection of orbits in phase space on

the (G,l) plane for the three time series of Fig. 6, namely [r
FIG. 6. Time series of(t) for a laser with fixed spontaneous =0.004(a), D=0.015(b), andD=0.04 (c).

emission of Bg,=1.0X 10°° and for three different values of the
injected noise level show CR. F&=0.004<DF (a) the average two consecutive pulses. Because the gain cannot get near its
pulse repetition time is 6837, fd@=0.015=DF (b) itis 2063, and  ynsaturated value, the amplification is reduced. This effect is
for D=0.04>DF () it is 1014. clearly demonstrated in Fig. 8, where a two-dimensional pro-

jection of the trajectories on th&s(1) plane is depicted. As
(S(v))={|I(¥)|?) in Fig. 7, which were obtained by averag- the noise is increased, the system is excited for smaller val-
ing over 100 different time serig$(t)]. The signal-to-noise ues ofG. Notice also that the uncertainty in tl@aximum)
ratio (SNR) of the spectrum is defined &&,/(Aw/wp) and  pulse amplitude and in thé& value for which the system is
can be used as a quantitative measure for CR. Hieyés the  excited increases witD; see Figs. 6 and 8.
relative height of thgfirst harmonig peak in the spectrum Another way to quantify these observations of CR is to
and Aw/w,) denotes the relative width of the peak with study the pulse repetition times and their fluctuations. The
central frequencyw, and full width at half maximum w. coherence of the pulse train is given by the normalized tim-
For D=0.004, the spectrunia) represented by the dashed ing fluctuations or jitteff 20],
curve has a small peak and an SNR of 0.08. For a noise level
of D=0.015, the spectrunib) represented by the dotted Oty
curve shows a narrow and high first-harmonic peak, which R= (ty)”
has an SNR of 3.28. Increasing the noiseDte-0.04 gives
the spectruntc) represented by the solid curve, which has anHereq,_is the standard deviation of the total pulse repetition
SNR of 0.04. Notice that the first harmonic in the spectrumyjne ysyally referred to as jitter in pulsating lasers. In the
for D=0.04 and the second harmonic f0r=0.015 are very aqance of CR, the normalized jit@has a minimum for a
close together. The peak in the spectrum shifts toward highesa icylar noise level. This is indeed the case for the laser
frequencies for increasin, because stronger noise triggers ith an absorber considered here as can be seen from Fig. 9,

a new pulse faster; see also Fig. 8. _from which the value oDR~0.015 can be found. We re-
Notice that the amplitudes of the pulses decrease for in-

creasingD, since increasing noise implies faster triggering

17

) . 0.4
and consequently less time for the gain to recover between
R
<S(v)> ' ' 0.3
0.2}
0.2
0.1}
0.1
0.0
FIG. 7. Evidence of CR in the power spectra for the three dif- 503 D 0.01

ferent time series in Fig. 6. F@ =0.004(a) the SNR is 0.08, for
D=0.015=DR (b) the peak is highest and the SNR is 3.28, and for FIG. 9. The jitterR as a function of the injection noise for
D=0.04(c) the SNR is 0.28. constantBs,=1.0x10"°.
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mark that this value is close, but does not exactly coincide Finally we mention that injected noise also has an influ-
with the value ofD for which the SNR attains its maximum, ence just above threshold. From previous studies of the ef-
because amplitude fluctuations contribute to the JR&.  fects of noise in lasers with a saturable absorber in the self-
The evidence of CR as a function of the injected noise levepulsating regime(above thresholdas performed in Refs.
D discussed above is immediately verifiable by experiment[23,31,13, it is known that noise has the effect of increasing
To explain the presence of CR in the Yamada model, wéhe self-pulsation frequency. This shows up as a kink in the
divide the pulse repetition timig=t,+t. into the activation ~fréquency versus pump current cui3,31 and can be in-
timet,, the time needed for the noise to trigger a pulse, andérPreted as the ghost of excitability: the system is kicked off
the relaxation time,, which is the time including the pulse the limit cycle in regime 3 of Fig. 2 by noise before it
needed by the system to relax so that eventually a new puld€aches the “take-off point” where a new pulse would begin
can be triggered. It is not possible to determine from the timé" the absence of noise. In other words, the next pulse arises
series which part of the timig constitutes, and which part earlier tha_n it would W[thou§ noise. This constitutes an indi-
t.; for this one needs to consider the orbit in phase spacé,ECt experimental confirmation that the system is excitable.
see Fig. 8. The different timgg andt, and their respective
standard deviations have different dependence on the noise
level. The activation time decreases with increasing noise, We studied excitability and coherence resonance in a
which is in fact a Kramers escape rate problg24,29,30.  (semiconductdrlaser with a saturable absorber as described
For low noise levelst, constitutes the dominant contribution by the Yamada model. A numerical study showed that the
to t+ and(t2)~(t,) [20], so thatR is close to unity. When system can be triggered by a small input pulse to produce a
the noise is increased,) decreases, as doég) until (t;)  single large output pulse whose shape is independent of the
constitutes the dominating contribution ta;) and (tZ) ~ perturbation. The amplitude of the output pulse was demon-
>(t2). The dependence ¢tf.) and its fluctuations o can  Strated to depend linearly on the amplitude of the input pulse
be estimated by using singular perturbation theptg), 'elative to the excitability threshold. Furthermore, we gave
which shows that(t,) decreases with increasing noise analytical expressions for the excr;ablhty threshol_d and the
whereagt?) slightly increases for sufficiently large values of d€l2y between incoming and outgoing pulses. Typical values
D, so thatR increases again. This considerationt pfndt, of the spontaneous-emission factor will not influence the

accounts for the minimum iR that constitutes CR properties of the output pulses noticeably, so that the excit-

The dependence of and its fluctuations on the noise has _ability reported here appears to be suitable for pulse reshap-

the following physical explanation. When there is very little Ing. - . o
noise, each time the system gets trigge@dind Q have When sufficiently strong optical noise is injected, the sys-

about the same values, namely those where the excitabilit m shows coherence resonance. The noise results in a pulse

threshold is minimal, that is, close to the saddle point. Th rain with minimal jitter for a particular level of injected

system is excited when the gain and the absorber relax tleise' This all optical CR was explained as a direct conse-

wards their unsaturated valuésand B, respectively, as in quence of _the gxcitability of the system and allows experi-
Fig. 8@. When the noise level is increased, the system getgwental yenﬂcaﬂqn. . o

excited before reaching the vicinity of the saddle point. This Practical applications of ex_cnablhty and CR, for. example
means that the system has less time to relax, and the gain agg’(:k recovery, pqlse reshaplng, and th_e product!on of tun-
the absorber have not recovered to their unsaturated valu le pulses, remain a subject for future investigations.

but remain at a certain degree of saturation as in Fis. 8
and &c). Notice the direct connection between the value of
the gain and.: the smaller the gain at the moment of excit- We wish to thank J.R. Tredicce for helpful discussions.
ing a new pulse, the less gain there is for the output puls@his research was supported by the Foundation for Funda-
and the shorter is.. However, the fluctuations ity do not  mental Research on MattdfOM), which is financially sup-
depend so sensitively on the noise level, but are approxiported by the Netherlands Organization for Scientific Re-
mately constan(slightly increasing with increasing nojse  search(NWO).

V. CONCLUSIONS
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