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Granular cooling of hard needles
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(Received 9 February 1999

We have developed a kinetic theory of hard needles undergoing binary collisions with loss of energy due to
normal and tangential restitution. In addition, we have simulated many particle systems of granular hard
needles. The theory, based on the assumption of a homogeneous cooling state, predicts that granular cooling of
the needles proceeds in two stages: An exponential decay of the initial configuration to a state where transla-
tional and rotational energies take on a time independent (@ifferent from unity, followed by an algebraic
decay of the total kinetic energyt™2. The simulations support the theory very well for low and moderate
densities. For higher densities, we have observed the onset of the formation of clusters and shear bands.
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I. INTRODUCTION Il. DYNAMICS OF COLLISIONS

Consider two rods of equal length massm and moment

Gas kinetics of inelastically colliding particles has re- of inertial. The center of mass coordinates are denoterd, by

ceived a lot of interest in recent ’years, m_ainly in the context, ,. The orientations are specified by unit vectagsand
of g'ranular mattef;]. BoI.tz.mann s equation has bee_n gen- U,, which span a plan&,, with normal

eralized to inelastic collisions which are characterized by
normal restitution and possibly tangential friction or restitu-
tion [2]. Extensive simulations have been performed, in par-
ticular event driven(ED) algorithms are very effective for
the kinetic gas regime. A variety of interesting phenomena ) )
have been observed, for example instabilities of the homoYVe decompose;,=r;—r, into a component perpendicular
geneous state towards shearing or clustef®dgs]. Most  T12=(f12-U,)u, and parallelr},=:(syUy—Spup) t0 Eyp
studies so far have concentrated on spherically symmetritsee Fig. 1 The rods are in conta¢?,8] if r;,=0 and si-
objects, whereas real grains are in general nonspherical amultaneouslys,, <L/2 and|s,|<L/2.

often randomly shaped. The question arises whether the ob- We want to determine the postcollisional center-of-mass
served phenomena are generic for granular matter or specifielocities @7, v5) and angular velocitiesd; , @5) in terms

for spherical objects. of the precollisional velocitiesy(; , vy, ®,, andw,) or mo-

In this paper we discuss the cooling properties of hardmenta ,=mv;, p,=mv,). Conservation of total linear
needles in terms of a time evolution operator, which ac-momentum implies
counts for the exchange of translational and rotational energy
as well as for normal and tangential restitution. In addition p;=p.+Ap,
we have performed ED simulations of large systems with up
to 20 000 needles.

For low and moderate densities the system does not show

any clustering instabilities but remains homogeneous on the
longest time scales, when the energy has decayed tt' b®
its initial value. This allows us to formulate an approximate
kinetic theory, based on the assumption of a homogeneous
state. Cooling is found to proceed in two stagds:A fast
exponential decay to a state which is characterized by a time
independent rati@ of translational to rotational energy2)
A slow algebraic decay liké™? of the total kinetic energy.
The latter is determined by the coefficient of restitution and
by the distribution of mass along the needles, including eg-
uipartition for one particular mass distribution. Simulations
and approximate analytical theory are found to agree within
a few percent.

For high densities we observe long range correlations in

_upXup
ui_|Ul><Uz| '

@

Po=p,—Ap. 2

the velocity field and a buildup of large density fluctuations. 1 2

These large-scale structures are similar to those seen in dense

systems of smooth spheréd8—6]. No alignment of the FIG. 1. Configuration of two needles projected in the pl&qe
needles with the hydrodynamic flow field is observed. spanned by the unit vectotg andu,.
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No torque acts at the points of contact, so that

1 d d
ic == e — —|rt —Is;
. Ll =5 ; ‘dt|r,J @( il )@(L/Z E
12

, So1
I Ui XAp, wy=wy— —

XO(L/2—|s;i[)o(|r;[—0%) (b — 1). (11)

holds. To determine the collision process we consider theéjere®(x) is the Heaviside step function. The interpretation
relative velocity of the contact points which is given by of the pseudo-Liouville operator of Eqll) is intuitively
clear. The factofd/dt|r};|| is the component of the relative

Pi—P2 velocity of the contact points perpendicular to both rods. It

V, = +SqUq — SpyUsp. 4
' 1271 marte @ yields the flux of incoming particle:@)(—d/dt|rilj|) is non-

_ _ zero only if the two particles are approaching a@gL/2
We mtroduce two p_aramete&sandﬁto characterize normal _|Sij|)®(L/2_|Sji|)5(|rﬁ|_o+) specifies the conditions
and tangential restitution: for a collision to take place. The operatoy replaces mo-

, menta and angular momenta of particlendj before colli-
Vi-u =—€V-u, €€[0]], (5)  sion by the corresponding ones after collision.
The time evolution of nonequilibrium expectation values
Vi-up=—pBV,-ug, (6)  of an observabl&({r;,u;,p;,U;},t)=A(T;t) is defined by
V! -U,=— BV, U, e[—1,1]. 7
T TVt pelm L] " <A>t=f de(r;O)Aw;t):f dTp(T;)A(T';0).
The above equations characterize the collision process com- (12
pletely and determine the postcollisional momenta in terms
of the precollisional ones. I" denotes the whole phase space a(id;t) is theN-particle

In this paper we specialize to the case of perfectly smootiphase space distribution function, whose time evolution
needles, i.e.8=—1, which considerably simplifies the col- ,(I";t)=exp(=iL’t) p(I';0) is governed by the adjoint’
lision rules. The change of linear momentum is then given by the time evolution operataf, . Here we are interested in
Ap=au, with the average translational and rotational kinetic energy per
particleE,=m/(2N) =02 andE,,=1/(2N) 2 w?, as well as
_ —(1+e)(Vi-uy) the total kinetic energf =E+ E,y.
ot (2,42l ® It is impossible to calculate expectation values as given in
127521 :
Eq. (12 exactly and we are forced to approximate the
N-particle distribution function. We assume that the system
ll. ANALYTICAL THEORY stays spatially homogeneous and that both linear and angular
momenta are normally distributed. In a system which is pre-
tem of N colliding, hard rods proceeds similar to the case c)fpared in a thermal equilibrium.state' the initial decay rates
hard sphere46,9.10. The rods are confined to a three- can be comp_uted exactly ar_1d yield dlfferent_values for aver-
aged translational and rotational energy. This suggests defin-

dimensional volumé/ and interact via a hard core potential. : ) .
. . . . ! ing two different temperatures for the translational and rota-
The velocity of orientatiornu;= w;Xu, is confined to the

) i ) tional degrees of freedom, corresponding to the following
plane perpendicular ta, and is therefore described o gnqat; for theN particle distribution functiof10]:
generalized canonical momentap, =16, and Py,

The derivation of a pseudo-Liouville operator for a sys-

=1 ¢,siry, using spherical coordinates for the orientation, _ Ey Erot
The total kinetic energy then reads prcs(I';t) ~ex T Tl (13
N
He :2 i _2+i 2, 1 2 ) pucyI';t) depends on time via the average translational
kin™ & oMM T 2 P, 21 sirté; Pa |- Ty(t)=2/3(E,) and rotational energ¥,q(t) =(E,y). We are

interested in the cooling properties of a gas of hard needles
The time development of a dynamical variabla  and compute the expectation valu€s=2/3(iL E,) and
=A{r(t),u;(t),p(t),u;(t)}) for positive times is deter- T,u=(iL Ey. Using the approximate many particle distri-
mined by the pseudo-Liouville operatdr, bution of Eq.(13), we find two coupled differential equations

A{r Ui, b Uit D) =expli LA, Ui pr,uik0).
(10) 2Ty __f P
—_— . r

The pseudo-Liouville operator consists of two parts, 7T13r/2(1+€)
=Lo+ L’ . The first describes free streaming and can be T 312
expressed by the Poisson bracket with the kinetic part of the (1+ ﬁtkﬂ)
Hamiltonian i £Lo={Hyn, - - - }ps.. The second,L’. , de- + ﬂf dr— T 7
scribes binary collisions of two hard rods 2 Jo (1+kr?)?

Trot )1/2
1+ —kr?
Ty

1+kr?

. (19



656 HUTHMANN, ASPELMEIER, AND ZIPPELIUS PRE 60
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with y=(2NL2\m)/(3Vym) andk=(mL?)/(2l). The two 10° | 10°
dimensional integration extends over a square of unit length,  10° 10
centered at the origin. 107 107
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IV. SIMULATIONS

Simulations are performed using an event driven algo- .o 2 Double logarithmic plot of total kinetic enerdf
rithm where the particles follow an undisturbed translational_. 3/2Ty+ Tror In units of Ty(7=0) and of Ty /Tro; versus dimen-

d rotati | fi il llisi Th lociti sionless timer. The simulation data are from a system of 10000
and rotational motion until a collision occurs. The velocities o jies hox of length 24 and e=0.8.
after the collision are computed according to the collision

rules Eqs(2)—(8). For this algorithm collision times for each Momentum organizationf the particles shows up in the
pair of needles have to be determined numerically, where Wﬁydrodynamic flow fieldp,U,=(v;),. A good indicator

H o o /a-*
follow the algorithm proposed by Frenkel and Maguil. 73] for the build up of long range velocity correlations is the

More efficiency is achieved by using the stratagem of Lu-iig of the total kinetic energy of the flow to the total inter-
bachevsky[11] and a linked cell structure, which allows us energyS:=[ 2 (m/2)p U2 1/(Z .p,T")
to look for collision partners only in the neighborhood. The To investigategrientati%ngl ordaer?ngct/ve compute in ad-
algorithm is reasonably fast as long as there are only few,... e
. . dition the quadrupolar moment of the needldg;
needles in each cell of the linked cell structure, so that the—[?,(u--e)z—l] The unit vector is chosen either alona the
time consuming search for collisions is restricted to the few._irectic;n of the. article’s velocity or fixed in Space 9
needles in their own and the neighboring cells. On the othe?j P y pace.
hand, we have to choose the linear dimension of these cells

to be larger than the length of a needle, so that for high VI. SMALL AND MODERATE DENSITIES
densities there are many needles in each cell and the algo- g, gensities such that(V)L3<1, the system remains

rithm becomes slow. , , __homogeneous, orientationally disorderd and without long
We mention here that the algorithm runs into numericalange"velocity correlations up to the longest observed time
problems if the time between two collisions becomes t00;.5jes ie. when the energy has decayed to'16f its
short to be resolved properly as it usually happens during afitia| value. To check for spatial clustering, histograms of
inelastic collapse. To circumvent this problem, we usetthe ¢ ciyations of the local density, velocity and translational
model[12]: if the time between a collision and the preceding gnergy were compared to those of an elastic system but no
one for at least one particle is smaller than a critical valye  gignificant difference could be observed. Fluctuations, e.g.,
€ is set to 1. We believe that the influence of this procedurgy the |ocal density do not increase with time but remain
is small: there occurred only two instances in the S'm“|at'0n%tationary so that we can compare our approximate theory
presented here. _ , _ with the simulations. We show here a simulation which has
We performed large scale simulations for various values,een performed for 10 000 needles in a box of length 24 L.
of e in the regime of small and moderate densitiesypig corresponds to a density dfi{V)L3~0.72 or an aver-
[(N/\/_)L3s_1]. For high densitieq (N/V)L3=10] only @  age center of mass separatidh~1.1.
few simulations could be done. We show here a simulation ™| his range of densities, cooling of a gas of hard needles

of N=20 000 needles in a box of length1&vith €=0.9. proceeds inwo stagesFirst, there is an exponentially fast
decay towards a state which is characterized by a constant
V. HYDRODYNAMIC QUANTITIES ratio of translational and rotational energy. Second, there is

] ) o ) o an algebraically slow decay of both, the translational and

To investigate deviations froomogeneitywe divide  yotational energy, such that their ratio remains constant. Both
the simulation box into cells whose linear dimension is cho-of these regimes are correctly predicted by our approximate
sen to be large compared to the length of the needles bykeory, based on the assumption of spatial homogeneity.
small compared to the box size. Given the limitations due to |, Fig. 2 we plot the numerical solution of Eqd.4) and
finite size we choose cells such that on average about 2{15) for e=0.8 andk=6 as a function of dimensionless time
needles are in one cell. We then compute for each cell the _ yyT,(O)t. The total kinetic energyE=2T,+ T,y [in
number densityp,= (1N ce) Zi ccen, 1=(1)a, the transla- it of T, (7=0)] and the ratioT, /T, are compared to
tional energy per particlp,EL=((m/2)v?), and the hydro-  simulations. Analytical theory and simulation are found to
dynamic temperaturg”=E"—muU?/2. agree within a few percent over eight orders of magnitude in



PRE 60 GRANULAR COOLING OF HARD NEEDLES 657

F < 0 k=2
< o k=4
N <l<1 < k=6
12 AAAA 4 A §eg |
A 4 "
O o AAAAA <<]< < k=10
< a
OOOQQOQOOiAAZZ]Zq
: 2055824,
S1OE;DDDDDDDDDDDDDDDDDDDDgoggﬂ
oO
ooooo
o
00?°
0.8 000°"°
. L o0
o
0.6 - . , .
0.50 0.60 0.70 0.80 0.90

€

FIG. 3. Asymptotic ratidl /T, as a function ofe andk.

time.[T,,(0)=0 has been chosen as initial conditipn.
The decay ofT,/T,,; to a constant value happens on a
time scale of order one. In this range of times the total ki-

netic energyE remains aF_’P“P;imate'y consta(tn a loga- FIG. 4. Flow field of the systeni20000 needles in a box of
rithmic scal¢ and decays likeé™ < only aftertranslational and  yolume (12.)% and e=0.9] after 600 collisions per particléhe
rotational energy have reached a constant ratio. length of the velocity vectors are in arbitrary upits

Equations(14) and (15) allow for a solution with a con-

stant ratio ofT/T=c and bothT, andT  decaying like  nant mechanism for the formation of vortex structures has
t"2 To determine the constanf we plug the ansate T« peen traced back to noise reductidis]: After many colli-

=Ty into Egs.(14) and (15 and usecT,,—Ty=0. This  sions the particles move more and more parallel. It is not
yields an implicit equation foc, whose solution is plotted in  cleara priori, whether such a mechanism should also apply

Fig. 3 as a function ok ande. to rotating needles. In the simulations we clearly observe the
Settingc=1 in this implicit equation yields an equation formation of large scale structures in the velocity field. In
for k which reads Fig. 4 we show the hydrdynamic flow field after 600 colli-
sions per particle for a system of densit/{/)L3~11.6,
3 .o corresponding to an average center of mass separdiion
1=Sk*r =0.44.
(1-€) fmdzf W:O' (16) We observe two shear ban@sote the periodic boundary

conditiong, which move in opposite directions. Within a
band the local flow field is to a large degree aligned. The
dominant part of the velocity of each partial¢ is given by

. . LU the flow U so that a large fraction of the kinetic energy is in
given as the ?OIUt'On of E¢16). For e=1, equipartition the flow and the rati® (defined in Sec. Yshould be high. In
always holds, independent &f Fig. 5(a) we showSas a function of the number of collisions

For k< k*. we fi_nd Ty<Tro and for k>k* Tu=>Tror- per particle.S increases from a value of 0.05 to a value of
Hence the distribution of mass along the rods determines thgbout 2.5, i.e., by a factor of 50.

asyr_nptotic _ratio_ .Of rotational "?md translational energy, in- To visualize spatial inhomogeneities we plot in Fig. 6
cluding equipartition as a special case.
The asymptotic solution discussed above is approached

i.e., equipartition holds forall values of e<1 if k
=(mL?)/(21) is set to the particular valu&* =4.3607,

0
for arbitrary initial conditions for long times. If a totally 2 ' :0_1
elastic system is prepared in an initial condition with a) 12_2
#T,ot, We expect that the equilibrium statequipartition is ol 10°
reached exponentially fast with a relaxation rate giverwby 10~
~vyyE(0). As long as energy dissipation due to inelastic ni 107
collisions is small, we expect similar behavior, as indeed the 107°
numerical simulations show. 107

% 200 400 600 10° 10' 10° 10° 10* 10° 10°
VIl. DENSE SYSTEMS collisions/particle T

Simulations of inelastic hard spheres show well devel- FIG. 5. (a) Sas a function of collisions per particlé) Double

oped density clusters and vortex pattef@s-5,14, if al-  logarithmic plot of kinetic energy per degree of freed®gandT
lowed to evolve freely for sufficiently long times. The domi- in units of T,(7=0) versus dimensionless time
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FIG. 6. (a) Density at the beginning of the simulations. Only

very few and small regions have a more than 50 % higher density ..,

than average(b) Large regions with higher density have built up
after 600 collisions per particle.

regions with local deviation of the densityp,>0.5 at the
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FIG. 7. y and z component of the flow field and fluctuation of
the density as a function of for fixedy=6L, averaged over 12
values.

local rotational flow to the local rotational temperature is
found to increase by about 5004s compared to an increase
by a factor of 50 for the translational velocityConse-
quently, the deviation from Haff'$~2 cooling law is much
stronger for the translational degrees of freedbpthan for
the rotational degrees of freedcfp, [see Fig. B)].

To investigate alignment of the needles with the large
scale velocity flow field, we compute the quadrupolar mo-
mentum Qf with respect to the particle velocity, i.eg
=v;/|vj|. A histogram over all needles is shown in Fig. 8.
The configuration after 600 collisions per particle is com-
pared to the initial state which corresponds to randomized
orientations. In addition we plot the theoretical prediction for
the histogranistraight ling which has been calculated on the
assumption that rods are oriented randomly and independent
of their velocity. No indication for alignment of the needles
can be seen. Neither do we observe a tendency for global
ordering.

[ ] coliisions/particle = 0
3000 h

beginning of the simulation and after 600 collisions per par-
ticle. Obviously clustering occurs. To quantify this observa-

tion we have computed the second moment of the density
fluctuations. It is found to increase by a factor of 6 over its 2900
initial value after 400 collisions. After about 500 collisions
per particle it decreases again, indicating that clusters form
and dissolve again.

For spheres one obsen&s4,14 that most of the mass is
concentrated in the two counterflowing streams. To check for
correlations between flow field and mass density, we plot in
Fig. 7 the components of the flow field,, U, and the den-
sity fluctuation as a function of, for fixedy=6L and aver-
aged over 10 values af=1.2, ...,14.. This and similar
plots give no hint of a strong correlation between flow field

I coliisions/particle = 600

—— theory

1000

and density fluctuations.

FIG. 8. Histogram ofQf. The distribution after 600 collisions

We also observe a weak tendency towards organization gfer particle coincides with the initial distribution and with the pre-
rotational velocities. The ratio of the kinetic energy of the diction for randomly distributed orientations.
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VIIl. CONCLUSION AND OUTLOOK Simulations in the dense regime, where the interparticle

spacing is smaller than the length of the needles, reveal large

nar(zilérsa:)T ;Vasr;?]jg?timsgﬁ?lgf'%;?\S;'ghaéﬁgzle c?t?glclz?g ?Xl'scale structures in the translational velocity field. The density
9 y b J : oes not remain homogeneous, but clusters form and dis-

Po?vv?/hﬁgr? Svsg J\t‘eeresgﬁéetsot fr:) ?;Suﬁgfen;il egtlralrr(])i’ir::trg Eiﬁiglcessdlve again. Cooling proceeds in three stages. For short and
pp intermediate time scales the relaxation is similar to the low

theory, gengrahzmg methqu of I§|net|c theory of elastic S.’ys'density system, whereas on the longest time scales we ob-
tems|[7] to inelastic collisions with normal and tangential

restitution. In addition, simulations of large systems for vari-oo Vo & CTOSSOVEr from the algebraic decay to an even slower
' ge sy decay. This latter decay may be identical to the asymptotic
ous densities have been performed.

: . . . cooling law of hard inelastic spheres, %2 in d dimensions,
Analytical theory is so far restricted to the regime of mod- ; .
" ) . e here 7 is the average number of collisions suffered by a
erate densities, where the interparticle spacing is comparable

to or larger than the length of the needles. Such system'%artICIe within timet, which has been derived [13].

remain homogeneous and show no long range correlations in We p_Ian to _generahze the hydrodynamic _analys_ls o
the velocity field or orientation. Cooling proceeds in two grains with rotational degrees of freedom and in particular

. S hard rods. Another possible extension of our work are rods
stages(1) An exponentially fast initial decay towards a state of finite width and with spherical endcaps
with constant ratio of translational to rotational energy and '
(2) an algebraically slow decay, such that the above ratio
remains constant in time. The ratio of translational to rota-
tional energy is controlled by the coefficient of normal res- This work has been supported by the DFG through SFB

titution and by the distribution of mass along the rods. 345 and Grant Zi209/5-1.
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