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Cyclotron resonance line shape function from the equilibrium density
projection operator technique
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In this work, we present the calculation processes for obtaining the scattering factor for an electron-phonon
system using the equilibrium density projection operator technique. We introduce two useful identities neces-
sary to expand the scattering factor. We derive a cancellation relation which simplifies the expansion of the
scattering factor. We obtain the cyclotron resonance line shape function in the case of weak interaction.
Finally, we compare our results with other theorig31063-651X%99)13612-2

PACS numbds): 02.50-r, 05.40-a

[. INTRODUCTION Then we expand the form, and reorganize the calculation
processes. The, CFR has a complicated interacting term, and
Research in quantum transport theory is very important irithus we rearrange the calculation processes at first. While
investigating the microscopic scattering phenomena of mangirranging the calculation processes, we introduce two useful
body systems. From 1950 to the present, many researchdgentities necessary to expand the elements of the scattering
have intensively carried out about this reseafdhr14.  factor. We also derive a cancellation relation which simpli-
Some of these researchers pointed out two problems in thi€S the expansion of the scattering factor. We explain these
field. One is the problem of nonlinear behavior under a moddefinitions and relation in later sections. ,
erately strong external field system, and the other concern@sp'\/IOSt of our researches used Kubo's identity and diagonal
divergence in the expansion of the scattering factor at th . . )
resonance peak. Our group introduced a response function ggmblned projection techniqu€PT) [10]. In the EDPT9),

o I . we showed the difference between the scheme of the CPT
understand these problems, utilizing the equilibrium densn)yv o ,
projection techniquéEDPT) [9]. and the ensemble average projection techni@/&PT). The

Th ductivity f lism based on the Liouvil EAPT has an advantageous aspect because it can directly
€ conductivity TormaliSm based on the LIouville equa- ,,ihin the Jine shape function, and shows the dependence on

tion has bee_n successful in dealing with cyclotrqn trar_'Sitior}emperature of the line shape function, and the dependence
phenomena in many work§-8,10. In these theories, since on magnetic field of the line shape function and other func-
the conductivity function has a Lorenzian form, the scafterions: it is needed to calculate the absorption power for ob-
ing factor in the denominator of the conductivity function tgining the linewidth in the CPT. So, in this work, we use the
represents the inverse of the relaxation time or the line shapeapT in the CER formula. We strictly use the commutation
function of the optical absorption power. These are importanelation of annihilation and creation operators and do not use
to understand microscopic properties of semiconductors, et¢he Kubo identity.

Thus these authors introduced many theories with various Since the perturbation of an external field is weak in the
methodologies concerning the line shape formulas. Amonglectron-phonon intraband transition between Landau levels
these are Mori and Kawabata's line shape formula of arnn a semiconductor, we neglect the nonlinear effect. So, in
electron-impurity interacting system utilizing a projection this work, we study only the linear response term in the
operator based on Kubo’s inner prod{i6t, Lodder and co- EDPT. Considering the weak electron-phonon interactions,
workers’ line shape formula of an electron-phonon interactwe calculate the first and second terms with pair interactions
ing system utilizing a diagram method, and Suzuki's andin the CFR, then compare our results with other theories.
Dunn’s line shape formula of an electron-phonon interacting

system utilizing a superoperator methiad. Suzuki's result Il. SYSTEM AND CONDUCTIVITY FORMULA
is compared with Kobori’'s experimental research, the result
corresponding well to the experimental data in some semi- A. System

conductor[11]. In this work, we summarize the calculation  We consider a system of many electrons which interacts
processes for obtaining the scattering factor using the EDPveakly with background phonons. For a static magnetic field

[9], and obtain a line shape formula for an electron-phonorg gppjied in thez direction, the electron energy is quantized.

interacting system. We also consider a system which is subject to an oscillatory

The EDPT theory represents a compact form utilizing up- R ot ~ . .
per nonlinear order and lower continued fractional represen(?)(tem"’II fieldE(t) =& E,e'*", wheree, is the unit vector in

; : e ; the external field directionl Ex,y,z, etc), andw is the an-
tation (CFR) order in the derivation of the basic formula. qular frequency. Then the Hamiltoniai(t) is given by

. H(t)=Hs+Hex(t)=Hs+H'E|(1), (2.9
FAX: 82-53-952-1739.
Electronic address: jysug@bh.knuhep.kyungpook.ac.kr where the time-independent Hamiltonibly is
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Hs=H.+Hp+V, (2.2 1
Pu(X) = =
VNNt o\
He=2 (BlholB)azay, 2.3 °
B X—Xq
X exp — (X—Xa)H2r 51 Hyo| — |,
S hwgbib 2.4 o
Hp= , .
P 3 Wqbq Py ( ) (2.12
whereHy(x) is the Hermite polynomiall,(L,) is they(z)
VzE Ca,M(q)a;aM(qur bfq). (2.5 directional normalization lengtiN, is the index of the Lan-
a9 an dau levelr,= V#i/eB, andx,=fiky,/eB. The single current

eigenvalue in this system isj. =(a+1|j"|a)=
—iey2(N,+ 1)k w./m,. Herem, (m)) is the tangentparal-
lel) directional effective mass about the magnetic field.

Here H is the electron HamiltonianH, is the phonon
Hamiltonian, V is the electron-phonon interaction Hamil-
tonian anda) (a,) is the creatior(annihilation) operator for
electron in the Landau stafer)=|N,,,ky,), whereN, and
k, are the Landau level index and the electron wave vector,
respectively. Alsom* is the effective mass of the electron,  For the EAPT in the EDPT9], we replace the dynamic
and w.(=eB/m*) is the cyclotron resonance frequency of variable operatoR, by an induced curreng™ which is
the electrons. In Eq2.4), b; (by) is the creatior(annihila- ~ caused by an external circularly polarized field. The expec-
tion) operator for a phonon in the stdte q), % w, the pho-  tations of induced current and conductivity in the EAPT are

non energyﬁ the phonon wave vector, ar@i, the coupling

B. Conductivity formula

coefficient for the electron-phonon interaction. The time- I (29)=0=(2)E(2), (213
dependent HamiltoniaHl ., is
~ —(ilh) A+
ep o (D)= o R (2.19
Hexl)= A = ~J-A(t) 2T A Qe
L where
=—(ilw)E(t)-J=H"E(1), (2.6)
A-=Tr{J Dy}, (2.19
where .
—i
. A = Tr{Rleo}, (2.19
[ _
H’=(——)J+. 2.7 Al
w
- 1 4
HereJ* is the induced directional current componentJof Qi(t):ﬁTr{Rleko(t)PkoLsDo}- (2.17)

The many body current operators alé==,j a’,,a,,

I =3,(j,)*a,a,+1, and the single electron current opera- HereR,,=J L., Dy=L’ps, Gyo(t) = exp(—itPioLs/%), Pyo

tors arej " =j,*ij,. The corresponding Liouville operator g Eq.(3.2), andPyy=1—Py,.

of this systemL (), is given by Using the matrix elements of Sec. Ill, we calculate
andA- as follows:

L(t)=Lg+L'(1). (2.9
. > . _ i 2 Fhk
Using the Landau gaug&= (0,Bx,0), the single electron As=|— 2, Ja Jo(far1—1a), (218
Hamiltonian is
Ar:=—lw;. (2.19
ho= (p+eA)?/2m, (2.9 _ o
i=xy.z In the continuous approximation for the electron state, we

need the following replacements:
where m; is the effective mass in direction The single

electron eigenstates and eigenvalues are given by Moe < [*
> = > J dky,, (2.20
2,2 @ 2m%h N=0 J =
1 5 1oKs,
N, K, = Na+§ wet+ m, (2.10 L
Trp(Hp)a az= —— J f 0Ky 6, 5-
. 2/3: {P( e) a ﬁ} o2 N§=:0 . z B
4 X,V,Z2)= exdi(Ky,Y tKz0Z) [P N (X), (2.2
Na’kya’kza( y ) \/m F{( y y z )] N ( )

(2.11) With these replacements, we obtain
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A _mth I -+2§ jw dk f f K,= ! (36)
o2\ e Ja “o ). salfar1i=Ta), i (—w) Fiw iy, :
(2.22 .
where z is replaced by the external oscillatory frequency w1= @ 1- ; S
— . Then we obtain a formula for the conductivity tensor in A(TEPHI " LsPol.sPolsL ' pel e
this theory: X(Tr®{J7LPILPILPILL  pel)s, (3.7
j+2fwdk (f.—f..1) ]
~ mtwc - i * —®© ot atl '}/15(}("‘ (_ ) ’ (38)
or(w)=— — — 1)
27%h N=o hw w—w:+iQ+(w)
(2.23 -1
a=
Our formula for the conductivity tensor in E(.23 is simi- (— ) A*(TrO{I7LPoLPoLSL . pe})s
lar to those of many other theories. However, our scattering _
~ X{ATr I L PILIPALPILPILLL ,
factor Q- () is quite different from otherf5—8,14. (TP LsPolsPol sPol sPolsL ' pel e
(3.9
Ill. REGULATIONS IN EXPANDING THE ELEMENTS o,
OF CFR FACTORS A=(TrI L pele (3.10
We expanded the scattering facfr. (w) in a continued We rearrange the operators in such a way that all Liou-

fraction representation to avoid divergence at the resonancélle operators act onJ~. We introduce a useful identity
peak, and expanded the CFR formula again in a series forfecessary to inverse the order of Liouville operatsee the
in order to examine the converger{&12). Taking a diago- APPendix.
nal approximation and assuming weak electron-phonon in- _ ,

: : T3 L1l - L 1Ll pe)
teractions, we can approximately separate the background 1=2 m—1=m=-+Fe
phonon average for the scattering factor of linear response —(=1) M DL L Ly Lolid e, (3.10)
function, Q+(w), as

where(- - - ), means the ensemble average . To cal-

~ 1 . culate elements of the scattering factors, we derive some
Q=(w)~ B2A (T{Rafs(@)})s. (3-D useful identities necessary to ad&=1— P:
GO0=(L2)—(Bp)(L1)(L1), (3.12

Here, TF denotes the trace of electron states dnd-)g
denotes the ensemble average of the backgroty{d) is
the Fourier-Laplace transform 6f(r;)=e 't1/"f, where
m1=t—s. We define the projection operatBg, by

G1=(L3)—(Bo)(L1)(L2)~(B)(GO)(L1), (3.13

G2=(L4)—(Bo)(L3)(L1)—(Bo)(GO)(L2)

D _
A f aLi=( ) G3=(L5)—(Bg)(L1)(L4)~(Bo)(GO)(L3)
with De=L, pe, f1=L.D, andL,;=(1—Pg)Ls=P(Ls.
If we assume that the electron-phonon interactions are ~(Bo)(G1)(L2)~(Bo)(G2)(L1), 3.19
weak enough, it will suffice to consider only the two lowest

order terms in the series expansion of the CFR as with the definitions

GN=Tr®{J L(P{LHNTIL, pst, (N positive number,

Q=(w)=iyo+(iApK;. (3.3 (3.16
Here we expand the elements of scattering factor as in Ref. (Ln)=*+(L,(Ly)™ )s, (nodd+; neven—),
[9], as follows: (3.17
Yo= 1 (TrEI LPILL pel) (Bo) -1 (3.19

0o— —_ 0 B = . .
(—)AXTrI L/ pb)s ST L3,
(3.9
Utilizing above identities, we rewrite the elements as fol-

[ lows:
(—w)A(TrI" L pel)s
X(TrO{I L PILPILL  pel)s, (3.5 70:(_w)ﬁ2(50)(60), (3.19

A]_E
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)% (Ga_ €a+l_hwq)n

i
o)

A= (Bo)(G1), (3.20 (L' (La)"LyJ7 )=
(—w)h?
-1 X(Ca|a(q)_ca+l,a+l(q))
©17561% (321 X (Fasrfo)bg)s
i
w o _ n
’)/1:0[+ (_:;)), (322 + w)% (eﬂ/ 6a+1+ﬁwq)
X(Ca,a(q)_ca+l,a+l(q))
-1 TR +
a= (—w)TGng (3.23 Xigla ((far1—f)b s, (4.9
! n -
IV. LINE SHAPE FUNCTION <L Ly(Lo)"Lyd >5
In order to calculate matrix elements, we use the commu- =({AntBnt+ Cpt Dyt Fot Gt Hotln)s, (4.9
tation relations of fermiongelectron$ and anticommutation
relations of bosongphonon$. Using the relation where
((b+b%)(bg+b o)), i
— — _ _ n
=((bg+b ) (b+b" ), An= w)% Eﬁ (€5~ €ar1—Tig)
={ng+(ng+1)}6j —q, (4.1) XCop(@Ch W Diaia™ (fari—F)(Ng),
and assuming the weak interactions, we may take (4.10

([aya(b+b’)),a, 8, 1(bg+b o)),
=[a,a.,8,8q+10((b+b7)(bg+b70)),. (4.2
SubstitutingL g, given by
Le=Le+Lp+L,=Lg+L,, 4.3

into the elements of scattering factor, we obtain the matrix
elements, which are needed to obtain the line shape function,
as follows:

(L"(Lp)"7)s=0, (4.9
(L"(La)"I7)s

:( - IZ)E (5a_€a+1)njzjZ*<(fa+1_fa)>p:0'

(4.5
(L'(Le)"Lyd7)s
= _IZ)E (Ca,a(q)_ca+l,a+l(q))
q
X(Ea_ea+l)njzj:*<(fa+l_fa)(bq+btq)>31
4.6
(L"(Lp)"LyJ7)s
= _IE)E (hwq)n(ca,a(q)_Ca+1,a+l(q))
q
Xjaia (Fai1— T (D) bg+bT))s, (47

i
an—< - Z)% EB (€= €4r1—hwg)"

XCa+l,ﬁ+1(q)C;,a(q)jZ;jZ*(fﬁ+l_fﬂ)(nq)a
4.19)
i
CnE_(_Z)% 2, (€= €gey—hwg)”
XCoi15+1(DCp o Digia* (Fari—fp(ng),
(4.12
i
D,= _Z)% % (€,— €g—hwy)"
XCor18(ACh ar1(Djaia*(Far1—f(Ng),
(4.13
i
Fo= —5)% % (€= €qr1thag)"

XCo s(DCp oD in* (Far1— o) (Ng+1),
(4.19

i
GHE_( — Z); % (65— €qi1tTiog)"

+itx

XC;‘Fl,B‘Fl(q)Cﬁ,a(q)jﬁJa (fgr1—Tp)(Ng+ 1),

(4.15
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i G2=G2(2nd + G2(4th)~G2(2nd),
)% % (€,—€pr1thiag)

i
1)

|

Gz(znd)z(_<L+LdeLdLv‘]7>e
XCarrpra@Coa@ipla” (fpra= )Nt L), =~ (BoHL L3 )L Lalal ek,
(4.19 (4.2
= —i)}q} 2,3: (€a—€gtTing)" G3=G3(2nd) + G3(higher ordey~G3(2nd),

G3(2nd)=((L. L LLaLal,d )

XCor1(DChar1(Diaia* (fara=fa)(Ng+1). i .
+(Bo)(L LI )e(LiLalglalyd )edp,

(4.17)

4.2

Here(---)s ({(---)p, etc) means the ensemble average for “.29
Hs (Hp, etc) and f, is the Fermi-Diac distribution ofx
state. We expan@N's with the order of Liouville operators (Bg)=— —. (4.27
kept the same in each term as follows: (L+d7)s

—(— -\ - - This theory contains the terms of high order interactions in

GO=({LaLskad e (Bo)Lobsd Debalsd el the lowest second order approximation, while most of the
=G0a+ GO0b, (4.18 other theories do not contain such high order terms in the

same approximatiof6—8,10. Thus, we can apply this for-
GOa=(— (L LgLgd )e= (Bo)(LiLgd )elL+Lad )edp, mula to a moderately strongly interacting system in the low-
(419  est second order approximation. But the calculation of high
B 3 3 order interactions is very complicated, and we need to de-
GOb=(—(L+LyLyJ7)e (Bo)(L+LyJ )e(L Ly )edp - velop some techniques. Here, considering the weakness of
(4.20 interactions, we neglect the higher order interactidoarth
Using the matrix elementEEgs. (4.4—(4.9)], we obtain a  ©rders, etk Then we obtain

useful cancellation relation which simplifies the expansion of
; =[Ag+Bp+Cy+Fo+Gp+H
scattering factors as GO=[Ag+Bo+Co+FotGotHolgra

M, +1,=0, 4.21) +[Do+lol(grar1) (4.29
where G1=[A;+By+C1+F1+Gy+H ] (psa)
Mn={(Bo)(L+L, (L™ He(L LI )e)g, (4.22 +[D1+11l(gra+1), (4.29
Nim=((Bo) (Bo)(L+ L, )e{L+ (L™ NelL+ LI Do G2~G2(2nd =[A;+B;+ Cot Fot Got Hal(sra)
(4.23 +[Dot+12](grat1)s (4.30

HereM, andN, are opposite signs of each other according  G3~G3(2nd)=[A;+Bz+Cs+F3+Gz+ Hal(p+a)
to Egs.(3.17) and(3.18. Then, we obtairGN's as follows:
+[Ds+1l3]l(grar1)- (4.30

Gl=((L L,L4L I )et (Bo)(L LI )e(LiLglyd™ )edp, ~
(4.249 Thus, we obtain the line shape functiQn: () as follows:

- 1
Qe (0)= 5 —{Raf1(@}~iyo+(A0Ks, (4.32
B 1
K= o Tt i (4.33

1
Yozﬁ{[Ao"' Bo+ Cot+Fot+GotHolsra

+[Dotlol(grat1)ls (4.34
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—i
Alzﬁ(BO){[Al—i_ B1+Ci+F1+Gi+Hi]grayt[Ditl1]iprary) (4.39
" :__1{[A2+ B+ Cot+Fot+GotHolgray T [Dotla]igrar1)t 4.3
Yon {[A1+B1+C1+F1+Gi+Hyl(gray T [D1t 1) (g2ar1))’ '
_ 1 {[A3+B3+C3+F3+G3+Hslgra)yt[Datlslprar)
7 wh2 {[A1+B1+Ci+F1+Gi+H ] grayt[Dit11](g2arny)
1 [{[Ax+ B+ CotFot+GotHolgray Dot 2] (grar 1) 2 (4.37

wh|{[A;+B;+Cy+F1+G; + Hilgra)T[D1t i (g2as 1)}

The result of the line shape functi¢kg. (4.32], with Eqs.  absorption power. The line shape function is important to
(4.33—-(4.37), has more interaction energy terms than inunderstand microscopic properties of semiconductors
other theories. Some of those intraband transition theorig6—11].
are successful in explaining the transitions between Landau Most of the other theories require a calculation of the
levels in some materialéSi, Ge, eto. [11]. However, in  absorption power in order to obtain the linewidth, because
some material§GaAs, etc), the theories do not explain ex- the whole conductivity formula must be integrated over the
perimental data sufficiently well. We expect that the result inelectron wave vectok, [7—10]. However, in the EAPT, the
Eq. (4.32 will supplement the explanation of those experi- integration over the statgr) appears separately in the nu-
mental data. In Sec. V, we compare our result with othemerator and denominator of the conductivity form{.
theories. This scheme has advantageous aspects in that we can directly
obtain the line shape function and well explain the depen-
V. LINESHIFT AND HALFWIDTH dence of the temperature, the dependence of the magnetic
- field, and so on. The interaction coupling fac@y is
If we let o= —w—in, K; becomes complex, and we take
. _ _ = Iq-r
0= (@)=iS(w) + (), 5.0 Conl@)=Valale®|u)
where the line shift is whereV,, is the material factor in each case. For example, it
can be an acoustic deformation potential scattering factor, an
S(Z)EImQ;(;)Mm{i Yo+ (IADK = Yo+ Il (1A K Y, acoustic pigzoelectric scattering factor, a polar optical pho-
(5.2) non scattering factor, etc. The dependenc¥ pbn the pho-
non wave vectoq differs in each scattering mechanism. The
and the halfwidth is matrix element<, ,(q) are given by

¥(©)=ReQ+(0)~Rfi ~y0+(iAl)K1}=Re{(iA1)K12»é (Cq)as(Cq)p,a=V(A)*K1(Ng Ngit) Sk, a0

3
) (5.9
qustituting|j§2|=e2[2(Na+ Dhw/m] into the conduc- (Cq)a+1,ﬁ+1(C§)5,a=V(Q)2K2(Na,Nﬁit)5kﬁ k. —q,
tivity formula, we obtain the conductivity as 2
(= with K matrices
o e Y@ | kit
Reo—;( ):_ > (_C) — 2 —q2 N<I (N~ —N.) (N> —No)\2
7h\ @) (0= 0= S(w) +[y(w)] Ki(N=> N =Gt = exp— (L, )%
(5.9 > - 56

For the circularly polarized electromagnetic field with the N_+1N_!
frequency w applied to the system, the absorption power Ky(N.,N-;t)= N TINT
> >

delivered to the system is given by

t(N>_N<)

(N~ —N) (N> —N2)
_ Xexp(—t)Ly, =~ (t)Ly 7, (D),
P(w)=(E3/2Re{o=(w)}, PO Netd
where Re denotes the real part. Since the conductivity funcwhere
tion equation(5.4) is of Lorenzian form, the scattering fac-
torsS(w) andy(w) in the denominator of conductivity func- Li(t)=(nh)~ texpt)t~™(dVdt")[t"* Mexp(—t)]
tion play the role of the line shape function of the optical (5.7
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is the associated Larguerre polynomial. H&te (N_.) de-

notes the largefsmalley number amongN, andN.

In continuous approximation for the phonon wave vector
gq= \/qX2+ qy2+ qyz, we take the integration over phonon states

as

> —>Q(27-r)’3fc dquw(ZTr/rg)dt, (5.8
q —o 0

where() is the volume of materials, and

2
o

2[a5+qZ]

2

t=[rga;+roazl/2r= (5.9
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Frgra(@.B)

~1N,+ 1)1 dk, [ da, | drviar

XAEL(B,a+1;d,)K1(Ny,Ng ) AF(a)(ng+ 1),
(5.19

Gh(g#a)(@.B)

=—[(Ng+1)(N,+ 1)]1’2f:dkmfldqu:dt

XV(Q)?AEq(B,@+1;q,)

XKo(Ny,Ngit)AF(B,+0,)(ng+1), (5.1

Then we obtain the integration forms of matrix elements aﬂﬂév(/gm)(a,ﬂ)

follows:

-1

|7 ettt

(By)'= BNCEL
Ar;,(ﬁia)(avﬂ)
N+ 01k, [ da, | dtviar?

XAEQ(B,at1;—q,)Ky(Ng,Ng ) AF(a)ng,
(5.19

B;],(Bqﬁa)(aug): _[(N,B+ 1)(Na+1)]1/2

xf dkzaf dqu dt
— o0 —0o0 0

XV(0)?AEq(B,a+1;-d,)
XKy(Ny ,Ngi)AF(B,~ )y,
(5.12

Ch(gra)(@.B)

= —[(Ng+1)(N,+1)]*

<[ k| da. [ drviaraE e pr1i-ay
— o0 —© 0

XKo(Ny,Ng ) AF(B,—a,)Nng, (5.13
Di(gat1)(a@.B)
[N+ D1 ak,, | da, [ “atviar?
XAEn(avﬁ; _qZ)Kl(Na+l!Nﬂ;t)AF(a)nq! (514>

=—[(Ng+1)(N,+ 1)]1’2f:dkmfidqu:dt

Xv(q)zAEn(a1B+1;qZ)K2(Na leB 1t)

XAF(B,+0z)(ng+1), (5.17
In.(g#ar1)(@B)
[N+ 01 [ ak,, | da, [ Car
— — 0 0
XV(Q)?AEn(@, ;0 K1(Ngi1,Ng; 1)
XAF(a)(ng+1), (5.18
where
AE (B,a+1;%=q,)
hZ
=|(Ng=No=Dhoet 5 (£2k; 0,+03)
1/21n
+hvg| t+az] |, (5.19
I'o
AE(a,B+1;%Q,)
,}_LZ
= (Na_NB_l)ﬁwC_W(iZkZaqz'i_qg)
1/21n
iﬁvs(—zwqi ] : (5.20
o

2

AEq(a,8:%0)=| (N~ Nphwe— 5 (+2k; 0,+07)

n

: (5.21)

1/2

2 2

ihvs( r—2t+ qz)
0
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and with AF(a)=(f,;1—f,), AF(B,=0)=(fg,1—1p),
faE[ef(avT)+1]_1' fﬁz[ef(ﬁxiqz’T)_}-l]_l' nqz[ef(QvT)
—1]" 1. Here

h2k2

G(a’,T): Na+§ ﬁwc-l-ﬁ-l-(ec—e,:) /kBT,
(5.22

B2k, +,)°

E(B,iqZ,T): (NB+1)ﬁwC+T
+(€c_€F)]/kBT, (5.23
ofeg_fvs(2 | ,
e(q, )—K—BT~ KT %-qu . (5.24

Then elements of the line shape formula with EGs10—
(5.18 are

= | —— | (Bl)(AL+B.+CL+D!
Y0 o= 4w2rg)( ko) (Ap+Bo+Co+ Dy
+Fo+Go+Hg+1g), (5.29
A i Ao i 1 (Blo)
Ym0t R%0 )\ 4m?r2) O
X(A]+Bij+C{+Dj+F;+Gi+Hi+17),
(5.26
|
, —i[ 1
ivo=—=
o h2w 4772r§
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—1 (A;+By+Co+Dy+Fo+Go+H+15)
w;=—— , (5.2
h (Aj+Bj+Ci+D;+Fj+G,+H|+1})
—1 (A3+B3+C5+D3+F3+Gi+H5+15)
Yi=

h2w (Al+Bi+Ci+D4+F;+Gi+H+1})

1[ =1 (A)+BL+CL+Dy+F)+Gh+Hy+1)) |
| T (Aj+Bj+Ci+D+Fi+Gj+HI+1)|

(5.28

With the exclusion condition of our result it is possible to
predict which terms contribute to the intra-Landau-level or
inter-Landau-level transitions. This prediction is not clear in
other theories. Because of the exclusion condition in the sum
of the state in Eq94.20—(4.27), D,, andl , terms contribute
to the intra-Landau-level transitions from=0 to =0, and
A,, B,, C,, F,, G,, andH,, terms contribute to the neigh-
borhood inter-Landau-level transitions from=0 to S=1.
It is well known that most of transitions arise in those tran-
sitions in quantum limit. Ifa=0 and8=2, all terms con-
tribute to intraband transitions between Landau levels.

In order to compare with other theorigg-11], we sepa-
rate the energy terms in the denominator of line shape func-
tion, and rewrite elements of the line shape function as

) [t | [ v r s, Mg AR @ 0

~[[(Ng+1)(N,+1)T*K (N, ,Ng i) AF(B,— A.) (Ng) 1+ )
—[[(Ng+ 1)(N,+1)T¥K (N, Ng OAF(B,—d)(Ng) ) (g a) T[N+ 1K1 (Nyy 1, Ng ) AF(@)(Ng) ] g2 a1
+[(Ng+ DK (N, Ng i) AF(a)[(Ng) + 11T (g4 0y~ [[(Ng+ 1) (Ny+ 1) J¥2K (N, ,Ng i) AF (B, + a)[ (Ng) + 11] (5 )

—[[(Ng+1)(No+1)]VKo(Ny ,Ng AR (B, + ) [ (Ng) + 11T+ )

+[(Na+1)K1(Na+liNﬁ;t)AF(a)[(nq)+1]](B:#a+1)}/ J_O:CdkzaAF(a)! (529
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(Na+1)AEn(B'a+ 1;_qZ)Kl(Na lNﬁ :t)AF(a)(nq)
ho—AE(B,a+1;—q,)+ 6,

3w

_1 1 o o [
iAK =——=—— dkaf d fdtv 2
(i 1) 1 A 47T2rg~fOO za | a; 0 (Q)[ e

[[(Ng+1)(N+ 1) JYAE (B, a+ 1;—G)Ko(Ny N5 ) AF(B8,—0,)(Ng)
hw—AE,(B,a+1;—0q,) + 6,

1(B#Ot)

[(Ng+1)(Nu+1)]Y2AE (@, B+ 1;— q)Ka(N, N ) AF(B8,—q,)(Ng)
fiwo—AEq(@,B+1;—0,)+ 6,

1(B#a)
[(Nu+1)AE (@, B~ d)K1(Nyy 1,Ng ) AF()(ng)
fhw—AE(a,B;—0,) + 63

(B#a+1)
[(N,+1)AEL(B,a+1;)Ky (N, ,Ngit) AF(@)[(ng) +1]
hw—AE(B,a+1:;q,)+ 6,

(B#a)
| [(Ng+1)(N+ 1) JY2AE(B,a+ 1;0,)Ko(Ny Ng i) AF(B, +0,)[(ng) +1]
hw—AEL(B,a+1;0,)+ 0,

(B#a)

[(Ng+1)(Ny+1)]PAE(a, B+1;0,)Ka(Ny Ng i) AF(B, +0,)[(ng) +1]
fio—AEq(@,B+1;0,) + 65

(B#a)
/F dk,, AF(a). (5.30

_(Na+ 1)AAEL(@,B;0)K1(Ngy1,Ng ) AF(a)[(ng) +1]
ho—AEq(a,B;0,) + 06

(B#a+ l)]

Here hiw;~—AEy(B,a+1;=0,)~—AE (e, f+1;%0,)

~—AEy (@820,
elEAEl(ﬂ,a’+l,—qz)+ﬁw1+ﬁyl,

0,=AE (a,B+1;—0,) +hw+hy, and

0:=ABy(a,f; =) +hoythy,, (531 Mﬁ—hi—Ei(B,aH;iqz)Jri(wl)z
0,=AE;(B,a+1,q,) +thw;+hy,, ; :
0s=AE, (o, B+1:0,) +hoy+Hiyy, ~ - =El(@prliza)+ =(v)’?

0s=AE (a,B;0,) +hw,+hy,. 1 h
6 1(a,3;0,) 1Thyr - —_Ei(a,ﬁ; +q,)+ =(wy)2~0.

We see corrected lineshift terms in H§.29, which corre- hro @

spond to the first term of the line shape function in Eq.

(4.32. These terms are not contained in other theories. Thdhus we obtain

second term of the line shape function in Ea8;.30 is similar

to Ryu and Choi's resultl3] and Sawaki’s result based on 9,~0.

the Stark-ladder representation approft#]. However, our

formula contains more terms expressing the Fermi-Dirac dis- . .
tribution and the complicated energy contributiap. In order to compare the approximated result of the line-

In this work, 8,, involves complicated interacting energy Width with many other theori€is’,8,10, we neglect the com-
termsw; and vy, which to our knowledge are new terms of pI|c§ted mte_ractlon energy ternd as in the_ above approxi-
this theory. These terms are expected to contribute explan&2ation; at first, we integrate over the vertical component of
tions of experimental data in some moderately strongly inPhonon wave vectorq, = \q;+dy, utilizing the relation
teracting systems. If we assume weak interaction and neard#fb—o, (x—ib) "*=p(1/x)+im&(x). Considering the
neighbor state transitions, as betwees0 and =1, we quantum limit, we obtain the transitions betweer0, B
can approximate as follows: =0, andB=1. The halfwidth is obtained as
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1 ® %
Y o) =Rl (180K} = RAGADK =~ 5o [ e, [ dax

X(ng)+V(dz,0,2)2V (9%, +02) Kl(o 1 qﬂ)AF(O)(nq)+V(qZ,ql3)2\/ 95+ 02) Kz(

XAF(1,—d,)(ng) +V(d,,9,4)?V (97 4+ 02) Kz(
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£
o,gqfl)mm

V(9,.,0,1)%Y qfl+q§)K1(1

2
V(g;.0:5)7 V(a5 02) Kl(l 0:-30 )AF (0)((ng) +1)

(2
0
V(d,,d,6)%V qJ_6+qZ Kl(O 1= 2

2
X AF(1,+0,)((ng)+1)+V(0,,q,8)* V(A g+ 03) K2<0 15 qL8)AF(1!+qZ)((nq)+l)

where

(w+2w.) N h
Vg m* v

q.rs= \/

2
kZan+ om* Vsqg] - qg'

This approximated result of the linewidth is easier to co

L
2qJ_3
2
0,1; 2%4 AF(1,-9,)(ng)
(2
)AF(O)((nq)+1)+V (2,9, 7)%V qJ_7+qz KZ(O 1 qJ_?)
/f dho(f1~fo)

(5.32

shape function, and other qualities. We strictly used the com-
mutation relation of annihilation and creation operators with-
out using the Kubo identity.

In the calculation, we introduced two useful identities
necessary to expand the elements of the scattering factor. We
also derived a cancellation relation which simplifies the ex-
pansion of the scattering factor. In E4.32), the main result
of this work, we show that the scattering facttre real part
is the halfwidth of the absorption powecontains more in-
teracting effects than some other theories. We expect that
this result will explain the experimental data well for some
materials. However, in order to examine this result, we need
further research for the numerical calculations. From the ex-
clusion condition which results, we show which terms con-
tribute to the intra-Landau-level or inter-Landau-level transi-
tions.

In order to compare with other theories, we separate the
energy terms in the denominator of the line shape function.
In Eq. (5.29, we separate the correction line shift term
which is not contained in the other theories. The second term
of the line shape functiofEq. (5.30], is similar to Ryu and
Choi’s result[13] and Sawaki’'s result based on the Stark-
ladder representation approact¥]. However, our formula

m-contains more terms expressing the Fermi-Dirac distribu-

pare with other theories and experiments through a numertuion and a complicated energy contribution in the line shape

cal calculation of double integrations.

VI. CONCLUSION

In this work, at first, we expanded the compact form of
CFR scattering factor in the EDPT, reorganized the calcula-

function. Finally, we summarize the approximation result to
compare easily with other approximation theories and ex-
perimental results.
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APPENDIX
Proof of Eq.(3.11):
TrO{ITL pgd=TrI7H/ ps— 37 peH| } =T pd " H — peH{ I} =T p I H/ [} = —Tr{pfH ,37]}
==Tr®pl {37 =—(L{I7)s
and
THOI 7L po} = Tr I LeH] ps— 37 LopsH |} =TrO{I " HH/ ps— I H/psHs— I HspsH| +37psHiH}

=Tr{psd " HH| = psHd "H/ = psH{ I Hs+ psHIH{I
=Trp (I " HH/ —HJI H/—H/J H+HHI)}
=Tr®{py(—[Hs,J7IH/ +H/[HS, 37D}
=Tr{pH ,[Hs, I T =(L{LJ7)s

Thus we obtain

TrOI Ly Lo gl hped = (=)™ L Ll - Lol 7 )e, (A1)
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