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Potential energy landscape of a model glass former: Thermodynamics, anharmonicities,
and finite size effects
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It is possible to formulate the thermodynamics of a glass forming system in terms of the properties of
inherent structures, which correspond to the minima of the potential energy and build up the potential energy
landscape in the high-dimensional configuration space. In this work we quantitatively apply this general
approach to a simulated model glass-forming system. We systematically vary the system size b&tween
=20 andN=160. This analysis enables us to determine for which temperature range the properties of the glass
former are governed by the regions of the configuration space, close to the inherent structures. Furthermore, we
obtain detailed information about the nature of anharmonic contributions. Moreover, we can explain the
presence of finite size effects in terms of specific properties of the energy landscape. Finally, determination of
the total number of inherent structures for very small systems enables us to estimate the Kauzmann tempera-
ture.[S1063-651X%99)11212-1]

PACS numbd(s): 61.20.Ja, 64.70.Pf

[. INTRODUCTION A major question, which has become of increasing impor-
tance, is the relevance of the PE24-24. In a trivial sense

The physics of glass forming systems is a complex multhe PEL just reflects the full potential energy of the system
tiparticle problem, as reflected, e.g., by the occurrence oénd is therefore always relevant. In a less trivial sense one
nonexponential relaxation or non-Arrhenius temperature demay askwhether the physics of the system is governed only
pendence of transport coefficients for most syst¢ing]. by the part of the configuration space close to the inherent
Beyond phenomenological models like the Gibbs-AdamstructuresIn a recent work it has been shown for a Lennard
model[3] or theoretical approaches like the mode-couplingJones system that exactly for the temperature regdion
theory [4] computer simulations have become increasingly<T,, for which typical features like the nonexponentiality
important to yield additional insight into the nature of the of the structural relaxation are observed also the average en-
glass transition from a microscopic viewpoint. ergy of inherent structures depends on temperaf@rg.

A fruitful approach is the concept of the potential energyFrom this observation the authors concluded that the PEL is
landscapgPEL) [5—-7]. In this approach the total system is indeed relevant for temperatures below some temperature
regarded as a single point moving in the high-dimensionaT, . Interestingly, T, is significantly larger than the critical
configuration space on a time-independent landscape, repreemperaturdl . of the mode-coupling theor]. In Ref.[25]
senting the potential energy. To a large extent the topograt was shown that close td@. the dynamics of the model
phy of the PEL is characterized by the local energy minimaglass former can be basically viewed as a superposition of
also denotednherent structuresAlthough the analysis of hopping processes between the different inherent structures
inherent structures has been applied to several problemand local vibrations around them. This is a very direct piece
[8—12, until now only limited quantitative information is of evidence for the relevance of the PEL in the sense men-
available concerning the PEL of glass forming systems. Thisioned above. Furthermore it could be shown explicitly that
is at least partly related to the fact that the number of inherthe presence of fast and slow regions in a glass former, and
ent structures exponentially increases with system size sihus the presence of nonexponential relaxation, can be attrib-
that a complete enumeration is only possible for very smallted to the topography of the PER6]. Also the relevance of
systems. This has been demonstrated for small clustethe PEL for aging has been recently demonstragad.

[13,14] as well as for monatomic Lennard-Jones systems If the system mainly resides close to the inherent struc-
with periodic boundary conditions for up to 32 particles tures of the PEL, the potential energy can be described in
[15,16. Since monatomic systems tend to crystallize even ofarmonic approximation around these inherent structures, re-
computer time scales it has become common to use binargpectively. Therefore our question concerning the relevance
rather than monatomic systems to suppress crystallizatioof the PEL can be reformulated by asking to which degree
[17-19. For these systems as well as for slightly largerthe properties of the system can be described in harmonic
monatomic systems, however, a complete enumeration is n@pproximation. If the system always resides in a single mini-
longer possible so that one has to resort to an appropriateum the degree of anharmonicity can be simply determined,
statistical analysis. Such an approach has been usggbjn e.g., by analysis of the temperature dependence of the mean
where the distribution of local minima for a KCI cluster is fluctuations around an inherent struct{2d]. At higher tem-
determined. Another approach to characterize the PEL is ageratures for which the residence time close to a single in-
plication of the lid algorithm[21]. Characterization of the herent structure may be small these approaches become un-
PEL is also an important topic in spin glass phygi22,23. reliable.
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In this paper we want to show that computer simulationsration space can be decomposed in disjoint partitiOns
can be used to yield a variety of information about the PELThen Z(T) can be written as the sum over the individual
The main ingredients of our simulations have been alreadpartition functionsz;(T), i.e., Z(T)==Z(T), where the
proposed by Stillinger and co-worke€i®,28,7. First, we use  Z,(T) are defined as
their algorithm, combining standard molecular dynamics
(MD) simulation with regular quenching of the potential en- - - - -
ergy. Second, we adapt their formulation of the partition Zi(T)EfQ_drl - dryexp=BV(ry, ...ry). - (2)
function of the total system in terms of the properties of the '
individual inherent structures. Combination of both ingredi-
ents will yield quantitative information about the partition
e oonny oepes o oo g herent setwre. o
Characterization of the PEL in terms of the density of inher— For the flnal caIcuIat|0n. of the partition function it is help-
ent structures(ii) Dependence of the PEL on system SizefuI to 'rejwnte the su'mrn'atlon over all inherent structqres by
and comparison with scaling relations one would expect forcombmmg all contributions of inherent structures with the

- P . same energy. For this purpose we introduce the partition
sufficiently large systemgiii) Quantification of anharmonic function Z(e,T), defined as
contributions.(iv) Connection of the PEL to dynamic prop- T
erties. (v) Consequences for thermodynamic properties like
the specific heat and the presence of a Kauzmann tempera- Z(e,T)=2, Z(T)d(e—e), 3)
ture. In the field of clusters similar approaches have been i
already applied to some of these aspé28& 30.

The organization of this paper is as follows. In Sec. Il weSUch that
present a detailed outline of the conceptual background of
the approach chosen in this work. Section Ill contains a de- Z(T)=f deZ(e,T). (4
scription of our simulation method and the model system. In

Sec. IV the dynamics and the structure is characterized via o ) B
standard molecular dynami¢®D) simulations. In Sec. V On a qualitative leveZ (e, T) is a measure for the probability

we present the main results of our simulations with respect téhat @ configuration at temperatufebelongs to a basin of

properties of the PEL. The discussion of the implications oféttraction of an inherent structure with energyActually, as
these results can be found in Sec. VI. discussed in the next section, it is this quantiye,T)

which, apart from a proportionality factor, we can extract
from our simulations. iG(e) denotes the number of inher-
ent structures with energy we can furthermore introduce
the average valug(e,T) for all inherent structures with en-

In this section we present the conceptual background agergy € via
plied in this work and introduce the notations used thereafter.
This outline is rather detailed in order to make the implica- 2(e,T)=Z(¢e,T)IG(e). 5)
tions of this approach as clear as possible. Starting from the ) ] ] ]
distribution function of potential energi€kE), characteriz- Note that the logarithm of5(e) is the configurational en-
ing the total configuration space, the configurational contriropy-

bution of the canonical partition functiof(T) can be ex- In generalZ(e,T) may be a very complicated function of
pressed as T and e. In the limit of low temperatures, however, it is

reasonable to assume that apart from the eneygtgelf the
o individual partition functionsZ; are mainly determined by
Z(T)=f dEG(E)exp(— BE), (1) the harmonic contributions, i.eZ;(T)~exp(—Be)Z™™(T),
o so that in general it is helpful to take into account harmonic

B . e . . and anharmonic contributions individually. The harmonic
whereB=1/T(kg=1). No specific information about inher- contributions are given by

ent structures is contained. In case that the physics is mainly
determined by the inherent structures and their close neigh- (

The{ﬂ-} denote the positions of tHé particles of the system
and the integration is over the basin of attraction of itthe

II. PARTITION FUNCTION OF GLASS FORMING
SYSTEMS

27T\ 2
) EYParm-r(BN—3)/2' (6)

borhood, respectively, it may be more informative to express zrmmy =11
Vj,i

the partition function in terms of the properties of the inher- i
ent structures. The main idea is to split the total configuration » )
space in contributions corresponding to the different inherenfVhere v;; denote the Bl—3 positive eigenvalues of the
structures with energye; , i.e., the minima of the potential force matrix evaluated for thé&th inherent _struc_ture. Not_e_
energy of the system. Each inherent structure is surroundgdfat the temperature dependence of the vibrational partition
by a so-called basin of attractid . It is defined as the set function Z/®"(T) is simply given by the factof N~

of all configurations which end up as the inherent structure WhereasY*™ contains the temperature-independent infor-
upon energy minimization. Since the mapping of configura-mation about the harmonic modes around this inherent struc-
tions on inherent structures via enery minimization is uniqugure. In analogy to above we defiy8®™€) as the average
(except for a set of configurations with measure zero, correef the Yiha"“ over all inherent structures with energy Then

sponding to the saddle points of the PEhe total configu- we can write
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z(e, T)=exp — Be)y"aM ) TEN 32N Ty, (7) Ill. METHODS

) ) ) We studied a binary Lennard-Jon@gs) type system. The
thus introducing the ternz*"(e,T), accounting for the an-  mutual interactions are chosen such that the interaction be-
harmpmc corrections. By definition one hef8{e, T)=1 for tween unlike particles is favored, thus avoiding crystalliza-
sufficiently low temperatures. In literature, phenomenologi+ion for an appropriately chosen mixing ratio. The pairwise

cal expressions for the description of anharmonic contribuinteraction potential has been proposed by Stillinger and We-
tions can be found; see, e.g., Rdf9,30. Finally, the total  per[17]

partition function can be expressed as

Vi (1) = Ceqiyeh)L (i 1 T agiyeiy) 2= 11
XexH (i /o iy () =) 1T <0yl
(12

Z(T)=TEN=3)2 f deG(e)y"™M )22 e, T)exp — Be).
(8)

Since all thermodynamic quantities can be derived from
knowledge of the partition function it is evident from ) . . -
that it is not the density of inherent structurée) alone and zero otherwise. Hene(i) < {A,B} indicates whether the

which determines the properties of the system. At suﬁ‘i—Ith pgrilcélzéssge;r;A Oii 55;{%3 part|c_lel. The_ :;L)%rameters
ciently low temperatures it is rather the product®¢ ~T° y 8= » €AAT HOAAT LU €AB

har P . =1.5 oap=2.00/12.4% egg=0.5¢ o
G hich is relevant. We denote th odeft AA AB AA» ~ “BB AR AB
%/ect?\sg)de(rfs)it\;véf(e)ls ie. v IS P =2.20/2.4% 5. The system contains 80% particles and

20% B particles. Energy and length units are given in units
Gerl( €)=Y ™M €)G(e). 9) of eap aNd o pp - Finally,. the time unit is\/m_AaAzA/sAA. I_n
what follows, all quantities are expressed in these units. As
compared to a LJ potential with a standard cutoff at2.5
(in LJ unity this potential is more short-ranged. We per-
formed simulations at constant densjy 1.204, tempera-
tures ranging from 0.667 to 2.5, and system sizes between
o . N=20 andN=160. The glass former was propagated at a
Thus for sufficiently low temperatures for whiai"(e,T)  given temperaturd via standard molecular dynamiésiD)
=1 we can directly obtain the effective density of statestechniques, using the velocity form of the Verlet algorithm
from a reweighting of theZ(e,T) with the inverse Boltz- \jth time steps depending on temperature but smaller than
mann factor. The resulting effective dens®yq(e€) is inde-  0.00125. The temperature was kept constant via velocity re-
pendent of temperature. In practice one has to determingcaling, i.e., by using a constant kinetic energy during our
Z(e,T) for several temperatures in order to obt&@gq(e)  simulation run. Alternatively, we applied the Nose equations

It can be determined frord(e, T) via

Gei(€) =T CN=327(¢ Texp Be)/ 22, T). (10)

for a wide range of energies. ~ of motion[33], with no significant variations for the quanti-
Finally, the total partition function can be expressed inties discussed in this work. We checked that upon shifting
terms of the effective density via the temperature scale by 30% to lower temperatures the

present Lennard-Jones type model can be mapped to the
model presented ifil9] for temperatures in the supercooled
regime.
(11 First we performed standard MD simulations at different
temperatures yielding information about the relaxation prop-
Despite the formal similarity with Eq(1) the present ap- erties like the structuralg) relaxation time. To obtain infor-
proach is based on a description in terms of the distributionmation about the PEL we calculated inherent structures by
of inherent structures in contrast to an overall description ofhe conjugate gradient minimization technique. The proce-
the PEL, expressed in Eql). The main advantage of the dure was such that during an MD run at constant temperature
present approach is the possibility to uniquely identify anharthe system was regularly minimized and after each minimi-
monic contributions. A straightforward way to do this is to zation procedure the MD run was continued with the same
calculate a thermodynamic quantity like the specific heat, orconfiguration and momenta as before the minimization. This
the one hand, directly from the MD configurations and, onis schematically shown in Fig. 1. The thick line corresponds
the other hand, from Eq$10) and (11) with z22M(e,T)=1, to the MD trajectory; the thin lines sketch the path the sys-
i.e., using the harmonic approximation. Deviations betweeriem takes upon quenching. During every minimization pro-
both approaches can be uniquely attributed to anharmonicess the MD configuration is mapped on the inherent struc-
contributions, i.e., invalidation of the relati@i"(e,T)=1.  ture, whose basin of attraction comprises the MD
Finally we would like to mention that there exist alterna- configuration. On average we performed 25 minimization
tive approaches to formulate the thermodynamics via a comprocedures during one relaxation time.
bination of constant energy MD simulations and quenching The probability that an arbitrary MD configuration be-
from which the energy densitg(E) for different systems longs to a basin of attraction of théh inherent structure is
has been estimated; see, e.g., R8D]. Furthermore it is given by Z;(T)/Z(T). Therefore the probabilityP(e,T) to
interesting to note that the thermodynamics of glasses can dad an inherent structure with energy(at constant tempera-
also calculated via analytical meal#il,32. ture) by the above procedure is given Bye, T)/Z(T). This

Z(T)=TEN=3)2 f deGen( €)22M €, T)exp — Be).
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+ + + FIG. 3. The temperature dependence of the incoherent scattering

function Sy 4(q,t) for N=60.

>t only minor variations ofS(q,t) occur forN=60. The most
FIG. 1. Schematic presentation of the algorithm. On a regularSlgnlflcam obseryatlon_ is that strong ﬂ.mte slze effects o?cur
for N<60. In this regime the relaxation time strongly in-
creases with decreasing system size. However, evei for
=20 one observes on a qualitative level, the same two-step

is the key feature which according to the outline of Sec. ||relaxation process as for large system sizes. We checked for

allows us to extract thermodynamic properties from this typel = 0.883 that also for system sizes betweér 160 andN
of procedure. =480 no systematic variation witd is observed. A previous

numerical analysis of finite-size effects for a similar system
can be found irf34].

In Fig. 3 we show the temperature dependenc&(oft)

In this section we present results, characterizing the dyfor N=60. As already known from many different experi-
namics of our LJ-type system for different system sizes andnents and simulations the-relaxation time strongly in-
different temperatures. The dynamics can be convenientlgreases with decreasing temperature. In Fig. 4 we display the
described by the intermediate incoherent scattering functiom-relaxation time for a large part of thél'(N) plane. It is
S(qg,t) which is defined as defined viaS(q,r,)=1/e. One can clearly see that for all

temperatures analyzed in this work strong finite size effects
1 . R start to play a role foN<<60. The apparent step in relaxation
Sa.v=y >, cogq[ri(t)—ri(0)]), (13)  times betweerN=60 andN=40 decreases with increasing
' temperature. Interestingly, fod=20 as well as foN=40
- . - - one observes an Arrhenius temperature dependence for low
where q denotes the scattering vector anft) —r(0) the  omperatures. In contrast, for larteone observes a continu-
displacement of a particle during timte Here we restrict g}y increasing apparent activation energy, in agreement
ourselves to the\ particles. For isotropic systems only the it tynical experimental observations on fragile glass form-
absolute valuey of the scattering vector is relevan.t. Inwhat ors |t has been already reported earlier for a monatomic
follows we take a vglue of) c!ose to the.f|rst maximum of Lennard-Jones-type system with 32 particles that at low tem-
the structure fac_tor, i.e., the inverse typical particle d'stanc%eratures the relaxation has an Arrhenius temperature depen-
(q=7.251). In Fig. 2 we show(q,t) for T=0.667 for dif- ~ yence[15]. For that system the low-temperature activation
ferent system sizeBl. For all sizes one can clearly see the gnergy could be related to an effective barrier of the PEL
two-stage relaxatioiffast 8 and « procesp as predicted by  around a particular inherent structure with a low energy
the mode-coupling theory. Starting from large valuesNof \yhich was visited very often at low temperatures. A similar
reason will be discussed below for the present case.

basis MD configurations are quenched, giving information abou
the energye(t) of the corresponding inherent structure.

IV. DYNAMICS AND STRUCTURE

1.0 faony

0.8
0.6¢
0.4

SAA<qmax’t)

0.2

log,( T,)

0.0

-4 X . , .
logi(t) 0.0 0.5 1.0 15 2.0
1T

FIG. 2. The incoherent scattering functiddy,(qg,t) for T
=0.667 for different system sizeN, ranging fromN=20 to N FIG. 4. The a-relaxation time for different temperatures and
=160. system sizes, determined by the conditi(, r,) = 1/e.
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FIG. 5. The pair correlation functiorig) gaa(r) and(b) ggg(r)
for system sizedN=20,40,60,160, determined fdr=0.667. The
offset has been shifted for better comparison.
=z
As demonstrated in Fig. 5, also the pair correlation func- >
tion g(r) between particles of the minority compondat
indicates significant finite size effects at the lowest tempera-
ture. Again, only forN=60 the bulk limit is approximately

reached. This indicates that there is a common reason for

finite size effects, relevant for static and dynamic properties. t/ 7,
In contrast, only very mild finite size effects can be observed
between particles of the majority Componmt FIG. 6. The time dependence of the energy of inherent struc-

tures e(t) for three representative temperatufes T=0.667, (b)
V. POTENTIAL ENERGY LANDSCAPE T=0.833,(c) T=1.667 and for system sidd=60.

. , ) average value but also the whole probability cuPfee,T)

Based on the algorithm discussed in Sec. Ill we analyzeg 4t a1 temperatur® one observes an inherent structure with

runs with lengths between 300 and 1QQO For system size energye. As shown in Fig. 8 the distributioP(e,T) con-
N=60 and for three representative temperatureB ( (inyously shifts to lower energies when decreasing the tem-
=1.667,0.833,0.667) we show(t) curves in Fig. 6, reflect-  heratyre but does not change its shape or width. Our goal is
ing the energy variation of the inherent structures with time Jerive the effective densit@.q(¢), see Eq(9), of inher-
Closer inspection of the(t) time series fprT=0.833 and_ ent structures from knowledge &f(e,T). SinceZ(e,T) is
T=.0.667 reveals _thgt the_re are long periods of time d“””gproportional toP(e,T), the effective densitG.q(e) can in
which the system is jumping back and forth between a Smalbrinciple be determined from E10) except for a propor-

number of inherent structures. This scenario can be inteffonality constant which only depends on temperature, i.e.
preted in terms of valleys on the PEL in which the system is

caught for some tim¢26]. Here we concentrate on the sta- Gei(€)Z2M €, T)c P(€, T)exp Be). (14)
tistics of the inherent structures.

In Fig. 7 we plot the average value of the energy of in-Obviously, application of Eq(14) requires knowledge of
herent structures, denotéd), for different temperatures. 722"(e,T), which in general is not available. If, however,
This plot is similar to the curves shown in RéR4]. The  z2"(¢,T) does not depend oa (which trivially holds in the
temperature variation fof =0.833,0.714,0.667 is consistent low temperature limit whereg®""=1 but, of course, is a more
with a 1/T behavior whereas at high temperatures the temgeneral conditionit can be included in the proportionality
perature dependence becomes weaker. In [Rdf. the au- constant. Then the dependence 0G.4(€) can be deter-
thors additionally observed a low-temperature plateaumined from multiplication ofP(e, T) with an inverse Boltz-
which, however, was exclusively related to nonequilibriummann factor except for a proportionality constant. In prin-
effects and correspondingly strongly depends on the thermaiple a single temperature is sufficient to obtaiq(e).
history. Here, we restrict ourselves to the regime of equilib-However, as already shown in Fig. 8, for different tempera-
rium dynamics. In order to get a closer understanding of thisuresP(e, T) is distributed around different energies. There-
temperature dependence we have determined not only tHere in practice it is necessary to combine the simulations at
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A N=60 —v—N=80 =60. The individual curves have been shifted in order to obtain an
—0— N=120 —+— N=160 A
B 4 optimum overlap.
04 06 08 1.0 1.2 14 1.6
1T so that the total energy is a sum of weakly correlated energy

contributions. According to the central limit theorem this

FIG. 7. The average value of the energy of inherent structuregatyrally results in a Gaussian distribution. It is nevertheless
(.e)T for different temperatqres find different system sizes. The SO"%urprising that already fdd =60 the Gaussian distribution is

line corresponds to an estimation fdr=60, based 0iGen(€); S€€ 4 yery good approximation to the true distribution although
Fig. 9. such a small system definitely cannot be decomposed into
_ . only weakly interacting subsystems. In any event, as shown
different temperatures to obtain larger parts of B&i(€) iy [36] the central limit alone does not account for the degree
distribution; see, e.¢.35]. The relative proportionality fac- ot Gaussianity. Rather it suggests a close to Gaussian distri-
tors are determined by the condition tH@y(e€), extracted  pytion of energies already on a very local scale. Interest-
from different temperatures, should be identical in the OVeringly, analysis of experimental specific heat data of ethylben-

lap region. This procedure is performed in Fig. 9. Obviously,;ene also yields a Gaussian distributionGiffe) [37].
for the three lower temperaturds=0.667;0.714;0.833 the Based on the knowledge @.x(€) it is possible to esti-

overlap is close to perfect. A single unknown proportionalitymate<6>T in harmonic approximation; see Sec. II. This re-
constant remains which we accounted for by plottinggis in
Geri(€)/Geri( €g) Whereg is the lowest energy found during
the simulations. Interestingly, th&.4(€) curves, obtained harm_ a?
from the high-temperature simulationd£€1.667 andT (7= €ma— 7 - (15
=2.5) do not overlap with the low-temperature data. As dis-
cussed above this directly indicates that at high temperatureghe resulting curve foN=60 is also included in Fig. 7.
anharmonic contributions are present and furthermore dewhereas in the low-temperature regime one hag}afm
pend, as expressed 1§"(e,T), on energye. The Ge(€)  ~(e);, both curves deviate at high temperatures which
curves were shifted such that they agree with the lowagain reveals the relevance of anharmonic contributions at
temperature curves in the region of largeNo mapping was  high temperatures. The qualitative interpretatino of these an-
possible for the lowe region. This behavior as well as the harmonic effects will be given in Sec. VI.
consequences will be discussed in Sec. VI. We also checked the dependence of"®™(¢). This is

The energy dependence of the effective density can bessential in order to estimate the density of inherent states
excellently fitted by a Gaussian distribution é€xf{e  G(e) from Gg4(€). Again this analysis can be performed for
_ 215 2\ i __ 2_ g "

€maY) 120°) With €ya=—5.6N ando“=0.3N. A Gauss- (ifferent temperatures. To be specific, we calculated the av-
ian diStribUtion natura”y OCCcurs in the limit Of Very Iargé erage Va|ue Of |n(|ham) for a” inherent structures with en-
In this limit it is reasonable to assume that the total systemyygy ¢, =€, obtained from our quenching procedure. For-
can be decomposed into only weakly interacting subsystemga|ly, the resulting expectation value can be written as

120835 > oe=en(y[ My Tz )
. 6 ] -- T=1.667 ] <|n(yharm)>(6):
= | > de—e)y!* M)
4t " . i
ot L (16)
2r ‘ ] .

I For low temperatures where anharmonic effects can be ne-
okt~ N glected one expects temperature independent expectation
52 60 58 -56 54 values(In(y"™)(e). The results are shown in Fig. 10. For

' ' E/N ' ' the three lower temperatures no significant temperature de-

pendence can be observed. Interestingly, a weak dependence
FIG. 8. The distributionP(e,T) of inherent structures at three 0N € is observed: higher energies correspond to smaller val-
different temperaturesT(=0.667,0.833,1.667 from left to right ues of(Iny"™ and thus to larger harmonic force constants.
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structures. §
T 5

This result is consistent with recent simulations on small

monatomic LJ systemp38]. Due to thee dependence of

y"@M(¢) the densityG(e) and the effective densit«(€) Ot

slightly deviate from each other. It turns out, however, that

the variances 06G(€) and Gg4(€) differ by less than 10%.

In what follows this effect is neglected and one can approxi-

mateG(€)*Geg(€). Interestingly, the values of"®™(¢) are

shifted to smaller values if the inherent structures are ana-

lyzed obtained from the high temperature simulatiofs (

=1.667 andT=2.5). Again, this is a clear signature of an-

harmonic effects as seen from Ed6). Thus the temperature

dependence of the average harmonic partition functiae

[27]), averaged over all inherent structures at a given tem-

perature, has two contribution8) the e dependence which

via the temperature dependence of the average energy of

inherent structureée) translates into a temperature depen-

dence of the harmonic partition function afid the tempera- FIG. 12. (a) The time series of the energy of inherent structures

ture dependent anharmonic effects. e(t) for N=20 atT=0.833; the broken line indicates the activation

In order to independently check the degree of Gaussianitgnergy of the dynamics at low temperatures; see Figb¥the

of Ggi(€) one may check the temperature dependence of theorresponding time series of mobilitig(t); (c) the corresponding

energy variancerP(T) of P(e T). In the case of a Gaussian time series of the energy of the MD configuratidag).

distribution one expects3(T)=0?. In Fig. 11 we display

o3(T)/N. Extending the results, reported above, we haveheorem suggests,,>N and o>=N. Interestingly, within

also included the data for different system sihesWVe first  statistical error all data fos?/N agree forN=60.

concentrate on the data f&d=60 and, for reasons men- Systems with size smaller thaw=60 display significant

tioned above, concentrate on the three low-temperature daténite size effects in terms of the distribution of inherent

It turns out that the energy variance is indeed constant, and &tructures. Interestingly, the variance decreases with decreas-

consistent with the value, directly obtained fradBag(€). It  ing temperature foN=20 andN=40. The reason for this

is very illuminating to discuss th dependence of. Inthe  temperature dependence can be directly understood from the

macroscopic limitN—oo application of the central limit plot of e(t)/N for N=20 at T=0.667; see Fig. 12). It
becomes evident that it is a single inherent structure which

E/N

0.6F - ' - - - ] dominates the distribution of inherent structures. This domi-
><><;: nance directly explains the decreasing variance. The frequent
% occurrence of this low-energy inherent structure does not
= 041, B ] mean that the system does no longer relax. In order to clarify
é % this point we introduce the mobility(t) via
c 0.2r —+—N=20 —X—N=40 1
—DO—N=60 —O—N=80 R .
pof MR IMw T p(=2, G(tH-r-t/2). 17
04 06 08 10 12 14 16
1T

It denotes the mobility at timé on the time scale of the

FIG. 11. The variance’3(T) of P(e,T) calculated for different ~ relaxation timet, . As shown in Fig. 1f) there exists times
temperatures and system sizes. The strong temperature dependetidaen the system is very mobile. Indeed, at these times the
for N=20 andN=40 is explained in the text. system leaves its ground-state type structure and after larger
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FIG. 13. The pair correlation functioggg(r) for N=20 and FIG. 14. The density of inherent structur@¢e) for N=20 and
T=0.833 determined from the inherent structures. N=30 obtained from simulations at a single temperature.

rearrangements ends up in a new configuration which except For both values oN the resultingG(e€) curves are plotted
for permutations and some translational shift is identical tan Fig. 14. On a qualitative level one can already see that the
the former structure. During the other times the system onlywumber of inherent structures is by orders of magnitudes
jumps between a small number of inherent structures, resultarger forN= 30 than forN=20. For a quantitative analysis
ing in a small value of the mobility.(t). For comparison we of the number of inherent structures we assume that the de-
also show the time dependence of the true potential energycription of G(e) as a Gaussian also holds fer> ey
E(t) for the same run, directly obtained for the MD trajec- From the present simulations these inherent structures are
tory; see Fig. 1&). Here, no specific features can be ob-not accessible because they are unfavored from the entropic
served. This exemplifies the large information content wheras well as from the energetic point of view. In a previous
analyzing inherent structures rather than the original MDwork, however, it has been shown for a monatomic Lennard-
configurations. Jones-type system with 32 particle that the distribution of
The observation that the low-temperature dynamics of thénherent structure€for that system approximately 400 inher-
N=20 sample is dominated by a single inherent structurent structures were fouhdtan indeed be qualitatively de-
gives a straightforward interpretation of the dependence ofcribed by a Gaussian also for the high-energy wihg.
the pair correlation function oM since the structure of For a Gaussian the number of inherent structudgsare
ggg(r) is also dominated by this inherent structure. Calcu-related toG(e€) via
lating ggg(r) for the corresponding inherent structure,
shown in Fig. 13, reveals that there only exists a single dis- Nis= G( €ma V2702 (18
tance between the fold particles. This type of behavior can
be understood from the Hamiltonian of the system. Sincd-rom this relation we can estimate(N=20)=0.53+0.02
A-A andA-B contacts are preferred due to the large bindingand «(N=30)=0.70+0.05. Thus the value of: slightly
energy the system tries to maximize the distance betvigeen increases when going frold=20 to N=30. Unfortunately,
particles. Indeed, the distance betwegmarticles is much this value cannot be estimated for largerby the present
larger than the optimum binding distance betwdgmpar-  approach since no information about the inherent structure
ticles. ForN= 60 all distinct features have disappeared. with the lowest energy is available so that normalization of
In a next step we want to analyze the dependence dB(e) is not possible.
Ges(€) on system size and particle composition. It has been In Fig. 15 we showG(e) for two different compositions
argued in literature that for largd the number of inherent (NAo=25Ng=5 vs Ny=24Ng=6). Starting from a mon-
structures should scale like exy){) where the constant atomic system and having only slightly different properties
depends on the type of system. Of course, for siNalhe  of A as compared t8 particles one expects that the number
value of « may depend oiN. Since to a very good approxi- of inherent structures with different energies is proportional
mationGgx(€) xG(€) (see abovealso the latter distribution to the binomial coefficientN!/N!Ng!. According to this
can be described as a Gaussian. For small systems where wegument one would expect that for the standard composition
can identify an inherent structure with minimum energy

€min,» determination of the absolute value of the number of 8F’ ' PRI "]
inherent structures is possible. Here this is the caseNfor i

=20 andN=30. Some technical points enter a quantitative 6 o° ]
analysis. We have introducesl €) as thedensityof inherent = /c/ ‘
structures such thds(e)de denotes the number of inherent 9,0 4r 4 ]
structures in the intervdle—de/2,e+de/2]. The normaliza- =] o/
tion is achieved by settinG(e,,) =1. Since we are dealing = 2¢ oQ/ o s zs) O\ ]
with binary systems we can to a very good approximation of o —0—N=30 (24:6)

neglect any contributions which arise due to intrinsic sym- Y EY: 55 50 45

metries of the configurations. A similar analysis has been N

performed in Ref[29] for the case of (KCH,. In that work
two Gaussians rather than a single Gaussian were needed toFIG. 15. The density of inherent structur@$e) for two differ-
fit P(e,T) and thusG(e). ent compositionsNa=25Ng=5 vSNy=24Nz=6).
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FIG. 17. Sketch of the model potentid(x) as described in the
25k ) , ) , . J text. The size of the basin of attraction and the potential height are
00 05 10 15 20 25 3.0 indicated.

FIG. 16. The specific heat as obtained fr@gq(e) and aver- this prediction can be directly related to anharmonic contri-
aged over all system sizé$=60 together with the actual specific butions. In this section we try to characterize the anharmonic
heat obtained from analysis of the energy fluctuations in the MDcontributions. Specifically we observe anharmonic contribu-
simulation. The deviations correspond to anharmonic contributionstions for the following observablesi) For the two highest

temperatures it is not possible to determi@g(e) on the
(NpA=24Ng=6) the number of inherent structures is ap-basis ofP(e,T); see Fig. 9. Qualitatively the plot in Fig. 9
proximately 25/6=4 times higher. Determination of yields  indicates that at high temperatures the low-energy inherent
a(24:6)=0.70+0.05 anda(25:5)=0.58+0.04. The num- structures are found more often than expected from extrapo-
ber of inherent structures has therefore increased by a facttation of the low-temperature data. It will be discussed below
of approximately exp{aN)=exp(0.12<30)~36. Thus the why anharmonic effects may lead to this effect. In contrast,
increase of the number of inherent structures is larger than far the three lower temperatures scaling was possible, thus
factor of four, following from purely statistical consider- enabling us to determine the effective densiyi(e). From
ations. Having in mind that this argument only holds forthe observedGq«(€), which closely resembles a Gaussian
nearly identicalA and B particles, the present case of two distribution, one expects a linear increase(ef; with in-
significantly different species may be a source for additionakerse temperature as long as anharmonic effects are negli-
disorder and thus for an increased number of inherent strugible. However, since due to anharmonic effects low-energy
tures[39]. Finally we calculate the specific heat. From theinherent structures were found too often at high temperatures
partition function in Eq.(11) one can calculate the specific the average energy of inherent structukes; must be

heatc(T) per particle in harmonic approximation smaller than expected. In agreement with the results of Sas-
try et al. we indeed observe a much weaker increaseepf
c™MT)=3+0?/(NT?). (19 for the two highest temperatures; see Fig. 7. Thus it is the

effect of anharmonicities which dominates the temperature
The second term expresses the configurational contributiongenavior of( €)1 at high temperatures. Note that this type of
In Fig. 16 this is compared with the specific heat, obtainectonclusion can be drawn since we have measured the total
from our simulations via the fluctuations of the potential en-gistribution functionP (e, T) rather than only its first mo-
ergy, 1.e., ment. (i) For all temperatures there were small but signifi-
cant deviations of the specific heat. Whereas for the three
(E—(EN? lower temperatures the anharmonicities give rise to a slightly
CONT2 increased specific heat, for the higher temperatures one ob-
serves a dramatic decreas@i) The expectation values
We have plotted the average specific heat fbr (Iny"am (¢) sl?ghtly depend on temperature which again can
=60,80,120,160, which within statistical error are identical.P® Only explained by anharmonic effects. _ _
It turns out that the agreement between both curves is good 1hese effects of anharmonicity, found in our simulations,
for the three lower temperature;{!nterestingly, the simulate§@n e rationalized on the basis of a simple model potential
data are significantly larger thaec™®™, indicating the rel- _ 2_ 4_ 6
evance of anharmonic terms. In contrast, for the higher tem- V()= (1/2ax" = (1/4)byx"~ (1/6)box", @)
peraturesT=1.667 andT=2.5 the specific heat is much
smaller thanc"®™(T). For T—e the specific heat will ap- with the minimum atx=0 (a,b;,b,>0) and maxima at
proach the ideal gas limit 3/2. We note that on the basis of- x_ so that its basin of attraction is the interyat x. ,X.]. It
the entropy a distinction in configurational and anharmonigs sketched in Fig. 17. For reasons of simplicity we restrict
contributions has been discussed for experimental data @furselves to a one-dimensional potential as the simplest rep-
selenium[40]. resentation of a basin of attraction. The anharmonic contri-
butions are represented by the coefficietts and b,.

VI. DISCUSSION Whereasb, corresponds to the local anharmonicity around
the originx=0, b, reflects the overall anharmonicity of the
well. We therefore assume that closextothe term propor-

For several observables discussed above predictions caional tob, is much more relevant than the term proportional
be made in harmonic approximation which are based on th& b,. All conclusions, drawn below, are totally independent
effective densityG¢q(€), determined at sufficiently low tem-  of the specific form of this potential. With simple algebra the
peratures on the basis 8f(e, T). Thus any deviations from anharmonic corrections to the harmonic partition function as

c(T)=3/2+ (20

Anharmonicity
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well as the specific heat df(x) can be calculated in the analysis the high-temperature expansion, i.e., 24), be-
limit of low and high temperatures. We obtain for low tem- comes relevant, the anharmonicity dependsvgn Follow-

peratures ing assumptior(ii) the anharmonic contributions are signifi-

cantly larger for low-energy inherent structures. This leads to
anbv s 4 301T an overestimation 0G.¢(€) in the region of low energies.

Z2MT)=1+ E’ (22 This explains why the effective densities, obtained for differ-

ent temperatures by the above analyis, do not overlap at high
3b.T temperatures.

ca(T) = 1 (23) For elucidating the temperature dependence of

2a? (Iny"@™(¢) one has to take into account the variation of

Y™ for inherent structures with the same energy: e.

According to Eq.(26) one can expect that inherent structures
Yiharm

6 N with larger force constants, i.e., smaller , possess
2N T)= \/:\/z (24 somewhat larger barrier heights, i.e., lariyer According to

T N T Eq. (24) this results in frequent sampling of inherent struc-
tures with smallY’™®™. As a consequence the average value

and for the limitT—c to lowest order in I¥

an —
cMT)=-1, (25) (Iny"™@™(¢) at fixed e should decrease with temperature at
wherec®(T)=c(T) - c"™T). Here we defined sufficiently high temperatures in agreement with the numeri-
cal findings in Fig. 10. In summary, our simple model poten-
V. =V(*x.)~(1/3)at%, *°, (26) tial qualitatively reproduces all anharmonicity features ob-

served in our simulations.

which corresponds to the energy difference between maxi-
mum, corresponding to a saddle in the PEL, and minimum.

It is straightforward to explain the temperature depen-
dence of the specific heat. From E@3) it is evident that The Kauzmann temperatufg has been introduced as the
there exist positive anharmonic contributions and ambientemperature for which the configurational entropy of the
temperatures for which the anharmonicity is dominated byglass-forming system would disappear in equilibrium condi-
the local anharmonicity term proportional by. For some tions. Thus knowledge d&(e€) enables one to estimalg .
temperaturd ., , however, the system realizes the finite sizeFor T=T (for infinite systemsone expects the relaxation
of the potential well and correspondingly the presence of atime to diverge since only a single configuration is acces-
upper energy cutoff. This results in a strong decrease of théible. In analogy to phase transitions one might expect modi-
specific heat until for very high temperatures the ideal gadications for finite systems: the Kauzmann temperature is
limit is recovered, i.e., vanishing configurational contributionsmeared out and fof <Ty the system still has a finite re-
to c(T). This effect is governed by the global anharmonicity laxation time.
term proportional td,. It is not surprising thal . , is close In our caseG(e) is mainly determined by the parameters
to the temperature for which upon cooling the PEL starts tor, o, andN. For N=20 the dynamics at low temperatures
become relevan{24,26 and Fig. 7 since according to our is also determined by a single inherent structure. In what
above discussion the PEL is relevant as long as the systefallows we restrict ourselves to a perfect Gaussian distribu-
mainly stays close to the inherent structures and is thu§on and consider the effects which arise from the fact that at

Kauzmann temperature and finite-size effects

dominated by the harmonic contributions. sufficiently low temperatures the system is sensitive to the
For explaining the anharmonicity effects related to thefact that one has a low-energy cutoff Gi(e), i.e., G(e)
temperature dependence Gfq(e) and (Iny"@™M(e) addi- =0 for e<ep;, due to the finite(albeit exponential large

tional properties of the PEL have to be postulatég:The  number of inherent structures. A good indicator is the vari-
local anharmonicity, i.ek,, only mildly depends on energy. ance ofP(e, T). For large temperatureébut not too large in
This assumption is compatible with the observation that als@rder to avoid anharmonic effects, see abhowee expects
the local force constants, i.ea, only show a very weak this variance to be constant and identical to the variance of
dependence on energy; see Fig. (0.Low-energy inherent G(e). In contrast, folT—0 the system is stuck in the inher-
structures possess larger barrier heights, corresponding &t structure with the lowest energy, giving rise to a vanish-
larger values ol in our simple model potential. Evidence ing variance. The temperature where this crossover occurs
for this assumption has been presente{li,26]. and which can be identified as the Kauzmann temperdture
First we deal with the apparent temperature dependencan be estimated by the condition that the energy interval
of the effective density of inherent structu@sq(€). Forthe [(€)r—ao,(e)r+ao] [(e)r: average energy oP(e,T)],
three lower temperatures we already learned from analysis ¢@r which the distributiorP (e, T) has its main contributions,
the specific heat that local anharmonicity effects are alreadgtarts to approach the value &f;,, i.e.,
present. According to assumpti¢n the anharmonic contri-
bution only mildly depends on energy Therefore to a good (€)1, —80=€émin- (27)
approximation these anharmonic effects are not visible in
Fig. 9 since they are irrelevant for the scaling analyis. Asa is a constant of order unity. The strength of the dependence
discussed above only a strorgdependence of2"\e,T) of T on this parametea is a measure for the temperature
rendersG. temperature dependent. For the two high tem-width of the transition. Thus one would expect that for large
peratures, however, where according to the specific heaystems the dependence amanishes; see above. The value
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of emin is determined by the conditio®(ey,)=1. For a  sion of Eq.(30) this would mean that finite size effects,

Gaussian distribution the value 6#); is given by Eq.(15). related to the finite range of energies of inherent structures,
occur for much largeN as compared to LJ-type glasses. In

o contrast, Kim and Yamamoto have explained their finite size
<E>T=<€>T:w_?- (28 effect on the basis of dynamic heterogeneities, i.e., the pres-
ence of fast and slow particles. Finite size effects were ob-
Thus we obtain served at a temperature for which the length séatd dy-
namic heterogeneities, i.e., the cluster size of slow or fast
particles, became as large as the simulation box. The inter-
esting question arises whether the temperature for wish
of the order of the box size is strongly related to the tem-
Neglecting corrections of order N/this relation can be re- perature for which the finite number of inherent structures,

2

- exp(— (— o?/Tg—ao)?20?)expaN=1. (29
e

written as i.e., the energy,,, becomes relevant. This picture would be
consistent with the notion that for macroscopic systems the
o/\/ﬁ_ N length scale of the glass transition diverges at the Kauzmann
T 2a—alyN. 30 temperature.
For large systems the last term disappears and Thuss Physical picture

independent of the value afin agreement with expectation.
We do not know the value od for systems larger thahl
=30. However, since already fd¢=60 the parameter?/N
(Fig. 11 and e, /N (Fig. 7) have reached their limiting
value one may speculate that together with the values of
for N=20 andN=30 the value ofa for large N is larger
than 0.7 and smaller than 1(Enear extrapolation On this
basis the Kauzmann temperature can be estimated@icas
=0.39+0.05. As a comparison the mode-coupling critical
temperature has been estimated for the present system
T.=0.56; see Ref[19], taking into account the temperature
shift of 30% (see below. For smaller systems the additional
term a/\/N clearly increases the value @ . As has been

Based on our results as well as previous work on PELs
the following picture seems to emerge. Coming from low
temperatures the system mainly stays close to the inherent
structures and the dynamics can be described by a superpo-
sition of local vibrations and hopping processes. Around a
temperature close to the mode-coupling temperafydecal
anharmonic effects start to play a role as seen, e.g., from the
temperature dependence of the mean-square displacement
around one inherent structuf24], from the comparison of
2 inherent structure trajectories and the real trajectories
[25], from the Instantaneous Normal Mode Analy$§isd],
and from the presence of anharmonic contributions of the
. . i ' gpecific heat abové,;, seen in this work. Despite the anhar-
already discussed in the context of Fig. 11 the dynamics &honic effects, the PEL still has a strong influence on the
the thr_ee lower temperatures for=20 is already signifi- dynamics as éxplicitly shown in Ref26]. At a temperature
cantly |nfluenqed_ by the presence of t_he lower cutoff Ofof the order Z . global anharmonic effects start to dominate
G(e). A quantitative analysis, however, is hampered by thethe dynamics which are partly related to the presence of
fact that the structure dB(e) close to the lower cutoff is  gaqgjes between inherent structures and thus to the finite size
more complicated due o the_ presence Of. a single or a feWs yhe pasins of attraction. It is, of course, still the PEL,
inherent structures, Fiomlnatlng the phys_lcs; see also Re epresenting the total potential energy of the system, which
[28]. Summarizing this Ime_ of argumentation, thbdep_e_n- is responsible for the dynamics. However, the topography of
dence ofTy as expressed in EG30) clearly leads to finite o ingividual inherent structures, including their close
size effects and it is exactly this type of finite size eﬁeCtneighborhood, becomes irrelevd@s.
which we have explicitly found in our simulations fo{ In summary, we have obtained a thermodynamic picture
=20 andN=40. Finally we note that this derivation is simi- LJ-type glasses based on an appropriate numerical analy-
lar to what has been done for the random energy maH8! s of the PEL. Questions concerning the Kauzmann tem-

Very recently, Kim and Yamamoto have analyzed softyeraqre, finite-size effects, and anharmonicities have been
sphere _systems and fOL_Jnd a significant finite size effe_:ct Whe&pproaehed. The present work is a step in elucidating the
comparing systems witiN=108 andN=10000 particles natre of the supercooled state on the basis of the PEL,

[42]. The interaction of adjacent particles in LJ systems unyypich hopefully stimulates further research along this direc-
der high pressure is dominated by the first term proportionaj,,

tor ~'2 Therefore it is reasonable to assume that the physics
of very dense LJ systems is somewhat similar to that of soft
sphere systems. Recent work on monatomic LJ-type systems
[15] as well as theoretical predictio89] show that the We gratefully acknowledge helpful discussions with B.
number of inherent structures strongly decreases with inboliwa, R. Schilling, H.W. Spiess, and K. Binder. After fin-
creasing pressure. In our terminology this would result in dshing this work we learned about simultaneous independent
much smaller value ofe for LJ systems at high density and activities by F. Sciortino, W. Kob, and P. Tartaglia along a
thus soft sphere systems than for LJ systems at ambient desimilar line of though{43]. This work was supported by the
sities, discussed in this work. According to the above discusbFG via the SFB 262.
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