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Exactly solvable two-way traffic model with ordered sequential update
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Within the formalism of the matrix product ansatz, we study a two-species asymmetric exclusion process
with backward and forward site-ordered sequential updates. This model, which was originally introduced with
the random sequential upddte Phys. A30, 8497(1997)], describes a two-way traffic flow with dynamic
impurity and shows a phase transition between the free flow and the traffic jam. We investigate characteristics
of this jamming and examine similarities and differences between our results and those with a random sequen-
tial update [S1063-651X99)06512-5

PACS numbgs): 02.50.Ey, 05.70.Ln, 05.70.Fh, 82.20.Mj

[. INTRODUCTION speeds when they approach each other. Within the matrix

product ansatzMPA) formalism, a modified version of this
The one-dimensional asymmetric simple exclusion pro-model is solved_ exactly in the par'ticular case when there is
cess(ASEP has been the subject of rigorous and intensive®nly one truck in the system. This truck behaves as a dy-
studies in recent yeafd,2]. A variety of phenomena can be Namic impurity and induces a phase transition be_tween the
modeled by the ASEP and its generalizatiosee Refs. free flow and the congested flow of the cars. Various char-

[2,3], and references thergirThe model has a natural inter- 2CteiStics of the phase transition are examined. |
In this paper we study an exactly solvable traffic model

s[With two types of ordered sequential updates, which is iden-

. . ) A . Yical to the model studied in Rdf11] except for the updating

[5]. In traffic flow theories, the formation of trafflc_Jams IS schemes. More precisely, the updating schemes that we con-
one of the fundamental problems. Apart from their spontajger are backward and forward site-ordered sequential up-
neous formation[5], they can be also produced by hin- gating schemes in which one updates links of the chain se-
drances such as road works or slow cars. Although thesgyentially. Alternatively one may use the so-called particle-
hindrances act locally, they may induce global and macroprdered = sequential updating’ scheme in which one
scopic effects on a system. This kind of behavior is one okequentially updates the positions of the partidl&3]. In

the characteristic properties in nonequilibrium systems anghis paper we restrict ourselves to the site-ordered sequential
has been studied in the context of driven lattice gg6ed2]. updates.

In ASEP models, two kinds of impurities are discussed in  Presently it is of prime interest to determine whether dis-
the literature. The first one is “dynamic impurities,” i.e., tinct updating schemes can produce different behaviors. The
defective particles which jump with a rate lower than othersmplementation of the type of update is an essential part of
[8,10,11,13. In traffic terminology, such moving defects can the definition of a model, and some characteristics of the
be visualized as slow cars on a road, which in certain situamodel may change dramatically. The aim of this work is to
tions can induce a phase transition from the free flow to thénvestigate consequences of changing the updating scheme
congested flow. The other kind of impurities are “static im- Of the model. Then, combined with the results in the random
purities,” such as imperfect links where the hopping rate isSe€duential updating schenjél], we examine similarities
lower than in other linkg7,9,12,14—1% Static impurities and differences between .the results m_dn‘ferent types of up-
can also produce shocks in a systgfg]. For either type of ~dates. Our approach utilizes a mapping between the qua-
impurities, a limited amount of exact results is available anodrat'C algebras of the ordered and random sequential updates,

most of them are for models with the random sequentiaYVh'Ch has been initiated in the context of the one-species

S 7. TASEP[21,22.
update[8,_10.,11.,14. qu the fully parallel update, Wh'Ch IS This paper has the following organization. In Sec. Il we
most realistic in traffic flow problems, exact solution are 4

51317 1 d t studies instead utili fine the model, construct our MPA with both backward
very.rare'[ 13,17,18 an Most studies instead ulilize ap- 4 forward sequential updates, and obtain the relevant qua-
proximation methods or numerical approach&s,19,20Q.

dratic algebras. Section IIl presents expressions of the aver-

Recently a two-way traffic model was introducetil]  g4e velocities of cars and the single truck, their thermody-
where cars move forward in one lane and trucks move backygmic |imits, and a comparison with the corresponding

ward in the other lane, and both cars and trucks reduce thefesylts in Ref[11]. In Sec. IV, we consider density profiles

of cars and compute the probability to find a car at a distance

x from the truck, which in the high density phase appears as

*Electronic address: foolad@theory.ipm.ac.ir a shock. We discuss the ambiguity in specifying the density
TPresent address: School of Physics, Korea Institute for Advancegrofile, which is related to the nature of the updates,
Study, 207-43 Cheongryangri-dong, Dongdaemun-gu, Seoul 130and introduce a definition of the averages to avoid the ambi-
012, Korea. guity. Section V is devoted to the density-density correla-
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tion function. In Sec. VI, we study the model in the presencesites. The periodic boundary condition applies to each chain.
of two trucks and evaluate the probability of their distanceThere areM cars andK trucks in the first and second chains,
being R. The paper ends with some concluding remarks inrespectively. Cars move to the right and trucks move to the

Sec. VII. left. The state of the system is characterized by two sets of
occupation numbersr{,7,, ...,7y) and (1,05, ... ,0N)
for the first and second lanes. If the sitef the car lane is
[l. MODEL DEFINITIONS AND MATRIX PRODUCT occupied by a carr;=1, and zero otherwise. Similarly;
ANSATZ =1 if the sitei of the truck lane is occupied by a truck, and

;=0 if the site is empty. In an infinitesimal time interval
dt, a car(truck) hops to its right(left) empty site with the

Here we describe briefly the two-way traffic model with probability dt (ydt) if there is no truck(can in front, and
the random sequential upddfeSU) introduced in Ref[11].  with the probability reduced by a factg otherwise. More
Consider two parallel one-dimensional chains, each With explicitly one has

A. Two-way traffic model with random sequential update

L Tir1)=(1,0—(0,1) with rate { 1 . ) 1

(7i:7+)=(10~(0.D ] if o,,=1 (truck in frond, @
vy if 7,=0

(07,0i11)=(0,)—(1,00 with rate { v . (2

— if ;=1 (car in frond.

B

The reduction factop, which ranges between 1 and infinity, (MPS). The steady state weiglfts of a given configuration
is related to the width of roadg=1 corresponds to a very (74,7,, ...,7y) IS proportional to the trace of the normal
wide road or a highway with a lane divider, apgd=o cor-  product of some matrices:

responds to a one lane road. Simulations with finite densities

of cars and trucks shol1] that, in the steady state, the Ps(T1,72, . ., 7N) = TH(X Xz, - .. Xy) (4)
average velocities of cars and trucks decrease smoothly with

increasingB. As an interesting limiting case, situations with where

a single truck is considered while the density of cars is kept D for 7=1

finite. For this particular case, simulations suggest that for a '

given densityn of cars, there exists a density-dependent criti- X;=y E for nj=2 )
cal valueB., below which the average velocity of cars re- A for 7,=0,

mains constant, and above which the average velocity de-

creases linearly with respect to-{1/8), a measure of the and these matrices satisfy the quadratic algebra

road narrowness. F@> 8., the simulation also finds phase

segregation into higttraffic jam) and low(free flow) density DE=D+E, aAE=A, BDA=A (a=py). (6)

regions. : .
To investigate the characteristics of this single truck cas '.th .the help of the MPS methc_)(_j, many important charac-

analytically, the above two-lane model has been modified t eristics such_as average velocities, Qensny proflle_s, and

an exactly lsolvable one. If one forbids a car and a truck td°iNt correlation functions were obtained exactly in Ref.

occupy two parallel sites simultaneously, one can describe 11].

configurations with a single set of occupation number$

wherer;=0 (empty site, 1 (occupied by a cay or 2 (occu- B. Two-way traffic model with ordered sequential updates
pied by a truck The following rules describe the modified  In the ordered sequential updatit@SU) schemes, time
dynamics: is discrete and the update occurs in an ordered way. To de-
. scribe the dynamics in this scheme, it is convenient to intro-
(1,0—(0,1) with rate 1, duce a Hilbert space that is spanned by the orthonormal ket
. vectors|{7})=|71)®|m)® ...®|7y\). The state of a system
(0,2—(2,0 with rate v, (3 atthejth time step can be represented by a ket vel@oj),
_ 1 _ .
(1221 with rate . IP,J>=§nf P, (7)

This model is equivalent to a two-species ASEP and can bahereP({7};]) is the weight of the configuratiofr} at the
solved exactly by the method of the matrix product statejth time step, an& .,,; denotes the summation over all pos-
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sible configurations. The state at the next time step is thewith RSU, can be always written as a matrix product state.

obtained from/P,j) by applying a transfer matrix This theorem was soon generalized by Rajewsky and
] ) Schreckenber§24] to stochastic processes with ordered se-
[P,j+1)=TIP.j), (8 quential and sub-lattice parallel updates. For closed systems

where the transfer matriX takes a different form dependin with the periodic boundary condition, on the other hand,
. P 9 such a theorem is not available at present and it is not yet
on the precise nature of the updates. In the backward seque

. : U€lear how widely the MPA is applicable. Nevertheless, nu-
tial updating(BSU) scheme, for example, the transfer matrix merous recent studid$,10,11,22,25—27have proven that
T becomesl_, where

the MPA can be a powerful investigation tool even for
T =TuiTio. . Tnoon-1Thoin (9) closed systems as well. Motivated by recent successes, h_ere
A ’ ‘ we assume that the stationary state of the two-way traffic
and in the forward sequential updatitigSU) scheme, it be- model can be written in terms of the MPS,

comesT_, where .
Po(71,72, ... ,7n) ~TH( X Xg, ..o XN) (14

T =Tun-1Tn-1N-2, - - T21T1N- (10 o i

whereX;=D, E, or A (Xy=D, E, orA) depending orr;
(7n) . Note that the matrices at the siteare different from
those at other sites, which stems from the special role of the

Each element in the products is defined by

Tioi =T =18 - site N as a starting point of the updat&@he necessity of the
e + M®T®M ’ hatted matrices in the OSU scheme is clearly explained in
- N=i- Ref.[22].
11

By introducing two ket vectorfU) and|U),

Here1 is the identity matrix acting on a local ket vecta)
and the local transfer matrif acts on the tensor product
state of two local ket vectorsr)®|7'). In Egs.(9) and(10), A R R
the siteN is chosen as a starting point of the update for |U)=Al|0)+D|1)+E|2), (15
definiteness.

The local transfer matrig varies depending on possible where the coefficientd, D, E, A, D, andE are matrices
exchange processes allowed in a model. As a straightforwargefined on a different auxiliary space, we can write B
generalization of the two-way traffic model in RgL1], we  formally as
allow the following processes to occur in each discrete time

|U)=A|0)+D|1)+E|2),

step: 1 .
|Ps>=mTr(|U>®|U>®'"®|U>), (16)

(1,0—(0,1) with probability 7, '

(0,2—(2,00 with probability 7y (12) in which the normalization constaat(N,M) is the sum of

' ' ' all weights,
. )
(1,2—(2,1) with probability —, -
B Z(N,M)=%fTr(X1. o XN, (17

where 0< 5, ny<1< . For this two-way traffic model, off-
diagonal matrix elements &f have nonzero values only for and the trace is taken only over the normal product of the
the elements matricesA, D, E, A, D, andE.
_ By definition, |Ps) should be stationary under the action
(0le(1hT (I1)®|0) =7, of the transfer matrix

((2[2(0NT (|0)@[2))= 7y, (13) TPy =|Py.

In the BSU scheme, the stationarity is guaranteed if the fol-

n
2 1N7 (|11)Ye|2))=—,
(21T (|11)2[2)) B lowing relation holds:

and the diagonal elements can be specified from the condi-
tion of the probability conservation, 273,74((7-3|

®{74|)7(| 1) ®| 75)) =1, which ensures that the sum of en-
tries in each column is equal to 1.

7 (Juye|0))=|0)®|U), (18)

Y(The hatted-matrix in Eq14) breaks the translational invariance
of the problem. As a result, the steady state weights are not com-
pletely fixed by the relative distances between cars and trucks. This

Recently Krebs and Sandd@3] showed that the steady situation is in contrast to Reff11] where the weights depend on the
state of any stochastic process with arbitrary nearest neighelative distances only due to the translational invaridise Eq.
bor interactions, defined on an open one dimensional systengg)].)

C. Matrix product state
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which simply implies that upon the action @f_, the “de-  wherea, d, ande are real numbers. In the BSU scheme, it

fect” |U) is transferred backward through the chain and rean be verified that the choice
turns back to the sitd, its initial position. Equation(18)

then leads to the following quadratic algebra: a=0, d=-— Z, e=——— (22)
B B—n
[A,A]:O, [D,D]:O, [E,E]:O, map the algebrél9) to
AD+7DA=AD, (1-7)DA=DA, DE=D+E, aAE=A, BDA=A, (23
R o o where

nyAE+EA=EA, (1-7y)AE=AE,

= M B:B (24)

B—an’ '

T bE+ED=ED, (1—2>DE=5E. (19 o
B B Note that algebrd23) is identical to the RSU algebréb)
. _except for the renormalization of to a.
In the FSU scheme, on the other hand, the stationarity |, the FSU scheme. one may use the mapping to the BSU
requires algebra by simply interchanging the roles &f D, and E
. . with A, D, andE [see Eqs(18) and(20)]. However, it turns
7 (|U)elu))=[U)®|U), (200 out that it is more convenient for the subsequent analysis to
R use a direct mapping to the RSU scheme. We again assume
which implies that the defedtU) is now transferred in the Eq. (21), and choose
forward direction. Equatio20) leads to a quadratic algebra,

which is identical to Eqs.(19) upon the replacements _ __n __n
" - . a=0, d , . (25
A—A, D—D, E~E. B—mn B
Then the FSU algebra is mapped to E@S) with
D. Mapping onto the RSU algebra B
~ ~ B—7m
In order to calculate physical quantities using the MPS, it a=a, p=7—. (26)
is in principle necessary to find a representation of the ma- K
trices that satisfies the relevant quadratic algebras for thgote that nows is renormalized td.
BSU and FSU schemes. In some cases, however, this job can
be avoided and the quadratic algebra itself is sufficient for IIl. AVERAGE VELOCITIES
calculations [8,11,13,17,18,2B . Also recent studies on . ) . . ]
ASEP[21,27 and multispecies ASER28-30 have demon- In this section we consider the special case where there is

strated that the algebra for a stochastic process in an OS@Nly @ single truck in the system, and evaluate the average
scheme can be mapped onto the algebra for a related stoch¥glocities of cars and the truck.

tic process in the RSU scheme, for which an explicit repre-
sentation of the matrices are known. Here we show that this A. BSU scheme

mapping holds for the two-way traffic model as well. We  The movement of cars from a sitk,for example, to its

first assume neighboring sitek+ 1 is achieved byl ;. Then the aver-
R R . age current of car§J;?") between the two sites can be writ-
A=A+a, D=D+d, E=E+e, (21 ten as follows:
(JP) = o= {n > Tr( oo DA~ )+ =3 Te( ... DE-.)
Z(N’ M) conf k—?:i/tes '6 conf k—\llvs-i/tes (27)

where the specificatiors andM in the summations represent that the matrix products@A- - -) and (- - - DE- - -) contain

N matrices andv of them denote cars. Below, these specifications will be omitted in usual situations, that is, when they are
N and M. In Eq. (27), it has been taken into account that before the actioi\gf, , the steady state is acted upon by
Tk+1k+2° - Tn—1n, Which shifts the hat from the sitd to k+1. More rigorous derivation is given in the Appendix. In a
similar way, the average current of a truek’"*) between the sité& andk+1 reads

1 . A

conf k-1 conf k=1
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It is instructive to briefly sketch the derivation of EQ7). Using the cyclic invariance and the fact that in the first term of Eq.
(27), the single truck can locate anywhere on the remailNng2 sites, we find

(Je) = Z( {n Z Z Tr(- DA - Ey+ = 3 ZTI‘ DE)} . (29

i=1 conf conf

Note that the site indek has disappeared from the expres-
sion and thus the current is independenkoés it should be E Tr(-- EHE Tr(-- DHE Tr(--

from the conservation of the number of cars. Recalling that conf conf conf (33

A=A and BDA=A, the first term becomes
In a similar evaluation procedure as above, the first term on

the right-hand side yields
N-2 N-1,M-1

n
1 Te(--- A--- E) .
ﬁZ; cont ey > Tr(---E)= WNMHﬁ CN-1. (34

conf

In this double summation, eaph configuration: {E) s Also the sum of the second and third terms on the right-hand
counted[(N—1)— (M —1)—1] times, and thus it can be side becomes

simplified further to

Y N-1
=(N=-M-1)Y(N-1M—1), .
5 )Y( ) ) {Tr(.\;,D E)+Tr(.- A E)} ,
i=1 conf i—1 =1
where (35)
P.Q which results in
Y(P,Q)=2, Tr(---E). (30
conf (N=1)Y(N,M)+d(N-1)Y(N-1M—-1). (36
Also recalling thaE=E +e, the second term in EG29 can  Combining all calculations given above, one obtains the ex-
be split into two pieces: act expression fo¢Jg™) for arbitraryN and M:
n n VLM <J§a'>=; T(N-M—-1)Y(N-1M—1)
=Yp(N, M) +e—- Tr(:-- D 31 Z(N,M) | B '
’B ( /8 ‘gﬂf 0 truck) ( ) B
1
where + 2y o (NM)+e ——CcM-} 3
ﬁD( AT ] (37)
=> Tr(---DE). (32 For a complete evaluation of E7), one needs/(N,M)
conf andYp(N,M). Exactly the same quantities are calculated in

the RSU schemgl1]. Taking into account the renormaliza-
Using BDA=A and the cyclic invariance of the trace, the tion of and 8, one immediately obtains

second piece in EJ31) can be simplified to

1 Yo (N,M)= ——_cM- 1+i_1I(N M)
e N ATHAN MY, ST A 1-B -1 ]

BB (39)
where the binomial coefficier€Y ~) comes from counting 1
the number of configurations that satisfy the given specifica- Y(N,M)=Yp(N,M)+ =——— CN 2,
tions. Later it turns out that the factor &{"M~1) cancels ap"
out for all expressions for physical quantities includ{dg®’) "
and (JI'Y . Below we thus set TAN"M~1)=1 for conve- ~k~M—k

. . . I(N,M)= .

nience. We also mention that due to the cancellation, all (N.M) kgl PCh-2-« (39
calculations in this paper can be performed without resorting
to an explicit representation of the matrices. To study the implications of Eq37), we consider the

To evaluate the denominator of EQ7), we proceed with  thermodynamic limitN,M —c while n=M/N is kept fixed.
definition (17): As demonstrated in Refll], the thermodynamic limit is
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governed byl (N,M). Using the method of steepest descent, 7 L
it can be verified that, fon3>1, 1= 77n(l—n) if ng<1
(Vean = _ (40
HN-1 n 1-n
I(N,M)— — B ET if nB=1.
R V:E Vi

The average current of the single trupkq. (28)] can be
which is exponentially larger than all other terms and hencé&valuated in a similar manner:

dominates the thermodynamic behavior of all quantities. For 1 o
B<1, on the other hand, fucky = —__—__ — ——CM
nB<1, on the other han (Jjrucky ZNM| 7 Y(N,M) YD(N,M)+EMCN_2
nB(1-ny?
it el e
I(N,M)— - Cn o +% \(D(rxn,l\/|)+zg—Mc,“ﬁ:zl } (4

which is of the same order as other terms. A straightforwardn the thermodynamic limit, the average velocity,qo
calculation then shows thét.,)=(1/n)(Jf* is given by ~ =N(J" becomes

7 {a(l-n)+ea[n+a(1-n)]}(1—nB)+n(a+B—nB) ———
- — . if ng<
Vouad = B (L=7n)[(1—n)(1—nB)+n(a+B—nB)] (42)

Figures 1 and 2 show the behaviors(et,) and({vy,  transition point. Thus a local dynamic impurity, truck, results
as a function of +(1/8), the narrowness of the road, while in global effects. Here the decrease(eof,,) follows a hy-
the values ofp, y(=a/B) andn are fixed. The behavior of perbolic curve{v,q also changes its behavior at the tran-
(Veay Changes clearly at the transition point-{1/8,)=1  sition point. Below the transition point, one finds a rather
—n. Below the transition point(v,,) is constant, implying Smooth decrease ifvy,q) and above the transition point,
that the interaction with the truck causes negligible change§ne again observes a hyperbolic decrease.
on the flow of cars. Above the transition point, on the other

hand,(v.,) begins to drop suddenly generating a cusp at the B. FSU scheme
In the FSU scheme, the average current of qais")

10w n=03, y=1,RSU between the sit& andk+ 1 reads
L n=0_3, 'Y=15T|=0-6

———-N=03, y=1,1=08 n=03, y=1, RSU

<VearZsl e n=03, y=1,n=06
: I n=0-3,'y=1,1‘]=0.8

0sf
04 f
o2
00 L
0.0
1-1/B
FIG. 1. Average velocity of cars in the BSU and RSU schemes 1—1/]3
for n=0.3 and different values of;. The velocity is measured in
units of number of sites per time st€SU schemg and number of FIG. 2. Average velocity of the truck in the BSU and RSU

sites per unit timgRSU schemg respectively. The road narrow- schemes fon=0.3 and different values of. Units for the hori-
ness -1/ in the horizontal axis is dimensionless. zontal and the vertical axes are the same as in Fig. 1.
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) = Zovan N ) {nZTr )+ = ETr< -)} : (43

conf k=1 conf k-

In comparison with Eq(27) for the BSU scheme, it should be noted that the hats now appear at thénsitead ok + 1 since

the action ofT, ., occurs after the steady state is acted upoipy_;--- T, 1T1n. This expression can be derived in a more
rigorous way following a similar procedure to that sketched in the Appendix. Using the quadratic algebra of the matrices, this
expression can be reduced to

<Jﬁar>:Z(N—M)[ 7 i-f—d (N—M—l)Y(N—l,M—1)+Z[YD(N,M)-i—dY(N—l,M—l)]]. (44

B

Note that thek dependence has disappeared. Here it should be understoad ti&t d, ande now have the values given in
Egs. (25) and (26). The same understanding is also needed¥fgd,M), Yp(N,M), and Z(N,M) whose explicit expres-
sions are given in Sec. Il A.

Similar shifts of the hats occur for the average current of the truck as well, and one finds

1
<Jtruck> Z(N M {,’7,7 Z TI‘ + z TI‘ .. )} , (45)
conf __1 conf Ic—l
which is equal to
1
=z (wMN M) = Yo(N.M)]+ Z[Yo(N,M)+dY(N—1M~ 1)]] (46)

Note again that th& dependence has disappeared.
Using the relationgv c,) = (1/n) (I and(V e =N(JI™), and taking the thermodynamic limit, one reaches the follow-

ing results

n(l-n) = -
B m if nB\l .
<Vcar>_ 2(1 n) ; nl~8>1 (47)
3 =
7 (a+dnB)(1—n)(1—nB)+(1+dnB)n(a+B—nB) ¢ meq
= = = ———= if ngs
Vougd = B (1+dnB)[(1-n)(1—-nB)+n(a+B-np)] P 48
g if ng=1.
|
Figures 3 and 4 sho¥w .,y and{vy.s) as a function of the C. Comparison with the RSU results

narrowness *(1/8), while n,y(=a/B), andn are fixed.

One again finds that the average velocities have cusps at the In the thermodynamic iMit(v caprsy aNd (Vo rsu be-

11
transition point. Above the critical narrowness, bdth.,) come[11]
and(vy,q decrease linearly with respect to the narrowness,
which is in contrast to the hyperbolic decreases in the BSU .
o : 1-n if nB=<l
scheme. Below the critical narrownegw, ) is constant,
similar to the result in the BSU scheme. But its value is (Veadrsu=) 1 (1=N) ng=1 (49

different from the corresponding one in the BSU scheme. B n
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1 a(l-n)(1—-np)+n(a+B—np)

E (1_n)(1_nﬁ)+n(a+ﬁ_nﬂ) if n,8$1
<Vtruck>RSU: 1 50
E if ng=1.

We now compare the results. In all updating schemes corprobability y or stays with the probability (£ 7). There-
sidered, a phase transition occurs at a critical value of théore, the average velocity reads

narrowness. In the RSU and BSU schemes, the critical value _

is 1—n while in the FSU scheme, it i1 — 7)(1—n)]/[1 (Ve = average ‘?"Sta"‘ce

—7(1—n)]. Note that the transition point can be signifi- M number of time steps

cantly lower in the FSU scheme wher=1. Below the criti- _

cal narrowness{v.,) is independent ofg in all three = 0x(1=7y)+1x(n7) =ny
schemesgwith different values in each scheimand above it, 1

(Vca) decreases linearly in the RSU and FSU schemes anglhe sityation changes drastically in the BSU scheme. In this
hyperbolically in the BSU schemgvyq, on the other case the direction of the update and the direction of the truck
hand, is not constant even below the critical narrowness ifnovement are identical and accordingly the truck can be
all three schemes, and varies quite smoothly with respect tgansferred by large distances in a single time step. Recalling
the narrowness. Above the critical narrowneSs,) de-  that each hopping occurs with the probabilitigy and the
creases linearly in the RSU and FSU schemes and hyperbolprobability of stopping is + 77y, (Vyua) can be cast into the

cally in the BSU scheme. form

In order to illustrate the origin of these differences, it is 5
instructive to consider the behavior f ) in the vanish- OX(1=ny)+7y(l-ny)+2(ny)(1-7ny)
ing car density limitn—0. In this limit, (vyqo in the RSU +3(77)3(1—py)+- - -,

and FSU schemes approacheand »y, respectively, while

it approaches;y/(1— 7y) in the BSU scheme. This differ- which is simplified tony/(1— nvy).

ence can be explained in the following way. In the absence We next examine the fundamental diagratiee relation

of any car, the single truck in the RSU scheme either hop&etween the car current and the car densityhree updating
with the probabilityydt or stays at the present site with the schemes. The average current of cars is simply related to the
probability 1- ydt during a time intervadt. Hence its ve- average velocity Vi&Jea) =n(Vcq). Using the thermody-
locity is equal to its hopping rate. The situation is similar namic behaviors ofvc,) [Eqs.(40), (47), and(49)], one can

in the FSU scheme. Since the truck moves in the Oppositgetermme the thermodynamic behaviors of the current as a

direction of the update, it either hops one site ahead with thénction of the density. Figure 5 shows these behaviors for
some constant values g8 and » in different updating

schemes. In all three types of update, the single truck does
v n=03, y=1, RSU
< >

car” e n=03, y=1,1=06

n=03, y=1, RSU
15 - e n=03, =1,1‘\=0_8 .............. n=03 - =

I ¥ <V ,y=1, n=06
o A n=03, y=1, n=08

10 |- RN

05|
0_0-....I....I....
0.0 02 0.4 ‘
1.0
1-1/B
FIG. 3. Average velocity of cars in the FSU and RSU schemes l—l/B

for n=0.3 and different values of;. The velocity is measured in
units of number of sites per time stépSU schemg and number of FIG. 4. Average velocity of the truck in the FSU and RSU

sites per unit timgRSU schemg respectively. The road narrow- schemes fon=0.3 and different values of. Units for the hori-
ness -1/ in the horizontal axis is dimensionless. zontal and the vertical axes are the same as in Fig. 3.
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FIG. 5. Fundamental diagrams in three updating schemes for different valyearad 5 (values are given in the figuresThe density

in the horizontal axis is measured in units of number of cars per site. The current in the vertical axis is measured in units of number of cars
per time stedBSU and FSU schemgsand number of cars per unit tinf®SU schemg respectively.

not affect the current-density diagram before the transitiorsing the matrix algebré6), one finds

point, whereas it affects the system after the transition point
in a nontrivial manner: linear decrease of the current with

increasing density.

(N(X))rsu=[Yrsu N,M)agM] "2 CN 75— LC

atpB-1
+W[|RSU(N_1!M_1)

IV. DENSITY PROFILE

A. Density profile in the RSU scheme
+BH B~ DIrsUN—X,M=x) 6(M=x)]¢,

Here we first summarize the results in REEL]. In the
RSU scheme, it can be assumed without loss of generality
that the single truck is at a particular site, for example at the (52)
site N of the chain due to the cyclic invariance of the prob-
lem. Thus the probability to find a car at the distamdeom  where Yrg(N,M) and Igs{N,M) can be obtained from
the truck can be written via MPS as follows: Y(N,M) andI(N,M) [Egs. (38 and (39)] by replacinga

and B with « and 3, respectively, and the fact@(y=x) is
1 if y=x and 0 otherwise. In the high density phasg
=1, the single truck affects the system globally. The density

z

Zconf Tr( e DAE)

(n(z))rsu = the
(51 profile is
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X np—1 which shows that the disturbance by the truck decays expo-
1 for N<|Rsu5 51 nentially with a characteristic length scale

(N(X))rsu= (53

érsu=|In(npB)| L.

B. Density profile in the ordered sequential updating schemes

As stated in Sec. Il, the ordered sequential updates break
Note that the system consists of two regions: a traffic janthe cyclic invariance. In what follows we show that due to
region in front of the truck and a free flow region behind it. the absence of the cyclic invariance, the probability to find a
In the low density phaseB<1, on the other hand, the pres- €ar atx sites in front of the truck varies depending on the
ence of the truck has only local effects. In the thermody-{ruck location. Two updating schemes, BSU and FSU, will
namic limit, the car density becomes be considered simultaneously since same expressions apply
to both schemes.

We first consider the case where the truck is at theNsite

The conditional probability to find a car atsites in front of
the truck reads

otherwise. (59

(a+B—1)(1—n)
1-n+an

(n(x))rsu=nj 1+ (nB)*;, (54

r

ZconfTr(' C DAE)

Prob(N — 1 —z = car[N = truck) = ~ . (56)
Zconf TI‘( o E)
|
Here it is helpful to define a quantitg(x,N,M) by nB—1
1 for —=<l=—=
N B—1
=z ProlfN—x—1=cajN=truck) = 1
K(z,N,M) = Ycont Tr(--- D"+ E) = otherwise
T Zconf TI'( """ E) ’ B (58)

which is essentially identical to resul63) in the RSU
scheme except for the replacement@fy B. In the low
density phaseB<1, on the other hand, the second terms are
comparable with the first terms, and one obtains

ProlfN—x—1=cafN=truck)

which is exactly the same as E@1). All properties of
K(x,N,M) can be thus obtained from E(p2) by replacing

a and B with « and B, respectively. In terms df (x,N,M),
the conditional probability56) becomes

(a+B—1)(1—n) ~
= =—=(nB)*(,
(1-ntan)+e(l-nB)a

€ M-1
Y(N,M)K(X,N,M)+’~8—MCN_2

5
(57) 59
which shows the exponential decay of the disturbance with a

o ) _ _ ) length scalet=|In(nB)|~*. The coefficient of the exponential
The thermodynamic limit can be investigated in a simplegecaying term is different from the result in the RSU

way. In the high density phasg3=1, the second terms both scheme.

e M
Y(N,M)+Z;—MCN

in the numerator and the denominator in E6j7) are negli-
gible compared to the first terms and H&7) reduces to
K(x,N,M). Thus one finds

Prob(N —z — k — 1 = car|N — k = truck)

The evaluation of Eq(60) using the matrix algebra leads to

Secondly we consider the case where the truck is at the
siteN—k (1=<k=N-x—2). The conditional probability be-
comes

z k-1

A

— 2_conf TI‘( e DAE AXN)

Zconf Tr( o Ek\,,XN)
-1

(60)
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Y(N,M)K(x,N,M)+dY(N—1M—1)K(x,N—1,M —1)

Y(N,M)+dY(N-1M—1) (61

Note that the conditional probability is independentkof

In the thermodynamic limit, Eq61) can be greatly simplified t&(x,N,M) sinceK(x,N,M) andK(x,N—1,M—1) in the
numerator become identical in this limisee Eqs.(53) and (54)]. Thus the conditional probability Prod-x—k—1
=cafN—k=truck) is the same as the corresponding res@8 and(54) in the high and the low density phases except for
the renormalization ofr and 8 to @ andB.

In the third case, the truck is located at the sitel and the car at the sifd. The conditional probability becomes

x

Zconf Tr(AE T AD) (62)
Ceont Tr( L B+ Xn)

z

Prob(N = car|z + 1 = truck) =

which is found to be and, in the low density phase,

Y(N,M)K(x,N,M)+dY(N—1M—1)
Y(N,M)+dY(N—1M—1)

(63)

Prol N=carx+ 1=truck)
Note that the second terms both in the numerator and de- ~ ~ ~
nominator are comparable to the first terms in the thermody- :n(1+dﬁ) n (a+B—1)(1—n) nB)*
namic limit. As a result, the conditional probability becomes 1+dng (1+dB)(1—n+an) Bt
noticeably different fromK(x,N,M). In the high density
phase, one finds

ProlN= cafx+ 1=truck) (65
X ng—1 . o
1 for —<l=—= In contrast to the previous cases, the renormalizatioa of
_ N B—1 64 and B are not sufficient to account for deviations from the
1 1+dB (64) RSU results even in the high density phase.
= 17d otherwise, Finally we consider Pro—|=cafx—|+ 1=truck) (1
B <I|=<x), which takes the following form:
|
Y(N,M)K(x,N,M)+dY(N=1M—-1)K(x—1IN-1M—-1) (66

Y(N,M)+dY(N—1M—1)

Note that it is independent &f The thermodynamic limit can We next discuss the origin of the absence of the cyclic in-
be examined in a similar way. In the high density phaseyariance, which results in the four different cases. As stated
K(x,N,M) andK(x—1N—-1M—1) are essentially identi- above, the system loses the cyclic invariance due to the
cal and thus Eq66) reduces to Eq:53) for the RSU scheme choice of a particular site, the sit¢ as a starting point of the
except for the trivial replacement of and 8 with @ and3.  update. . _ o

In the low density phase, however, the difference between Thus by choosing the starting point in an even way, the
K(x,N,M) andK(x—1N—-1M—1) is not negligible, and cyclic invariance can be restored. One can, for exampJe, de-
careful treatment is required to take care of the differencefine a cyclically invariant averagg - - - )) of an operatolO

This way, one obtains in the following way:

Pro(N—I|=caifx—1+1=truck) X 1 N X

1+d (a+B-1)(1-n) - <<O>>:NI§1<S|O|PS’|(>' €8

=n{ 1+ — — (nB)*t.
1+dng l1-n+an

where(s| =2 ({7}| and|Ps ) is the stationary state of the
(67) transfer matrix
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also worth mentioning that definitio(68) is equivalent to
taking an expectation value at each substep of an update, that
in the BSU scheme or is, after the action off,,,,; or T\, instead of a single
whole step of the updaf€é,_ or T_,, and taking the average
over these expectation values.

Using definition(68), we calculate the densit{{n(x)))

in the FSU scheme with the siteas a starting point of the :<<5.TN*I'25TN7I7X71'1>> [{{8s_1.20) (0<I<N—1), where
update.(This problem due to the absence of the cyclic in-the sites 0; 1,—2,... should be identified with the sites
variance does not affect the calculation of the currents sinc®:N—1N—2, ... respectively. The densit{n(x))) is, by
the currents should be independent of the sites, where thefiefinition, independent of the truck locatidi—1I and thus
values are evaluated due to the conservation of the particf@® may choose=0. The denominatof(,, »)) is LN due
numben Note that the sitd\ now loses its special meaning t0 the cyclic invariance, and the numeratos, .0, . 1))
and the cyclic invariance becomes evident in EBf). It is  becomes

T =TekraTkrakr2 TnaTa2 - Teoak

T =Tek-1Tk—1k—2 " TinTnn—1" " T 1k

R N-z-3 i
N_Z—(_llv_a_ﬁ/[_) {ZTr(DvE) + 2 ZTI‘(QXkH--'D-\;_—,E)

conf z k=0 conf k z
z-1
conf z I=0 conf i z—l~1

The cyclically invariant density then becomes

{n(x)))= ﬁ NY(N,M)K(x,N,M)+ ,BiMCM__21+dY(N—1,M —1)
+d(N=x—2)Y(N—1M—-1)K(x,N—1,M—1)

+dXY(N—1M—-1)K(x—1N—-1M—1)], (70)

which, in the thermodynamic limit, reduces to the results identical to the thermodynamic behaviors of the second conditional
probability ProbN—x—k—1=caiN—k=truck) (IsksN—x—2).

V. DENSITY-DENSITY CORRELATION FUNCTION

Here we calculate the two-point equal time correlation function of the car density using the cyclically invariant average
(68). Both BSU and FSU schemes are considered simultaneously. In terms of the MPS, the density-density correlation function
becomes X;<x, is assumey

1 —_—
((n(z1)n(z2))) = W [;MTI(‘ D D\IT/E)
N—:L’2—3 *2 . .
+ > XT(D-D - E. - Xn)+) Te(---D:.--E .- D)
k=0 conf z) k conf z N-z,-2
ro—z) =2
2 YT D E o D A+ X T E L D D)
k=0 conf z1 Nezy—2 e conf P Ne=23-2

+ZZTI'(...E e D...D.\.’.JXN (71)

21 -1 N—-I; -2
—~— iy )
k=0 conf N-z,~-2 k



PRE 60 EXACTLY SOLVABLE TWO-WAY TRAFFIC MODEL WITH . .. 6477

After some algebra, it can be verified that between the trucks iR [0<R<(N—-1)/2]. In the RSU
scheme, the cyclic invariance of the MPS allows one to set
{n(xp)n(x2) ) ={Nn(x2))) = F(xp), (72 one of the trucks at the sifd, and one obtains
wheref(x,) is given by
f 1 e Orsu(R) ~ 3 Te(--- B E)
(Xl) (N M) ﬂ N—3 conf R
+dY(N=-1M—-21)[1-K(x;,N=1M—1)] where the sum runs over all configurations withcars and
two trucks. Its thermodynamic limit is examined in Rigf1].
+ iNY(N— IM—1)[1-K(x{,N—=1M—1)] In the low density phaseg=<1, it becomes
d n(l—n)(a+B—1)(a—1) R
+E(N—x1—3)Y(N—2,M—2) QrsyR)~1+ (A=n+an)? (nB)~,
(79

d
X[1-K(X;,N=2M—=2)]+ =x;Y(N-2M—2) which is maximal aR=0 and decays exponentially with the
B same length scalézsy=|In(nB)| ! as in the density profile.
In the high density phaseg=1, the probability decreases
X[1-K(x;—1IN-2M—-2)];. (73)  linearly with R for 0O<R<Nrggy, Wherergsy=min(lgs,,1
—lgsy) (rrsu<3), and remains constant foNrgg <R

The connected part of the two-point correlation function,S(N_ 1)/2. The relative ratios are

E)<n(X1)dn(X2)>>q:<<n()f§1) rc]i(xz»)_§<n(Xl)I>>«n()72)>r>1' C?]n

e used to estimate the degree of correlation. In the thermo- _ _

dynamic limit, one finds for rrsu=!rsus Q?)SU(,:IJ(rg)SU _, (a 16)(,(8,3 1)
RS

(ot Ne=T(no )~ L= (0w (76)

and

where k=min(n,1/B). In the high density phase, the con-
nected part has a nonvanishing value only when bgtand
X, are within the regionNI—+/NA,NI++/NA] where A
=v2B(1-n)/(B—1). In the low density phase, the con- QrsUNrrsy) (e—1)(B—1)
nected part has a nonvanishing value only whetix,~ £&. Qrel0) =1- Troe
Thus one concludes that the correlation develops only in the RS ap RSU
region where the density variation occurs, which is identical

to the conclusion in the RSU scherfiel].

fOI‘ rRSU: 1- I RSU»

l'rsu

(77)

One can interpret this as the formation of a weakly bound
state between the two trucks.
Now we considef)(R) in the BSU and FSU schemes. In
In this section we examine the system with two trucks anderms of the matrix product€)(R) in both schemes can be
M cars. We determine the probabili€y(R) that the distance expressedup to a proper normalization constaas

VI. TWO TRUCKS AND BOUND STATE

N-R-3

> Y T(E B XN+ Y Te( o E:-E)
k=0 conf R k conf N-R=2 R
R-1
—i-ZZTr(--- '\-’;EVXN +ZTrvaE). (78
k=0 conf N—-R-2 k conf R N-R-2

It is useful to introduce a quantity/(N,M,R), which is defined by

W(N,M,R) = Ta(---E .- E) . (79

conf R
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Then, using the relatiod=A, D=D+d, and E=E+e, Not the case with average velocities. Changing the update
and the cyclic invariance of the trace, expresgit8) can be  Scheme affects velocities in a more complicated manner and

written in terms ofW(N,M,R) as follows: the renormalization of the parameters is not sufficient to ac-
count for different behaviors div.,,) and{v,q) in differ-
NW(N,M,R) ent updating schemes. Especially the dependence Qf)

and(Vyyc On the road narrowness-1(1/3) can vary quali-
+d(N-R=2)W(N-1M-1R) tatively depending on the updating schemes. Behaviors of
+dRWN—1M—1R—1)+2eY(N—1M). (Veap @nd(Vyyew in the FSU scheméhat is, when the up-
date direction is parallel with the movement direction of the
(80 majority of vehicle have more resemblance to the RSU
results than those in the BSU scheme. In the FSU scheme,

The thermodynamic limit can be investigated in a simple T "
Y g P however, one observes a shift in the value of the critical

way using the fact that in the RSU schenv®é(N,M,R) is
identical to Qgrs(R) Up to a normalization factor. Then N&ffOWNess from +n to [(.1:77)(1_n)]/[1_’7(1_n)]’
through the renormalization ef and g, its R dependence in which can be considerable #~1

the BSU and FSU schemes can be obtained. Also, the last
term in expression(80) is negligible compared to the first
three terms. In the high density phase, one then finds that M.E.F. would like to thank V. Karimipour for fruitful
W(N,M,R), W(N-1M—-1R), andW(N-1M—-1R-1) comments, and D. Kim and R. Asgari for helpful discus-
are all proportional to each other, and thl§R) can be sions. H.-W.L. thanks D. Kim for bringing this problem to
obtained fromQgg(R) through the renormalization ok  his attention. H.-W.L. was supported by the Korea Science
and B. In the low density phase, th® dependence of and Engineering Foundation and the SRC program at SNU-
W(N,M,R) appears only foR~£. It is then sufficient to CTP.

examine the casB~ £<N, where the first and second terms

are dominant and give the sarRedependence. Hende(R) APPENDIX: DERIVATION OF EXPRESSION (27)

can be again obtained frof g5 (R) by replacingae and g
by their renormalized values.
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Here we derive expressid@7) for the average current of
cars in the BSU scheme. Similar procedures can be used to
obtain average currents of the truck and also the average
VIl. CONCLUDING REMARKS currents in the FSU scheme. The starting point is the conti-

We have investigated the characteristics of an exactl;F"U'ty equation, which in discrete time dynamics takes the
solvable two-way traffic model with ordered sequential up-form
dates, and observed both qualitative and quantitative differ- ca a car ca
ences in the properties of model from the results obtained (nk '>J+l_<”k '>J (32— (Jk '>j’ (A1)
with the random sequential updaf&l]. Our approach is
based on the so-called matrix product formalism which al- terms of the initial state of the systefR,0), the left hand
lows analytic solutions. In the OSU schemes, the choice of Ride becomes
particular site as a starting point of the update breaks the
translatjonal jnvariance of the steady state measure, which is <S|nﬁar-|-HTjH|P,0>_<S|nﬁar-|-L| P,0), (A2)
also evident in the form of the MPS. Thus an averaging over
the different choices of the update starting point is necessarnyhere the bra vectofs| is defined by
to restore the cyclic invariance to the systésee Eq.(68)
and the following discussidnPerforming the cyclically in-
variant averaging, some characteristics in the thermodynamic (s|= % (1| ®(ma|®-
limit, such as density profile of cars, density-density correla-
tion function, and truck-truck distance distributio(R), are ~ The conservation of the probability ensures tHa{T._
obtained, and it is found that the difference in the updating=(s| [3], which then allows one to rewrite EqA2) as
schemes can be taken into account simply by the propes|[nf®, T_]T' |P,0). Next we evaluate the commutator
renormalization of the parametessand 8. However thisis  [ng', T, ]. Using the relation

where (- - -); represents the average at the time stem

T=101Q---01Q[1N1|®191®---®1,
k-1 N-k

one finds

0 o, 72 2 0, 2,
Tna - Teooko1| 7ER B+ 2B Ee? Tk 1 Tnoan— T - Tke1x| 7E 1Ek+1+ B Ef'Ei?y | Terikera Thoan

B
(A4)
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where
E=101Q---910)(j]|0101®---91 .
k-1 N—k

Comparison with the right-hand side of E4\1) (note that the two currents have different subscriptsl andk) shows that
each term in Eq(A4) should lead to expressions f@lﬁa_r1>j and(Jﬁ"’”}l- , respectively. Then by taking the linjit-o and using

expression(16) for the steady statgPs)=lim; .. T |P,0), one finds

Vi) = 7w

xTr [y Y@ - N U)® - |U)

1
= (s (nE,‘i"Eifl + ﬂEi’lEifl)

g

(A5)

k

where the effects of| |.; on|Ps) and(s| have been taken into account. Finally we use

[ (I1(Aol0) +Aq]1) +Az[2)) =A|li),

which yields expressio27).
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