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Exactly solvable two-way traffic model with ordered sequential update
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Within the formalism of the matrix product ansatz, we study a two-species asymmetric exclusion process
with backward and forward site-ordered sequential updates. This model, which was originally introduced with
the random sequential update@J. Phys. A30, 8497~1997!#, describes a two-way traffic flow with adynamic
impurity and shows a phase transition between the free flow and the traffic jam. We investigate characteristics
of this jamming and examine similarities and differences between our results and those with a random sequen-
tial update.@S1063-651X~99!06512-5#

PACS number~s!: 02.50.Ey, 05.70.Ln, 05.70.Fh, 82.20.Mj
ro
iv
e

r-

e
is
ta
-
e
ro
o

an

i
.,
er
n
u
th
-
i

n
tia
s
re
p-

c
h

trix

is
dy-
the
ar-

el
en-

con-
up-
se-
le-
ne

ntial

is-
The
t of
the
to
eme
om

up-
ua-

ates,
ies

e
rd
qua-
ver-
dy-
ng
s
nce
as

sity
es,
bi-

la-

c
3

I. INTRODUCTION

The one-dimensional asymmetric simple exclusion p
cess~ASEP! has been the subject of rigorous and intens
studies in recent years@1,2#. A variety of phenomena can b
modeled by the ASEP and its generalizations~see Refs.
@2,3#, and references therein!. The model has a natural inte
pretation as a description of traffic flow~Ref. @4#, and refer-
ences therein! and constitutes a basis for more realistic on
@5#. In traffic flow theories, the formation of traffic jams
one of the fundamental problems. Apart from their spon
neous formation@5#, they can be also produced by hin
drances such as road works or slow cars. Although th
hindrances act locally, they may induce global and mac
scopic effects on a system. This kind of behavior is one
the characteristic properties in nonequilibrium systems
has been studied in the context of driven lattice gases@6–12#.

In ASEP models, two kinds of impurities are discussed
the literature. The first one is ‘‘dynamic impurities,’’ i.e
defective particles which jump with a rate lower than oth
@8,10,11,13#. In traffic terminology, such moving defects ca
be visualized as slow cars on a road, which in certain sit
tions can induce a phase transition from the free flow to
congested flow. The other kind of impurities are ‘‘static im
purities,’’ such as imperfect links where the hopping rate
lower than in other links@7,9,12,14–16#. Static impurities
can also produce shocks in a system@7,9#. For either type of
impurities, a limited amount of exact results is available a
most of them are for models with the random sequen
update@8,10,11,14#. For the fully parallel update, which i
most realistic in traffic flow problems, exact solution a
very rare@5,13,17,18#, and most studies instead utilize a
proximation methods or numerical approaches@16,19,20#.

Recently a two-way traffic model was introduced@11#
where cars move forward in one lane and trucks move ba
ward in the other lane, and both cars and trucks reduce t
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speeds when they approach each other. Within the ma
product ansatz~MPA! formalism, a modified version of this
model is solved exactly in the particular case when there
only one truck in the system. This truck behaves as a
namic impurity and induces a phase transition between
free flow and the congested flow of the cars. Various ch
acteristics of the phase transition are examined.

In this paper we study an exactly solvable traffic mod
with two types of ordered sequential updates, which is id
tical to the model studied in Ref.@11# except for the updating
schemes. More precisely, the updating schemes that we
sider are backward and forward site-ordered sequential
dating schemes in which one updates links of the chain
quentially. Alternatively one may use the so-called partic
ordered sequential updating scheme in which o
sequentially updates the positions of the particles@13#. In
this paper we restrict ourselves to the site-ordered seque
updates.

Presently it is of prime interest to determine whether d
tinct updating schemes can produce different behaviors.
implementation of the type of update is an essential par
the definition of a model, and some characteristics of
model may change dramatically. The aim of this work is
investigate consequences of changing the updating sch
of the model. Then, combined with the results in the rand
sequential updating scheme@11#, we examine similarities
and differences between the results in different types of
dates. Our approach utilizes a mapping between the q
dratic algebras of the ordered and random sequential upd
which has been initiated in the context of the one-spec
ASEP @21,22#.

This paper has the following organization. In Sec. II w
define the model, construct our MPA with both backwa
and forward sequential updates, and obtain the relevant
dratic algebras. Section III presents expressions of the a
age velocities of cars and the single truck, their thermo
namic limits, and a comparison with the correspondi
results in Ref.@11#. In Sec. IV, we consider density profile
of cars and compute the probability to find a car at a dista
x from the truck, which in the high density phase appears
a shock. We discuss the ambiguity in specifying the den
profile, which is related to the nature of the updat
and introduce a definition of the averages to avoid the am
guity. Section V is devoted to the density-density corre

ed
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6466 PRE 60M. E. FOULADVAND AND H.-W. LEE
tion function. In Sec. VI, we study the model in the presen
of two trucks and evaluate the probability of their distan
being R. The paper ends with some concluding remarks
Sec. VII.

II. MODEL DEFINITIONS AND MATRIX PRODUCT
ANSATZ

A. Two-way traffic model with random sequential update

Here we describe briefly the two-way traffic model wi
the random sequential update~RSU! introduced in Ref.@11#.
Consider two parallel one-dimensional chains, each withN
y,
y

itie
e
w
th
ep
r
iti
e-
d

e

as

t
e

d

b
at
e

n

sites. The periodic boundary condition applies to each ch
There areM cars andK trucks in the first and second chain
respectively. Cars move to the right and trucks move to
left. The state of the system is characterized by two set
occupation numbers (t1 ,t2 , . . . ,tN) and (s1 ,s2 , . . . ,sN)
for the first and second lanes. If the sitei of the car lane is
occupied by a car,t i51, and zero otherwise. Similarlys i
51 if the sitei of the truck lane is occupied by a truck, an
s i50 if the site is empty. In an infinitesimal time interva
dt, a car~truck! hops to its right~left! empty site with the
probability dt (gdt) if there is no truck~car! in front, and
with the probability reduced by a factorb otherwise. More
explicitly one has
~t i ,t i 11!5~1,0!→~0,1! with rate H 1 if s i 1150

1

b
if s i 1151 ~ truck in front!,

~1!

~s i ,s i 11!5~0,1!→~1,0! with rate H g if t i50

g

b
if t i51 ~car in front!.

~2!
l

c-
d

ef.

de-
ro-
ket

s-
The reduction factorb, which ranges between 1 and infinit
is related to the width of roads:b51 corresponds to a ver
wide road or a highway with a lane divider, andb5` cor-
responds to a one lane road. Simulations with finite dens
of cars and trucks show@11# that, in the steady state, th
average velocities of cars and trucks decrease smoothly
increasingb. As an interesting limiting case, situations wi
a single truck is considered while the density of cars is k
finite. For this particular case, simulations suggest that fo
given densityn of cars, there exists a density-dependent cr
cal valuebc , below which the average velocity of cars r
mains constant, and above which the average velocity
creases linearly with respect to 12(1/b), a measure of the
road narrowness. Forb.bc , the simulation also finds phas
segregation into high~traffic jam! and low~free flow! density
regions.

To investigate the characteristics of this single truck c
analytically, the above two-lane model has been modified
an exactly solvable one. If one forbids a car and a truck
occupy two parallel sitesi simultaneously, one can describ
configurations with a single set of occupation numbers$t i%
wheret i50 ~empty site!, 1 ~occupied by a car!, or 2 ~occu-
pied by a truck!. The following rules describe the modifie
dynamics:

~1,0!→~0,1! with rate 1,

~0,2!→~2,0! with rate g, ~3!

~1,2!→~2,1! with rate
1

b
.

This model is equivalent to a two-species ASEP and can
solved exactly by the method of the matrix product st
s

ith

t
a
-

e-

e
to
o

e
e

~MPS!. The steady state weightPs of a given configuration
(t1 ,t2 , . . . ,tN) is proportional to the trace of the norma
product of some matrices:

Ps~t1 ,t2 , . . . ,tN!;Tr~X1X2 , . . . ,XN! ~4!

where

Xi5H D for t i51

E for t i52

A for t i50,

~5!

and these matrices satisfy the quadratic algebra

DE5D1E, aAE5A, bDA5A ~a[bg!. ~6!

With the help of the MPS method, many important chara
teristics such as average velocities, density profiles, ank
point correlation functions were obtained exactly in R
@11#.

B. Two-way traffic model with ordered sequential updates

In the ordered sequential updating~OSU! schemes, time
is discrete and the update occurs in an ordered way. To
scribe the dynamics in this scheme, it is convenient to int
duce a Hilbert space that is spanned by the orthonormal
vectorsu$t%&5ut1& ^ ut2& ^ . . . ^ utN&. The state of a system
at the j th time step can be represented by a ket vectoruP, j &,

uP, j &5(
conf

P~$t%; j !u$t%&, ~7!

whereP($t%; j ) is the weight of the configuration$t% at the
j th time step, and(conf denotes the summation over all po



he

g
u
rix

t

fo

le
a

m

r

nd

n-

y
ig
e

te.
nd
e-

ems
d,
yet
u-

or
here
ffic

the

in

the

n

fol-

e
om-
This
e

PRE 60 6467EXACTLY SOLVABLE TWO-WAY TRAFFIC MODEL WITH . . .
sible configurations. The state at the next time step is t
obtained fromuP, j & by applying a transfer matrix

uP, j 11&5TuP, j &, ~8!

where the transfer matrixT takes a different form dependin
on the precise nature of the updates. In the backward seq
tial updating~BSU! scheme, for example, the transfer mat
T becomesT← , where

T←5TN,1T1,2 . . . TN22,N21TN21,N ~9!

and in the forward sequential updating~FSU! scheme, it be-
comesT→ where

T→5TN,N21TN21,N22 , . . . ,T2,1T1,N . ~10!

Each element in the products is defined by

~11!

Here1 is the identity matrix acting on a local ket vectorut&
and the local transfer matrixT acts on the tensor produc
state of two local ket vectors,ut& ^ ut8&. In Eqs.~9! and~10!,
the siteN is chosen as a starting point of the update
definiteness.

The local transfer matrixT varies depending on possib
exchange processes allowed in a model. As a straightforw
generalization of the two-way traffic model in Ref.@11#, we
allow the following processes to occur in each discrete ti
step:

~1,0!→~0,1! with probability h,

~0,2!→~2,0! with probability hg, ~12!

~1,2!→~2,1! with probability
h

b
,

where 0<h,hg<1<b. For this two-way traffic model, off-
diagonal matrix elements ofT have nonzero values only fo
the elements

~^0u ^ ^1u!T ~ u1& ^ u0&!5h,

~^2u ^ ^0u!T ~ u0& ^ u2&!5hg, ~13!

~^2u ^ ^1u!T ~ u1& ^ u2&!5
h

b
,

and the diagonal elements can be specified from the co
tion of the probability conservation, (t3 ,t4

(^t3u
^ ^t4u)T(ut1& ^ ut2&)51, which ensures that the sum of e
tries in each column is equal to 1.

C. Matrix product state

Recently Krebs and Sandow@23# showed that the stead
state of any stochastic process with arbitrary nearest ne
bor interactions, defined on an open one dimensional syst
n

en-

r

rd

e

i-

h-
ms

with RSU, can be always written as a matrix product sta
This theorem was soon generalized by Rajewsky a
Schreckenberg@24# to stochastic processes with ordered s
quential and sub-lattice parallel updates. For closed syst
with the periodic boundary condition, on the other han
such a theorem is not available at present and it is not
clear how widely the MPA is applicable. Nevertheless, n
merous recent studies@8,10,11,22,25–27# have proven that
the MPA can be a powerful investigation tool even f
closed systems as well. Motivated by recent successes,
we assume that the stationary state of the two-way tra
model can be written in terms of the MPS,

Ps~t1 ,t2 , . . . ,tN!;Tr~X1X2, . . . ,X̂N! ~14!

whereXi5D, E, or A (X̂N5D̂, Ê, or Â) depending ont i
(tN). Note that the matrices at the siteN are different from
those at other sites, which stems from the special role of
siteN as a starting point of the update.1 The necessity of the
hatted matrices in the OSU scheme is clearly explained
Ref. @22#.

By introducing two ket vectorsuU& and uÛ&,

uU&5Au0&1Du1&1Eu2&,

uÛ&5Âu0&1D̂u1&1Êu2&, ~15!

where the coefficientsA, D, E, Â, D̂, andÊ are matrices
defined on a different auxiliary space, we can write Eq.~14!
formally as

uPs&5
1

Z~N,M !
Tr~ uU& ^ uU& ^ •••^ uÛ&), ~16!

in which the normalization constantZ(N,M ) is the sum of
all weights,

Z~N,M !5(
conf

Tr~X1 , . . . ,X̂N!, ~17!

and the trace is taken only over the normal product of
matricesA, D, E, Â, D̂, andÊ.

By definition, uPs& should be stationary under the actio
of the transfer matrixT

TuPs&5uPs&.

In the BSU scheme, the stationarity is guaranteed if the
lowing relation holds:

T ~ uU& ^ uÛ&)5uÛ& ^ uU&, ~18!

1
„The hatted-matrix in Eq.~14! breaks the translational invarianc

of the problem. As a result, the steady state weights are not c
pletely fixed by the relative distances between cars and trucks.
situation is in contrast to Ref.@11# where the weights depend on th
relative distances only due to the translational invariance@see Eq.
~4!#.…
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which simply implies that upon the action ofT← , the ‘‘de-
fect’’ uÛ& is transferred backward through the chain and
turns back to the siteN, its initial position. Equation~18!
then leads to the following quadratic algebra:

@A,Â#50, @D,D̂#50, @E,Ê#50,

AD̂1hDÂ5ÂD, ~12h!DÂ5D̂A,

hgAÊ1EÂ5ÊA, ~12hg!AÊ5ÂE,

h

b
DÊ1ED̂5ÊD, S 12

h

b DDÊ5D̂E. ~19!

In the FSU scheme, on the other hand, the stationa
requires

T ~ uÛ& ^ uU&)5uU& ^ uÛ&, ~20!

which implies that the defectuÛ& is now transferred in the
forward direction. Equation~20! leads to a quadratic algebra
which is identical to Eqs.~19! upon the replacement
A↔Â, D↔D̂, E↔Ê.

D. Mapping onto the RSU algebra

In order to calculate physical quantities using the MPS
is in principle necessary to find a representation of the m
trices that satisfies the relevant quadratic algebras for
BSU and FSU schemes. In some cases, however, this job
be avoided and the quadratic algebra itself is sufficient
calculations @8,11,13,17,18,28# . Also recent studies on
ASEP@21,22# and multispecies ASEP@28–30# have demon-
strated that the algebra for a stochastic process in an O
scheme can be mapped onto the algebra for a related sto
tic process in the RSU scheme, for which an explicit rep
sentation of the matrices are known. Here we show that
mapping holds for the two-way traffic model as well. W
first assume

Â5A1a, D̂5D1d, Ê5E1e, ~21!
-

ty

it
-
e
an
r

U
as-
-
is

wherea, d, ande are real numbers. In the BSU scheme,
can be verified that the choice

a50, d52
h

b
, e5

h

b2h
~22!

map the algebra~19! to

DE5D1E, ãAE5A, b̃DA5A, ~23!

where

ã5
a~b2h!

b2ah
, b̃5b. ~24!

Note that algebra~23! is identical to the RSU algebra~6!

except for the renormalization ofa to ã.
In the FSU scheme, one may use the mapping to the B

algebra by simply interchanging the roles ofA, D, and E

with Â, D̂, andÊ @see Eqs.~18! and~20!#. However, it turns
out that it is more convenient for the subsequent analysi
use a direct mapping to the RSU scheme. We again ass
Eq. ~21!, and choose

a50, d5
h

b2h
, e52

h

b
. ~25!

Then the FSU algebra is mapped to Eqs.~23! with

ã5a, b̃5
b2h

12h
. ~26!

Note that nowb is renormalized tob̃.

III. AVERAGE VELOCITIES

In this section we consider the special case where the
only a single truck in the system, and evaluate the aver
velocities of cars and the truck.

A. BSU scheme

The movement of cars from a site,k for example, to its
neighboring sitek11 is achieved byTk,k11. Then the aver-
age current of carŝJk

car& between the two sites can be wri
ten as follows:
ey are
y
a

~27!

where the specificationsN andM in the summations represent that the matrix products (•••DÂ•••) and (•••DÊ•••) contain
N matrices andM of them denote cars. Below, these specifications will be omitted in usual situations, that is, when th
N and M. In Eq. ~27!, it has been taken into account that before the action ofTk,k11, the steady state is acted upon b
Tk11,k12•••TN21,N , which shifts the hat from the siteN to k11. More rigorous derivation is given in the Appendix. In
similar way, the average current of a truck^Jk

truck& between the sitek andk11 reads

~28!
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It is instructive to briefly sketch the derivation of Eq.~27!. Using the cyclic invariance and the fact that in the first term of E
~27!, the single truck can locate anywhere on the remainingN22 sites, we find

~29!
s-

ha

e

ca

a
tin

on

and

ex-

in
-

Note that the site indexk has disappeared from the expre
sion and thus the current is independent ofk, as it should be
from the conservation of the number of cars. Recalling t
Â5A and b̃DA5A, the first term becomes

In this double summation, each configuration (•••E) is
counted@(N21)2(M21)21# times, and thus it can be
simplified further to

h

b̃
~N2M21!Y~N21,M21!,

where

Y~P,Q!5(
conf

P,Q

Tr~•••E!. ~30!

Also recalling thatÊ5E1e, the second term in Eq.~29! can
be split into two pieces:

~31!

where

YD~P,Q!5(
conf

P,Q

Tr~•••DE!. ~32!

Using b̃DA5A and the cyclic invariance of the trace, th
second piece in Eq.~31! can be simplified to

e
h

b

1

b̃M
CN22

M21Tr~AN2M21!,

where the binomial coefficientCN22
M21 comes from counting

the number of configurations that satisfy the given specifi
tions. Later it turns out that the factor Tr(AN2M21) cancels
out for all expressions for physical quantities including^Jk

car&
and ^Jk

truck&. Below we thus set Tr(AN2M21)51 for conve-
nience. We also mention that due to the cancellation,
calculations in this paper can be performed without resor
to an explicit representation of the matrices.

To evaluate the denominator of Eq.~27!, we proceed with
definition ~17!:
t

-

ll
g

Z~N,M !5(
conf

Tr~•••Ê!1(
conf

Tr~•••D̂ !1(
conf

Tr~•••Â!.

~33!

In a similar evaluation procedure as above, the first term
the right-hand side yields

(
conf

Tr~•••Ê!5Y~N,M !1
e

b̃M
CN21

M . ~34!

Also the sum of the second and third terms on the right-h
side becomes

~35!

which results in

~N21!Y~N,M !1d~N21!Y~N21,M21!. ~36!

Combining all calculations given above, one obtains the
act expression for̂Jk

car& for arbitraryN andM:

^Jk
car&5

1

Z~N,M ! H h

b̃
~N2M21!Y~N21,M21!

1
h

b
YD~N,M !1e

h

b

1

b̃M
CN22

M21J . ~37!

For a complete evaluation of Eq.~27!, one needsY(N,M )
andYD(N,M ). Exactly the same quantities are calculated
the RSU scheme@11#. Taking into account the renormaliza
tion of a andb, one immediately obtains

YD~N,M !5
1

ãb̃M F ã

12b̃
CN22

M211
ã1b̃21

b̃21
I ~N,M !G ,

~38!

Y~N,M !5YD~N,M !1
1

ãb̃M
CN22

M ,

I ~N,M !5 (
k51

M

b̃kCN222k
M2k . ~39!

To study the implications of Eq.~37!, we consider the
thermodynamic limitN,M→` while n5M /N is kept fixed.
As demonstrated in Ref.@11#, the thermodynamic limit is
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governed byI (N,M ). Using the method of steepest desce
it can be verified that, fornb̃.1,

I ~N,M !→ b̃N21

~ b̃21!N2M21
,

which is exponentially larger than all other terms and he
dominates the thermodynamic behavior of all quantities.
nb̃,1, on the other hand,

I ~N,M !→ nb̃~12n!2

12nb̃
CN

M ,

which is of the same order as other terms. A straightforw
calculation then shows that^vcar&5(1/n)^Jk

car& is given by
le
f

ge
e
th

e

-

,

e
r

d

^vcar&5H h

12hn
~12n! if nb̃<1

h

b2h

12n

n
if nb̃>1.

~40!

The average current of the single truck@Eq. ~28!# can be
evaluated in a similar manner:

^Jk
truck&5

1

Z~N,M !H hgFY~N,M !2YD~N,M !1
e

b̃M
CN22

M G
1

h

b FYD~N,M !1
e

b̃M
CN22

M21G J . ~41!

In the thermodynamic limit, the average velocity^v truck&
5N^Jk

truck& becomes
^v truck&55
h

b

$a~12n!1eã@n1a~12n!#%~12nb̃ !1n~ ã1b̃2nb̃ !

~12hn!@~12n!~12nb̃ !1n~ ã1b̃2nb̃ !#
if nb̃<1

h

b2h
if nb̃>1.

~42!
lts

n-
er
t,

U

Figures 1 and 2 show the behaviors of^vcar& and ^v truck&
as a function of 12(1/b), the narrowness of the road, whi
the values ofh,g(5a/b) andn are fixed. The behavior o
^vcar& changes clearly at the transition point 12(1/bc)51
2n. Below the transition point,̂vcar& is constant, implying
that the interaction with the truck causes negligible chan
on the flow of cars. Above the transition point, on the oth
hand,^vcar& begins to drop suddenly generating a cusp at

FIG. 1. Average velocity of cars in the BSU and RSU schem
for n50.3 and different values ofh. The velocity is measured in
units of number of sites per time step~BSU scheme!, and number of
sites per unit time~RSU scheme!, respectively. The road narrow
ness 121/b in the horizontal axis is dimensionless.
s
r
e

transition point. Thus a local dynamic impurity, truck, resu
in global effects. Here the decrease of^vcar& follows a hy-
perbolic curve.̂ v truck& also changes its behavior at the tra
sition point. Below the transition point, one finds a rath
smooth decrease in̂v truck& and above the transition poin
one again observes a hyperbolic decrease.

B. FSU scheme

In the FSU scheme, the average current of cars^Jk
car&

between the sitek andk11 reads

s

FIG. 2. Average velocity of the truck in the BSU and RS
schemes forn50.3 and different values ofh. Units for the hori-
zontal and the vertical axes are the same as in Fig. 1.
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~43!

In comparison with Eq.~27! for the BSU scheme, it should be noted that the hats now appear at the sitek instead ofk11 since
the action ofTk11,k occurs after the steady state is acted upon byTk,k21•••T2,1T1,N . This expression can be derived in a mo
rigorous way following a similar procedure to that sketched in the Appendix. Using the quadratic algebra of the matric
expression can be reduced to

^Jk
car&5

1

Z~N,M !H hS 1

b̃
1dD ~N2M21!Y~N21,M21!1

h

b
@YD~N,M !1dY~N21,M21!#J . ~44!

Note that thek dependence has disappeared. Here it should be understood thatã, b̃, d, ande now have the values given in
Eqs. ~25! and ~26!. The same understanding is also needed forY(N,M ), YD(N,M ), and Z(N,M ) whose explicit expres-
sions are given in Sec. III A.

Similar shifts of the hats occur for the average current of the truck as well, and one finds

~45!

which is equal to

^Jk
truck&5

1

Z~N,M !H hg@Y~N,M !2YD~N,M !#1
h

b
@YD~N,M !1dY~N21,M21!#J . ~46!

Note again that thek dependence has disappeared.
Using the relationŝvcar&5(1/n)^Jk

car& and^v truck&5N^Jk
truck&, and taking the thermodynamic limit, one reaches the follo

ing results

^vcar&5H h~12n!

12h~12n!
if nb̃<1

h

b

~12n!

n
if nb̃>1

~47!

^v truck&55
h

b

~ã1dnb̃ !~12n!~12nb̃ !1~11dnb̃ !n~ ã1b̃2nb̃ !

~11dnb̃ !@~12n!~12nb̃ !1n~ ã1b̃2nb̃ !#
if nb̃<1

h

b
if nb̃>1.

~48!
t

s
S

is
.

Figures 3 and 4 shoŵvcar& and^v truck& as a function of the
narrowness 12(1/b), while h,g(5a/b), and n are fixed.
One again finds that the average velocities have cusps a
transition point. Above the critical narrowness, both^vcar&
and^v truck& decrease linearly with respect to the narrowne
which is in contrast to the hyperbolic decreases in the B
scheme. Below the critical narrowness,^vcar& is constant,
similar to the result in the BSU scheme. But its value
different from the corresponding one in the BSU scheme
the

s,
U

C. Comparison with the RSU results

In the thermodynamic limit,̂vcar&RSU and ^v truck&RSU be-
come@11#

^vcar&RSU5H 12n if nb<1

1

b

~12n!

n
if nb>1

~49!
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^v truck&RSU5H 1

b

a~12n!~12nb!1n~a1b2nb!

~12n!~12nb!1n~a1b2nb!
if nb<1

1

b
if nb>1.

~50!
o
th

alu

fi-

a

s
t

bo

is

-
nc
op
e

si
th

this
uck
be

lling

the

s a
for

oes

e

-
U

We now compare the results. In all updating schemes c
sidered, a phase transition occurs at a critical value of
narrowness. In the RSU and BSU schemes, the critical v
is 12n while in the FSU scheme, it is@(12h)(12n)#/@1
2h(12n)#. Note that the transition point can be signi
cantly lower in the FSU scheme whenh'1. Below the criti-
cal narrowness,̂ vcar& is independent ofb in all three
schemes~with different values in each scheme! and above it,
^vcar& decreases linearly in the RSU and FSU schemes
hyperbolically in the BSU scheme.̂v truck&, on the other
hand, is not constant even below the critical narrownes
all three schemes, and varies quite smoothly with respec
the narrowness. Above the critical narrowness,^v truck& de-
creases linearly in the RSU and FSU schemes and hyper
cally in the BSU scheme.

In order to illustrate the origin of these differences, it
instructive to consider the behavior of^v truck& in the vanish-
ing car density limitn→0. In this limit, ^v truck& in the RSU
and FSU schemes approachesg andhg, respectively, while
it approacheshg/(12hg) in the BSU scheme. This differ
ence can be explained in the following way. In the abse
of any car, the single truck in the RSU scheme either h
with the probabilitygdt or stays at the present site with th
probability 12gdt during a time intervaldt. Hence its ve-
locity is equal to its hopping rateg. The situation is similar
in the FSU scheme. Since the truck moves in the oppo
direction of the update, it either hops one site ahead with

FIG. 3. Average velocity of cars in the FSU and RSU schem
for n50.3 and different values ofh. The velocity is measured in
units of number of sites per time step~FSU scheme!, and number of
sites per unit time~RSU scheme!, respectively. The road narrow
ness 121/b in the horizontal axis is dimensionless.
n-
e
e

nd

in
to

li-

e
s

te
e

probabilityhg or stays with the probability (12hg). There-
fore, the average velocity reads

^v truck&5
average distance

number of time steps

5
03~12hg!113~hg!

1
5hg.

The situation changes drastically in the BSU scheme. In
case, the direction of the update and the direction of the tr
movement are identical and accordingly the truck can
transferred by large distances in a single time step. Reca
that each hopping occurs with the probabilitieshg and the
probability of stopping is 12hg, ^v truck& can be cast into the
form

03~12hg!1hg~12hg!12~hg!2~12hg!

13~hg!3~12hg!1•••,

which is simplified tohg/(12hg).
We next examine the fundamental diagrams~the relation

between the car current and the car density! in three updating
schemes. The average current of cars is simply related to
average velocity viâ Jcar&5n^vcar&. Using the thermody-
namic behaviors of̂vcar& @Eqs.~40!, ~47!, and~49!#, one can
determine the thermodynamic behaviors of the current a
function of the density. Figure 5 shows these behaviors
some constant values ofb and h in different updating
schemes. In all three types of update, the single truck d

s

FIG. 4. Average velocity of the truck in the FSU and RS
schemes forn50.3 and different values ofh. Units for the hori-
zontal and the vertical axes are the same as in Fig. 3.
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FIG. 5. Fundamental diagrams in three updating schemes for different values ofb andh ~values are given in the figures!. The density
in the horizontal axis is measured in units of number of cars per site. The current in the vertical axis is measured in units of numb
per time step~BSU and FSU schemes!, and number of cars per unit time~RSU scheme!, respectively.
io
oi
it

al
th
b-

ity
not affect the current-density diagram before the transit
point, whereas it affects the system after the transition p
in a nontrivial manner: linear decrease of the current w
increasing density.

IV. DENSITY PROFILE

A. Density profile in the RSU scheme

Here we first summarize the results in Ref.@11#. In the
RSU scheme, it can be assumed without loss of gener
that the single truck is at a particular site, for example at
site N of the chain due to the cyclic invariance of the pro
lem. Thus the probability to find a car at the distancex from
the truck can be written via MPS as follows:

~51!
n
nt
h

ity
e

Using the matrix algebra~6!, one finds

^n~x!&RSU5@YRSU~N,M !abM#21H CN23
M212

a

b21
CN23

M22

1
a1b21

b21
@ I RSU~N21,M21!

1bx21~b21!I RSU~N2x,M2x!u~M>x!#J ,

~52!

where YRSU(N,M ) and I RSU(N,M ) can be obtained from
Y(N,M ) and I (N,M ) @Eqs. ~38! and ~39!# by replacingã

andb̃ with a andb, respectively, and the factoru(y>x) is
1 if y>x and 0 otherwise. In the high density phasenb
>1, the single truck affects the system globally. The dens
profile is
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^n~x!&RSU5H 1 for
x

N
< l RSU[

nb21

b21

1

b
otherwise.

~53!

Note that the system consists of two regions: a traffic j
region in front of the truck and a free flow region behind
In the low density phasenb<1, on the other hand, the pre
ence of the truck has only local effects. In the thermod
namic limit, the car density becomes

^n~x!&RSU5nH 11
~a1b21!~12n!

12n1an
~nb!xJ , ~54!
ple
h

-

which shows that the disturbance by the truck decays ex
nentially with a characteristic length scale

jRSU5u ln~nb!u21. ~55!

B. Density profile in the ordered sequential updating schemes

As stated in Sec. II, the ordered sequential updates b
the cyclic invariance. In what follows we show that due
the absence of the cyclic invariance, the probability to fin
car atx sites in front of the truck varies depending on t
truck location. Two updating schemes, BSU and FSU, w
be considered simultaneously since same expressions a
to both schemes.

We first consider the case where the truck is at the siteN.
The conditional probability to find a car atx sites in front of
the truck reads
~56!
are

th a
l
U

the
Here it is helpful to define a quantityK(x,N,M ) by

which is exactly the same as Eq.~51!. All properties of
K(x,N,M ) can be thus obtained from Eq.~52! by replacing
a andb with ã andb̃, respectively. In terms ofK(x,N,M ),
the conditional probability~56! becomes

Y~N,M !K~x,N,M !1
e

b̃M
CN22

M21

Y~N,M !1
e

b̃M
CN21

M

. ~57!

The thermodynamic limit can be investigated in a sim
way. In the high density phasenb̃>1, the second terms bot
in the numerator and the denominator in Eq.~57! are negli-
gible compared to the first terms and Eq.~57! reduces to
K(x,N,M ). Thus one finds
Prob~N2x215caruN5truck!55 1 for
x

N
< l[

nb̃21

b̃21

1

b̃
otherwise

~58!

which is essentially identical to result~53! in the RSU
scheme except for the replacement ofb by b̃. In the low
density phasenb̃<1, on the other hand, the second terms
comparable with the first terms, and one obtains

Prob~N2x215caruN5truck!

5nH 11
~ ã1b̃21!~12n!

~12n1ãn!1e~12nb̃ !ã
~nb̃ !xJ ,

~59!

which shows the exponential decay of the disturbance wi
length scalej5u ln(nb̃)u21. The coefficient of the exponentia
decaying term is different from the result in the RS
scheme.

Secondly we consider the case where the truck is at
siteN2k (1<k<N2x22). The conditional probability be-
comes
~60!

The evaluation of Eq.~60! using the matrix algebra leads to
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Y~N,M !K~x,N,M !1dY~N21,M21!K~x,N21,M21!

Y~N,M !1dY~N21,M21!
. ~61!

Note that the conditional probability is independent ofk.
In the thermodynamic limit, Eq.~61! can be greatly simplified toK(x,N,M ) sinceK(x,N,M ) andK(x,N21,M21) in the

numerator become identical in this limit@see Eqs.~53! and ~54!#. Thus the conditional probability Prob(N2x2k21
5caruN2k5truck) is the same as the corresponding results~53! and ~54! in the high and the low density phases except
the renormalization ofa andb to ã and b̃.

In the third case, the truck is located at the sitex11 and the car at the siteN. The conditional probability becomes

~62!
d
d
es

f
e

which is found to be

Y~N,M !K~x,N,M !1dY~N21,M21!

Y~N,M !1dY~N21,M21!
. ~63!

Note that the second terms both in the numerator and
nominator are comparable to the first terms in the thermo
namic limit. As a result, the conditional probability becom
noticeably different fromK(x,N,M ). In the high density
phase, one finds

Prob~N5carux115truck!

55 1 for
x

N
< l 5

nb̃21

b̃21

1

b̃

11db̃

11d
otherwise,

~64!
se
-

ee

c

e-
y-

and, in the low density phase,

Prob~N5carux115truck!

5
n~11db̃ !

11dnb̃
H 11

~ ã1b̃21!~12n!

~11db̃ !~12n1ãn!
~nb̃ !xJ .

~65!

In contrast to the previous cases, the renormalization oa
and b are not sufficient to account for deviations from th
RSU results even in the high density phase.

Finally we consider Prob(N2 l 5carux2 l 115truck) (1
< l<x), which takes the following form:
Y~N,M !K~x,N,M !1dY~N21,M21!K~x21,N21,M21!

Y~N,M !1dY~N21,M21!
. ~66!
in-
ted
the

the
de-

e

Note that it is independent ofl. The thermodynamic limit can
be examined in a similar way. In the high density pha
K(x,N,M ) and K(x21,N21,M21) are essentially identi
cal and thus Eq.~66! reduces to Eq.~53! for the RSU scheme
except for the trivial replacement ofa andb with ã and b̃.
In the low density phase, however, the difference betw
K(x,N,M ) and K(x21,N21,M21) is not negligible, and
careful treatment is required to take care of the differen
This way, one obtains

Prob~N2 l 5carux2 l 115truck!

5nH 11
11d

11dnb̃

~ ã1b̃21!~12n!

12n1ãn
~nb̃ !xJ .

~67!
,

n

e.

We next discuss the origin of the absence of the cyclic
variance, which results in the four different cases. As sta
above, the system loses the cyclic invariance due to
choice of a particular site, the siteN, as a starting point of the
update.

Thus by choosing the starting point in an even way,
cyclic invariance can be restored. One can, for example,
fine a cyclically invariant averagê̂ •••&& of an operatorÔ
in the following way:

^^Ô&&5
1

N (
k51

N

^suÔuPs,k&, ~68!

where^su5($t%^$t%u anduPs,k&k is the stationary state of th
transfer matrix



in
inc
th
tic
g

, that

s

6476 PRE 60M. E. FOULADVAND AND H.-W. LEE
T←,k[Tk,k11Tk11,k12•••TN,1T1,2•••Tk21,k

in the BSU scheme or

T→,k[Tk,k21Tk21,k22•••T1,NTN,N21•••Tk11,k

in the FSU scheme with the sitek as a starting point of the
update.~This problem due to the absence of the cyclic
variance does not affect the calculation of the currents s
the currents should be independent of the sites, where
values are evaluated due to the conservation of the par
number.! Note that the siteN now loses its special meanin
and the cyclic invariance becomes evident in Eq.~68!. It is
-
e

eir
le

also worth mentioning that definition~68! is equivalent to
taking an expectation value at each substep of an update
is, after the action ofTl ,l 11 or Tl 11,l instead of a single
whole step of the updateT← or T→ , and taking the average
over these expectation values.

Using definition~68!, we calculate the densitŷ̂ n(x)&&
5^^dtN2 l ,2

dtN2 l 2x21,1&& /^^dtN2 l ,2
&& (0< l<N21), where

the sites 0,21,22, . . . should be identified with the site
N,N21,N22, . . . ,respectively. The densitŷ̂ n(x)&& is, by
definition, independent of the truck locationN2 l and thus
one may choosel 50. The denominator̂^dtN,2&& is 1/N due
to the cyclic invariance, and the numerator^^dtN,2dtN2x21,1&&
becomes
ditional

verage
function
~69!

The cyclically invariant density then becomes

^^n~x!&&5
1

Z~N,M ! FNY~N,M !K~x,N,M !1
e

b̃M
CN22

M211dY~N21,M21!

1d~N2x22!Y~N21,M21!K~x,N21,M21!

1dxY~N21,M21!K~x21,N21,M21!G , ~70!

which, in the thermodynamic limit, reduces to the results identical to the thermodynamic behaviors of the second con
probability Prob(N2x2k215caruN2k5truck) (1<k<N2x22).

V. DENSITY-DENSITY CORRELATION FUNCTION

Here we calculate the two-point equal time correlation function of the car density using the cyclically invariant a
~68!. Both BSU and FSU schemes are considered simultaneously. In terms of the MPS, the density-density correlation
becomes (x1,x2 is assumed!

~71!
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After some algebra, it can be verified that

Š^n~x1!n~x2!&‹5Š^n~x2!&‹2 f ~x1!, ~72!

where f (x1) is given by

f ~x1!5
1

Z~N,M ! H e

b̃M
CN23

M21

1dY~N21,M21!@12K~x1 ,N21,M21!#

1
1

b̃
NY~N21,M21!@12K~x1 ,N21,M21!#

1
d

b̃
~N2x123!Y~N22,M22!

3@12K~x1 ,N22,M22!#1
d

b̃
x1Y~N22,M22!

3@12K~x121,N22,M22!#J . ~73!

The connected part of the two-point correlation functio
Š^n(x1)n(x2)&‹C5Š^n(x1)n(x2)&‹2Š^n(x1)&‹Š^n(x2)&‹, can
be used to estimate the degree of correlation. In the ther
dynamic limit, one finds

Š^n~x1!n~x2!&‹C5@Š^n~x2!&‹2k#@12Š^n~x1!&‹#,
~74!

where k5min(n,1/b̃). In the high density phase, the co
nected part has a nonvanishing value only when bothx1 and
x2 are within the region@Nl2AND,Nl1AND# where D

5A2b̃(12n)/(b̃21). In the low density phase, the con
nected part has a nonvanishing value only whenx1,x2;j.
Thus one concludes that the correlation develops only in
region where the density variation occurs, which is identi
to the conclusion in the RSU scheme@11#.

VI. TWO TRUCKS AND BOUND STATE

In this section we examine the system with two trucks a
M cars. We determine the probabilityV(R) that the distance
,

o-

e
l

d

between the trucks isR @0<R<(N21)/2#. In the RSU
scheme, the cyclic invariance of the MPS allows one to
one of the trucks at the siteN, and one obtains

where the sum runs over all configurations withM cars and
two trucks. Its thermodynamic limit is examined in Ref.@11#.
In the low density phasenb<1, it becomes

VRSU~R!;11
n~12n!~a1b21!~a21!

~12n1an!2 ~nb!R,

~75!

which is maximal atR50 and decays exponentially with th
same length scalejRSU5u ln(nb)u21 as in the density profile.
In the high density phasenb>1, the probability decrease
linearly with R for 0<R<NrRSU, wherer RSU5min(l RSU,1
2 l RSU) (r RSU, 1

2 ), and remains constant forNrRSU<R
<(N21)/2. The relative ratios are

for r RSU5 l RSU,
VRSU~NrRSU!

VRSU~0!
512

~a21!~b21!

ab
~76!

and

for r RSU512 l RSU,

VRSU~NrRSU!

VRSU~0!
512

~a21!~b21!

ab

r RSU

12r RSU
. ~77!

One can interpret this as the formation of a weakly bou
state between the two trucks.

Now we considerV(R) in the BSU and FSU schemes. I
terms of the matrix products,V(R) in both schemes can b
expressed~up to a proper normalization constant! as
~78!

It is useful to introduce a quantityW(N,M ,R), which is defined by

~79!
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Then, using the relationÂ5A, D̂5D1d, and Ê5E1e,
and the cyclic invariance of the trace, expression~78! can be
written in terms ofW(N,M ,R) as follows:

NW~N,M ,R!

1d~N2R22!W~N21,M21,R!

1dRW~N21,M21,R21!12eY~N21,M !.

~80!

The thermodynamic limit can be investigated in a sim
way using the fact that in the RSU scheme,W(N,M ,R) is
identical to VRSU(R) up to a normalization factor. The
through the renormalization ofa andb, its R dependence in
the BSU and FSU schemes can be obtained. Also, the
term in expression~80! is negligible compared to the firs
three terms. In the high density phase, one then finds
W(N,M ,R), W(N21,M21,R), and W(N21,M21,R21)
are all proportional to each other, and thusV(R) can be
obtained fromVRSU(R) through the renormalization ofa
and b. In the low density phase, theR dependence o
W(N,M ,R) appears only forR;j. It is then sufficient to
examine the caseR;j!N, where the first and second term
are dominant and give the sameR dependence. HenceV(R)
can be again obtained fromVRSU(R) by replacinga andb
by their renormalized values.

VII. CONCLUDING REMARKS

We have investigated the characteristics of an exa
solvable two-way traffic model with ordered sequential u
dates, and observed both qualitative and quantitative dif
ences in the properties of model from the results obtai
with the random sequential update@11#. Our approach is
based on the so-called matrix product formalism which
lows analytic solutions. In the OSU schemes, the choice
particular site as a starting point of the update breaks
translational invariance of the steady state measure, whic
also evident in the form of the MPS. Thus an averaging o
the different choices of the update starting point is neces
to restore the cyclic invariance to the system@see Eq.~68!
and the following discussion#. Performing the cyclically in-
variant averaging, some characteristics in the thermodyna
limit, such as density profile of cars, density-density corre
tion function, and truck-truck distance distributionV(R), are
obtained, and it is found that the difference in the updat
schemes can be taken into account simply by the pro
renormalization of the parametersa andb. However this is
st

at

ly
-
r-
d

l-
a
e
is
r
ry

ic
-

g
er

not the case with average velocities. Changing the upd
scheme affects velocities in a more complicated manner
the renormalization of the parameters is not sufficient to
count for different behaviors of̂vcar& and^v truck& in differ-
ent updating schemes. Especially the dependence of^vcar&
and^v truck& on the road narrowness 12(1/b) can vary quali-
tatively depending on the updating schemes. Behaviors
^vcar& and ^v truck& in the FSU scheme~that is, when the up-
date direction is parallel with the movement direction of t
majority of vehicles! have more resemblance to the RS
results than those in the BSU scheme. In the FSU sche
however, one observes a shift in the value of the criti
narrowness from 12n to @(12h)(12n)#/@12h(12n)#,
which can be considerable ifh'1.
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APPENDIX: DERIVATION OF EXPRESSION „27…

Here we derive expression~27! for the average current o
cars in the BSU scheme. Similar procedures can be use
obtain average currents of the truck and also the aver
currents in the FSU scheme. The starting point is the co
nuity equation, which in discrete time dynamics takes
form

^nk
car& j 112^nk

car& j5^Jk21
car & j2^Jk

car& j , ~A1!

where ^•••& j represents the average at the time stepj. In
terms of the initial state of the systemuP,0&, the left hand
side becomes

^sunk
carT←T←

j uP,0&2^sunk
carT←

j uP,0&, ~A2!

where the bra vector̂su is defined by

^su5(
$t%

^t1u ^ ^t2u ^ •••^ ^tNu. ~A3!

The conservation of the probability ensures that^suT←
5^su @3#, which then allows one to rewrite Eq.~A2! as
^su@nk

car,T←#T←
j uP,0&. Next we evaluate the commutato

@nk
car,T←#. Using the relation
one finds

TN,1•••Tk22,k21S hEk21
0,1 Ek

1,01
h

b
Ek21

2,1 Ek
1,2DTk,k11•••TN21,N2TN,1•••Tk21,kS hEk

0,1Ek11
1,0 1

h

b
Ek

2,1Ek11
1,2 DTk11,k12•••TN21,N

~A4!
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where

Comparison with the right-hand side of Eq.~A1! ~note that the two currents have different subscriptsk21 andk) shows that
each term in Eq.~A4! should lead to expressions for^Jk21

car & j and^Jk
car& j , respectively. Then by taking the limitj→` and using

expression~16! for the steady stateuPs&5 lim j→`T←
j uP,0&, one finds

~A5!

where the effects ofTl ,l 11 on uPs& and ^su have been taken into account. Finally we use

u i &^ j u~A0u0&1A1u1&1A2u2&)5Aj u i &,

which yields expression~27!.
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