PHYSICAL REVIEW E VOLUME 60, NUMBER 6 DECEMBER 1999

Fracture patterns induced by desiccation in a thin layer
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We study a theoretical model of mud cracks, that is, the fracture patterns resulting from the contraction with
drying in a thin layer of a mixture of granules and water. In this model, we consider the slip on the bottom of
this layer and the relaxation of the elastic field that represents deformation of the layer. Analysis of the
one-dimensional model gives results for the crack size that are consistent with experiments. We propose an
analytical method of estimation for the growth velocity of a simple straight crack to explain the very slow
propagation observed in actual experiments. Numerical simulations reveal the dependence of qualitative nature
of the formation of crack patterns on material properf€L063-651X99)05412-4

PACS numbes): 62.20.Mk, 46.35+z, 46.50+a, 47.54+r

[. INTRODUCTION contraction, these problems can be thought of as belonging
. . to the same category as thermal cracks in glafsts 16

Many kinds of mixtures of granules and water, such a;nq the formation of joints in rocks brought by cooling
clay, contract upon desiccation and form cracks. These frag17 1g. |n addition, we note that mixtures of granular matter
ture patterns are familiar to us as Ordinary mud cracks. HOWand fluid have properties that vary greaﬂy from that of com-
ever, the fundamental questions about these phenomena haylete elastic materials, in particular, dissipation and vis-
not yet been answered theoretically. The problems whicltoelasticity. The propagation of cracks in such media has
need to be addressed include determining the condition urbeen investigated recently using developments in nonlinear
der which fragmentation occurs, the dynamics displayed byphysics[19-28. o o
cracks, and the patterns that grow. In this paper, we undertake a theoretical investigation of

In simple and traditional experiments on mud cracks, dhe experiments described above, in particular, the experi-
thin layer of a mixture in a rigid container with a horizontal ments by Groisman and K?P'@ﬁ]- We treat suph system as
bottom is prepared left to dry at room temperatiite-5]. consisting qf fraptures arising from qu§13|stat|c_and uniform

) i . contraction in thin layers of linear elastic material.
Typlcally,_clay, soil, flour, granules of magnesium carbonate, |, gec. Il, we propose a one-dimensional model. Our
and alumina are used. In almost all cases, cracks extend frofjodel takes into account the slip displacement on the bottom
the surface to the bottom of the layer and propagate horizoryf a container, because most of the experiments cannot be
tally along a line, forming a quasi-two-dimensional structure.assumed to obey a fixed boundary condition. We can inves-
Typically we observe a tiling pattern composed of rectangutigate the development of the size of a crack cell by applying
lar cells in which cracks mainly join in & shape. Groisman a fragmentation condition to the balanced states of the elastic
and Kaplan carried out more detail experiments with coffedield.
powder and reported) that the size of a crack cell after full In Sec. Ill, we report the analytical results of our one-
drying is nearly proportional to the thickness of the layer anddimensional model. Here we consider both the critical stress
larger in the case of a “slippery” bottontii) that the veloc- cp_ndition and the Griffi;h criterion as the fragmenta_tion con-
|ty of a moving crack is almost independent of time for ad|t|0n [29,3q We consider theSQ two altel’.natl\./e CI’_IteI’Ia be-
given crack and very slow on the order of several millimetersc@use the nature of the breaking condition in mixtures of
per minute, but that it differs widely from one crack to an- gran_ules and water is not clear. The CI’ItICE_l| stress qondmon
other, and(iii) that as the layer becomes thin, there is gPredicts that the final size of a crack cell is proportional to

L - - .- the thickness of the layer and that, in the case of a slippery
transition to patterns which contain margshaped joints : ' '
and unclosed cells owing to the arrest of craf&s bottom, it becomes much larger than the thickness. These

Another experimental setup was used by Allain and I_imatpredlctlons seem to be consistent with the experimental re-

. L sults. In contrast, we find that the Griffith criterion predicts a
[6]. This setup produces cracks that grow directionally bydifferent relation between the final size of a cell and the

causing evaporation to proceed from one side of the co hickness

tainer. In order to explain the experimental results, they con- |, gec. IV, we extend the model to two dimensions and
sidered evaporation of water through an opening crack whickh,estigate the time development of a crack. In order to de-
modifies stress profiles around the crack. Komatsu and Saggyipe the relaxation process of the elastic field, we use the
have proposed another theoretical model which takes intRelvin model while taking into account the effect of the
account the Griffith criteriof7]. bottom of the container. We assume the stress, excluding
Fragmentation of coating or painting also arises from desdissipative force, to be constant in the front of a propagating
iccation. This has been studied theoretically by some peoplerack tip and evaluate the velocity of a simple straight crack
[8—10]. From the viewpoint that fractures are caused by slowtip analytically. Our results indicate that cracks advance at
very slow speed in comparison with the sound velocity.

In Sec. V, we report on the numerical simulations of our
*Electronic address: kitsune@minnie.disney.phys.nara-wu.ac.jp model that reproduce fracture patterns similar to those in real
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experiments. The growth of the patterns exhibits qualitativeiscosity of watery is about 1 mriys. Although the propa-
differences depending on the elastic constants and the relayation of a crack causes the displacement of surrounding
ation time. As the relaxation time becomes smaller, in parpariicles with opening the crack surfaces, the velocity of the
ticular, we observe the growth of fingering patterns with tip gisplacement is smaller than the crack speed itself, except in
splitting rather than side branching of cracks. the microscopic region at the crack tip. Therefore, we esti-
Finally, we conclude the paper with a summary of themate the typical velocity of watev in the bulk of a mixture
results and a discussion of the open problems in Sec. VI. g pe smaller than the crack speed. The crack speed has been
measured as about 0.1 mm/s in experiments and it is, of
course, considerably faster than the shrinking speed of the
horizontal boundary with desiccation, which is typically
about 10 mm/day. Thus, the Reynolds numBge RV/ v is
We analyze the formation of cracks induced by desiccaestimated to be smaller than 1/100. We expect that the water

II. MODELING OF FRACTURE CAUSED
BY SLOW SHRINKING

tion in terms of the following four processes: among the particles behaves like a viscous fluid and that the
1. The water in a mixture evaporates from the surface of anixture displays strong dissipation.
layer. If a material displays strong dissipation and shrinks qua-

2. Each part of the mixture shrinks upon desiccation.  sistatically, the elastic field is balanced to minimize the free

3. Stress increases in the material because contraction &hergy, except during the time when cracks are propagating.
hindered near the bottom of a container. We deal with balanced states for the present and return to the

4. Fracture arises under some fragmentation condition. problem of relaxation in order to treat the development of

In this section, we examine each process individually andracks in Sec. IV. Because mixtures of granules and fluids
construct a one-dimensional model, where we introducdave many unclear properties with respect to elasticity, we
simple assumptions regarding the unclear properties oflealize them as linear elastic materials. When the free
granular materials. Some similar models have been proposetlume-shrinking rateC,, is uniform, it is well known that
previously [8,7]. One-dimensional models assume thatthe free energy density of a uniform and isotropic linear elas-
cracks are formed one at a time, each propagating along tic material is given in terms of the stress tensgrin the
line and thereby dividing the system into two pieces sepaform [31],
rated by a boundary with one-dimensional structure. Using
this assumption, we can ignore the propagation of cracks and
consider the development of patterns by using only the con-
dition of separation.

1. From a microscopic viewpoint, water either exists inwherex, and u are the elastic constants and repeated indi-
the inside of the particles of granular materials or acts taces indicate summation. The stress tensor is expressed as
create bonds between the particles. Here, we can introduce
the water content averaged over a much larger area than that _ dey
of a single particle and measure the degree of drying. When ovi= WH_()‘U” T kyCy) G+ 2ulij , (2.2
the thickness of a layet is sufficiently thin and the charac-
teristic time of desiccatioii 4 is very large, the water content where xy,=\+2u/3. As a result, the balanced equation of
in the layer can be considered uniform. Assuming that watethe elastic fielda;ij /dx;=0 does not include the shrinking
transfers diffusively in a layer, the sufficient condition hererate C,, for linear elastic materials with uniform contraction
is that H?/T4 is much smaller than the diffusion constant. and it is the same as in the case of the elastic materials
Therefore, we restrict our consideration to the case of thevithout shrinking. The effect of contraction appears only
uniform water distribution and exclude the process of watethrough the boundary conditions.
transfer from the model. 3. After the formation of cracks divides the system into

2. The main cause of contraction is the shrinking of par-cells, each cell is independent of the others, because the ver-
ticles in the mixture arising from desiccation. The water con-tical surfaces of cracks become stress-free boundaries. With-
tent is considered to determine the shrinking rate in the caseut considering the boundary conditions on the lateral sides
of uniform contraction in which all the boundaries of the of the container, we can simplify the problem by starting
mixture are stress-free. We refer to this shrinking rate asvith the initial condition that the system has stress-free
“free shrinking rate” in the following discussions and this boundaries on its lateral sides. In contrast to the lateral and
concept is used in place of the concept of the water contenthe top surfaces, the bottom of a layer is not a stress-free
This makes clear the relation between the present problenisoundary. The difference among the boundary conditions
and those involving fractures induced by other causes, sugbroduces strain with contraction and then stress. This is the
as temperature gradieft1,12, with slow contraction. We cause of fracture.
note, however, that it is more difficult to measure the free  We observe the slip of layers along the bottom in most
shrinking rate than the water content experimentally and it ixperiments. Thus, we introduce slip displacement with a
thus necessary to know their relation to compare our theorjrictional force into the model. Because the frictional force is
with experiments on the time development of patterns. caused by the water between the bottom of a layer and the

The contraction force is thought to arise from the watercontainer, it is considered to remain finite even in the limit of
bonds among particles. We estimate the Reynolds nuRber vanishing thickness of a layét [2]. In order to understand
to consider the behavior of the water in a bond. The diametethe effects of friction for crack patterns, we simplify the
of a particleR is generally about 0.1 mm, and the kinematic maximum frictional force per unit area of the surface to be

1 2
ev=§'<v(u|| +CV)tu

1 2
Uik_§U||5ik) , 2.1
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= T_'x +§i;N[KZ(“i_Wi)2+Ké(vi+sH)2], 2.3

whereK 4, K,, andK; are the spring constants. Becauwse
is included in the last term independently of bothandw; ,
constant and independent ldfwithout making a distinction it follows thatv;= —sHin the balanced states, and then this
between static and kinetic frictional effects. term vanishes. This indicates that the model neglects the
4. Cracks propagate very slowly in a mixture of granu|eshorizontal stress ari_si_ng_ from vertical contraction. Thus, all
and water. Because this propagation resembles the quad¥e need to do is minimize the ener¢®.3) without the last
static growth of cracks, the first candidate of the fragmentaterm in order to find the horizontal displacementsindw; .
tion condition is the Griffith criterion applied to the free In the continuous limita—0, the above energy should be
energy of the entire system. described using an independent energy densityHioas in
However, we note that ordinary brittle materials breakthe case of Eq(2.1) for a linear elastic material. We scale
instantaneously, not quasistatically, in the situation that théhe space length by the thickness of a lalfeand introduce
stress increases without fixing the deformation of the systenihe space coordinate:=ai/H. Through the transformation
The situation is similar to that in a shrinking mixture. We to nondimensional variabled —LH, uj—Hu(x), w;
need to consider the possibility that cracks in a mixture—HW(x), andE—H?E, the energy(2.3) becomes
propagate slowly owing to dissipation. Therefore, we con-
sider two typical fragmentation conditions, the critical stress L
condition and the Griffith criterion, in the first and the last E= fﬁLdX{el(XHeZ(X)}’ (243
halves of Sec. Ill, respectively.
In the context of the critical stress condition, the fragmen- 1
tation condition is that the maximum principal stress exceeds e,(X) = =Ky (U, +5)2, (2.4b
a material constant at breaking. This has also been used in 2
many numerical models because of the technical advantage
of the local condition. Our model introduces the critical
value for the energy density as an equivalent condition. We €x(X)= Ekz(U—W)Z, (2.49
note that the energy of the system before the fragmentation is

h|gher tha_n after the frggmentatlon because the crlt_lcal valugml we know that both, :=(a/H)K, andky:=(H/a)K , are
is a material constant independent of the system size. :
the independent constants taf[ 7].

In contrast, using the Griffith criterion as an alternative We introduce the maximunm frictional forde, for the sli
fragmentation condition stipulates that the energy changes : P

; : ) oS of the elements on the bottom, as explained above. The ver-
neither before nor after breaking. This condition is used by[ical spring pulls tha th element alona the bottom with the
Komatsu and Sasa in their thedry]. pring p g

With the above considerations, we construct a oneforc.eF‘:K.z(ui_Wi)‘ Each .element on the bottom.r.emalns
tationary if|F;|<Fg, and, if not, it slips to a position at

dimensional model, following the lead of Komatsu and Sasa\jvhich IF\|=F, is satisfied. The slip condition is expressed

[7]. As we show in Fig. 1, we consider a chain of springs by, i . s
a distancea as the discrete model of the thin layer of an _by the energy density of a vertical spring through the follow-

elastic material, where we number the nodes—N,—N ing rule in the previous continuous—0 limit:
+1,... N=1N for a system of half-sizé& :=aN. In order

to represent the vertical direction of a sufficiently thin layer,
we introduce vertical springs with length which connect
each node to an element on the bottom. The veatoyv()
represents the horizontal and vertical displacements of thelere the choice of the sign depends on the direction of the
ith node, andw; is the horizontal displacement of the ele- force. The constants; andq are defined by the equations
ment on the bottom connected with the node. The shrinking

FIG. 1. The one-dimensional model.

1, S
ez(x)>§klsszw(x)=u(x)ia. (2.5

of a material is modeled by decreasing the natural length of 1 F2
the springs. We assume an isotropic material with a linear Eklsgz S and q= \g (2.6

free shrinking rates, making the natural lengths of both the
horizontal and vertical springs to be-% times the initial
lengths, i.e., (¥ s)a and (1-s)H. We note the constany is of order 1, because its square

If the vertical springs are simple ordinary springs, linearrepresents a ratio of certain elastic constants that are the
response is lost under shearing strain. We therefore add nosame order in ordinary materials. Neglecting the short peri-
simple springs to the vertical direction which produce a hori-ods during which the system experiences cracking and slip,
zontal force in the case that#w; to represent a linear Egs.(2.4) and (2.5 constitute the closed form of our one-
elastic material. This type of spring is used in the model ofdimensional model with the fragmentation condition given in
Hornig et al. [8]. The energy of the system is described by the next section.
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1
e (x)= Eklsf,:ﬂhe horizontal spring is cut off;

the cell is divided. (3.1
FIG. 2. The cross section of a shrinking cell of an elastic mate- 1 5 ) o
rial. ey (X)= zklsb:The vertical spring is cut off;
I1l. ANALYSIS OF THE ONE-DIMENSIONAL MODEL the bottom of the layer breaks.
(3.2

We here report analytical results of our one-dimensiona
model for the typical two fragmentation conditions, i.e., the
critical stress condition and the Griffith condition.

|—|ere we apply the same condition to the vertical springs in
order to enforce that the lateral side breaks before the divi-
sion of a cell under the fixed boundary condition.

We can easily determine the analytical solutions. The
functional variation of the energ§2.4) on u(x) is obtained

A. The critical stress condition in the form

dx{ — KqUye+ Ko(U—wW)}Su+[kq(ug+s)sul- .,
(3.3

principal stress exceeds a material constant at the fragmendE=

The critical stress condition demands that the maximum fL

tation. In the case of this condition, we can generally dem-

onstrate that it is difficult to treat the bottom surface as a

fixed boundary for a uniform and isotropic elastic material.and we obtain both the balanced equation
We first explain it before the analysis of the one-dimensional

model. Let us think of the layer of a linear elastic material Uyy= G (U—W) (3.43
contracting with a fixed boundary condition on the bottom. It -

is shrinking more near the top surface, and the cross sectio"ﬂqd the stress-free boundary condition

assumes the form of a trapezoid, as we show schematically U+s=0 at x==L. (3.4b

in Fig. 2. We compare the stress at the following three

points: (A) the horizontal center of the cell near the bottom,  First we assume the fixed boundary condition without slip
(B) the lateral point near the bottom, af@) the horizontal  on the bottom:w(x)=0 for |x|<L. The solution of Egs.
center above the bottom. The horizontal tension& ahdB  (3.4) is then

are the same because of the fixed boundary condition on the

bottom. Although the stress @tis as horizontal as &, the s sinhgx
strength is weakeB is also pulled in the direction along the u(x)=-~ a coshgL’
lateral surface due to the deformation. UsifygB, andC to

represent the respective strengths of the maximum principle The deformation almost only appears near the lateral
stresses at these three points, we find that they are related g@undaries, because of exponential dumping. The energy
C<A<B. This inequality also holds even if the poiBtis ~ densities of horizontaé,(x) and vertical spring®,(x) are
shifted inward from the lateral surface because the stred®axima at the center of a ced=0 and at the lateral bound-
field is continuous in the bulk. Since the critical stress con&rY X=L, respectively, and these points have the greatest
dition is determined locally at each point, we expect generp033|b|l|ty of breaking. Then energy densities are calculated

ally that fracture arises aB before eitherA or C. If the as
contraction proceeds while the fixed boundary condition on 1
the bottom is maintained, the lateral side breaks near the e1(0)=§klsz<1—
bottom before the division of the cell, and the fixed boundary
condition cannot persist. In real experiments, the peeling an
the slip of layers may occur on the bottom before the lateral
sides break. In any case, we need to consider the displace- 1
ment of the layer with respect to the bottom to deal with this e (L)= Eklsz(tanhq L), (3.6b
problem correctly. In the following discussions, we consider
the slip of layers which is observed in most experiments. Although they both increase with shrinking,(0) is always

In our one-dimensional model, we break a spring when itgess thane,(L).
energy exceeds a critical value. We assume that the corre- If s, is smaller tharsg, that is, if breaking occurs before
sponding critical energy density is independent of dotind  slip, the breaking conditioit3.2) for the vertical spring on
H. As mentioned above, this is equivalent to the criticalthe lateral side is the first to be satisfied. To identify the
stress condition in one-dimensional models. Representing theffect of slip, we consider the fragmentation of a cell with
critical energy density with the corresponding linear shrink-the assumption that neither the slip nor the breaking of the
ing rates, by k;s/2, the fragmentation conditions are de- vertical springs occurs even with the fixed boundary condi-
scribed by the rules tion. For the first breaking of the horizontal springs, we ap-

(3.5

1 2
coshq L) (3.69
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FIG. 3. The shrinking rate at the first breaking under the fixed FIG. 4. The shrinking rates at the start of slip and at the first
boundary condition is plotted as a function of the system sizebreaking are plotted for the system size, as in Fig. 3.
where the vertical axis represenik scaled byH and the horizontal
is s scaled bys, or s;-. The dotted line represents the result for the boundary condition: ug,+s=0 at x=L,
Griffith criterion. (3.10b

ply the fragmentation conditiof8.1) to Eq.(3.68 and obtain ~ &nd the matching conditions are

the relation between the system size and the shrinking rate,WO(X)’ Uo(X) and dug(x)/ax are continuous ak=x .

s (3.100
qL=arccosS_Sb. @79 We derive the solutiomiy(x) in each region and obtain
As indicated with the solid line in Fig. 3jL drops rapidly at Asinhgx  0=x<Xg
s/sp,=1 and then vanishes slowly asncreases further. Be- Ug(X) = 1
cause each breaking divides the system into rough halves, [ SS(L— EX) —s|x+B xs=x<L.
the size of a cell decreases with shrinking. The figure dis-

plays the typical development of the size of a cell with the (3.11
stairlike function of the dot-dashed line and the arrows. Be-The three matching conditions give the integral consténts
cause the system siteis scaled by the thickness, we see  andB and yield the equation to determimg,
that the system is divided into a size smaller tharafter
sufficient shrinking. However, when the sizebecomes less S 1
thanH, this model is not valid anymore. We should consider qL—xy)= s tanhgx’ (3.12
a problem of elasticity in three dimensions.

If s, is larger thansg, the layer starts to slip from the At xs=L, this reduces to Eq(3.8). This form can be ap-
lateral sides whemr,(L)=k;s2/2. The shrinking rate at that proximated asl. —xs=(s—Ss)/qss for gqxs>1 and asgxs

time is given by =(sl/ss—qL) ! for gxs<1.
We calculate the energy densigy(0) again and substi-
Ss tute this into the breaking conditio(8.1). This gives the
S= tanhqL " (3.8 equation
We investigate this case next. S 1 _5 (3.13
We suppose that the symmetrical slip from both lateral S sinhgxs  Se’ '

sides is directed toward the center and only consider the half )
regionx>0. The functionw(x) becomes finite in the slip  Eliminatingx, from Egs.(3.12 and(3.13, we obtain the
regionx;<x<L and remains zero elsewhere, where we in-following relation between the system size and the shrinking
troducex as the starting point of the slip region. The slip "ate at the first breaking:
displacementv(x) =wg(x) is expressed by the displacement

< s s —sp\2
u(x)=ug(x) as qL=arcsin +——\/1+ . (3.19
S—Sp Ss S
0 0O<xs=Xxq ) . .
We see thaglL is a decreasing function of It decreases
Wo(X) = Ug(X) + Ss xe<x=L. (3.9 slowly to the limiting values, /s after the rapid drop in the
q ranges,<s<sp+s;.
) Figure 4 exhibits two curves of the shrinking rates at the
Equations(3.4) then take the form start of slip(3.8) and at the first breakin(8.14), where half

2 0<x< of the system sizé is represented on the vertical axis as in
_ q7Uo(X)  O<X=<Xs (3.103 Fig. 3. After full contraction, the final size of a cell is close
—Qss Xs<Xx=<L, ' to the asymptotic value of the curve defined by Ej14),

Uoxx
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gL~sp/ss. The region without slip also becomes smaller,

b7 o oEI ~ gAE(L) gL gL
and its final size is given byxs=ss/(s—s,), where we AE(L)ETZZtanhZ—H—tanhW
assumegxs<1 in Eg. (3.12. With the original scale, we kys“H
obtain 1 gLs>H
H s, H s ={1(qL\® (3.19
~qs and xs—as_sb for s—sp,=s;. Z(W gL<H.
(3.15

The corresponding curve is indicated with the dotted line in
Thus,L andx are proportional to the thickness of a layér  Fig. 3, where the shrinking rateis scaled bys;. This curve
although there is the possibility for them to be modified agrees quite well with the solid line representing the previous
throughs; if the frictional force depends oH. results(3.7), so we again find that cells are divided into a
These proportionality relations are consequences of a linsize smaller thai after breaking. We note, however, thsat
ear elastic theory and the critical stress condition. The chardepends on the thicknes$ although boths, ands; repre-
acteristic lengths in this problem are orllyandH and our  sent the shrinking rate at the first breaking for an infinite
model is consistent with a linear elastic theory with thesystem. Because the ratio of the surface endfgto the
scaled spring constants in EQ.4). elastic constant is a microscopic length for ordinary materi-
The first equation of3.19 is consistent with the experi- gals, s; is inferred to be very small. Therefore, with the Grif-

mental results of Groisman and Kapledy for the final size  fith criterion, we usually expect that is smaller thars and
of a cell after full desiccation, as mentioned in Sec. I. Theng slip occurs before breaking.

assumptions used in this analysis are also consistent with Next we show that, even # is larger thars, the Grif-
those in their qualitative explanation, where they consideregith criterion does not yield the proportionality relation of the
the balance between the frictional force and elastic f62¢e  final size of a cell to the thickness of the layidr Elastic
In addition, when we peel the Iayer of an actual mixture aﬂ:erenergy is consumed not 0n|y by the creation of the crack
drying, we often observe a circular mark at the center of eaclyrface but also by the friction due to slip on the bottom. We
crack cell on the bottom of the container. Its size is approxi-again consider the breaking of the systemL(<x<L) into
mately equal to the thickness of the layer. We can understanglact halves. An alternative Griffith condition is given by
these marks as the sticky regipr <x..
AE((L)=E4(2L)—-2[E{(L)+W]=TH, (3.20

B. The Griffith criterion
whereEg(2L) and ZE.(L) represent the elastic energies of
Ehe system before and after breaking, respectively, aig 2
] the work performed by the frictional force due to slip.

Next we apply the Griffith criteriofi29] to the entire sys-
tem as the fragmentation condition in the place of the critica

stress condition. This was used by Komatsu and Sasa in . : . .
different model[7]. As the state just before breaking, we consider a cell with

First we again assume the fixed boundary Conditionsymmetric slip regions. This state has been derived in Egs.

where neither the slip nor the breaking of the vertical springég:g)’d(%m’ Ianld 'E312I)E -;hf _ela;zticfenergES(ZL) is ob-
occurs. The Griffith criterion introduces the creation energ)}a'ne y calculating Eq2.4) in the form

of a crack surface per unit aréaand assumes the cracking k.2[1 S\2 S
condition that the sum of the creation energy and the elastic EJ(2L)= 1s [—q3(L—xS)3+(— qXe— —|,
energy decreases due to breaking. We write the elastic en- q |3 Ss Ss

ergy of a system- L<x=<L asE(2L). We consider the case (3.29

in which the cell with size R (the system sizeis divided ) . ) ) .
into exact halves. The alternative fragmentation condition tgVnere the width of the slip regioh—x; is determined as a
Eq. (3. is given by the equation function of L and_s/sS by Eq.(3.12. _ _
In order to estimat®Vs andE.(L), we need to investigate
AE(2L)=E(2L)—2E(L)=TIH. (3.16  the detailed process of fragmentation. Here we imitate an
actual quasistatic fracture in two dimensions by using a hy-
We calculate Eq(2.4) by using Eq.(3.5) to obtain the pothetical quasistatic process in the one-dimensional model.
elastic energye(2L) for the fixed boundary condition. With  We introduce a traction force on crack surfaces which pre-
the original scale, it is given by vents the crack from opening and obtain the final state of this
process with the stress-free boundaries by stipulating that the
(3.17) strength vanishes quasistatically. The work of the hypotheti-
' ' cal traction force is considered to be the opposite of the
creation energy of the crack. Let us imagine the right half
As a result, we obtain the following relation in the place 0<<x<L just after the breaking at the centex 0, where the
of Eq. (3.14 for the shrinking rate at the first breaking: traction force works ak=0 to the left. Because of the re-
) laxation of the traction, the slip region<x<<L before the
_ /9 breaking vanishes immediately. As the traction decreases, a
and sp= kH’ 318 hew slip region is created in<Ox<x, on the side of the
crack. If the contraction ratis is much larger tharsg, we
Here, may assume thatg is smaller thanx, at the end of this

E(L)=k,S°HL| 1 H h%
(L)=k;ys q_LtanH

A'E(L)z(%F
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process, becausp =<1, and the new slip region expands to of the dependence dafi on H, although we obtained the
X,=L/2. The slip displacement(x) in the state is given by proportionality relation(3.15 under the critical stress condi-

the initial condition(3.9) and the slip conditiorf2.5) as

Wo(X) X, <x<L
W(X)= S 3.2
(x) u(x)——S 0<x<X; . (322
q
The solution of Eq(3.4) is
Up(x)+Cjcoshg(x—L) x,<x<L
ux)=4 1 ) ,
EquX —sx+C, 0<x<x,
(3.23

where the conditions of the continuity @f(x), u(x), and

u,(x) atx=x, determine the constan&; andC; and pro-

duce the equation fox, ,
g(L—2x,)=2tanhg(L—x,). (3.249

We calculate the elastic enerd®.4) from Egs.(3.22 and
(3.23 and obtain the energy at the end of this process,

B ki S
S q

2E4(L) Eqa[xf’ﬂL—Xr)S]—qL . (3.29

Because slip occurs with a constant frictional force from th
previous assumption, the wolk/s can be expressed by the

integral of the total distance of slip,

Feo (L
ngfo dx|w(x) —wo(x)], (3.26

and it is calculated from Eq$2.6), (3.22, and(3.23 as

kys2[2 s
T §q3(X§—2X?)+q3LX?—(qL— S—s)q2X§
(3.27

2W =

In order to know the scaling relation of the final size of a

crack cell after full desiccation, we assumgé>1 and the
limit of the full contraction:s/s;—«. Because Eqs3.12
and(3.249) give the approximate equatiogg,=s;/s<1 and
X,=L/2, respectively, Eqs.3.20), (3.21), (3.25, and(3.27
result in the equation

klsg

AES(L):E(qL)g' (3.28

With the original scaling, the Griffith criterio(3.20 gives

tion.

As a result, the critical stress condition and the Griffith
condition lead to different relations between the final size of
a crack cell and the thickness of a layer. This is because the
Griffith criterion depends on a microscopic characteristic
length throughsy. The experimental results by Groisman
and Kaplan seem to support the results of the critical stress
condition. Although the results should be discussed further,
of course, they suggest the possibility that the dissipation in
the bulk can not be neglected for the fracture of a mixture of
granules and water. This means that the cracking processes
are not quasistatic.

IV. DEVELOPMENT OF CRACKS IN TWO DIMENSIONS

The one-dimensional model we have discussed to this
point idealizes the process of cracking, treating cracks as
one-dimensional structures forming one at a time parallel to
one another. In order to consider the development of cracks
and their pattern formation, we must extend this model to
two dimensions and include the relaxation process of the
elastic field.

Although mixtures containing granular materials that are
rich with water generally possess viscoelasticity, visible flu-
idity cannot be observed at the time of cracking after the
evaporation of water with desiccation. Therefore, we assume

Shat only the relaxation of strain contributes to the dissipation

process in a linear elastic material. For simplicity, we assume
that the system has a single characteristic relaxation time.

In the one-dimensional model, the total ene(@yd) con-
sists of terms representing a one-dimensional linear elastic
material and the vertical shearing strain, the both of which
are quadratic in the displacements. Expanding the elastic ma-
terial to the horizontaky plain, we naturally obtain the ex-
tended energy in two dimensions as

e- [ axafecy eyl @1a

1 1 2
el(x,y)= EK(UII +C)%+ P«( Uik = 5 Ui 5ik) , (4.1b

1
ex(x,y)= 5 ko(u=w)? (.10

where uj;=(u; ;+u;;)/2 andu; j=du;/dx;. In analogy to
the one-dimensional model, the two-dimensional vector
fields u(x,y) and w(x,y) represent the displacement of a

the scaling relation of the final size of a cell for the thicknesslayer from the initial position and the slip displacement on a

HI
SF 2/3
qu%H(S—) xH23 (3.29
S

where we usesy defined in Eq.(3.18), and the condition
sr>S, is necessary from the assumptigh>1. Thus, the

bottom, respectively. The space coordinatemdy and the
displacementsi(x,y) and w(x,y) are again scaled by the
thickness of a layerd. The expression in Eq4.1b is the
energy density of the two-dimensional linear elastic material
with a uniform free surface-shrinking ra@

The shrinking spee@ can be neglected from the assump-
tion of quasistatic contraction. The time derivative of Eq.

Griffith criterion gives the different scaling relation because(4.1) is given by
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_ ) . and
E:f dx dy{[_O'ij'j+kz(ui_Wi)]ui_kZ(ui_Wi)Wi}

d
1+7—

= ot

O-ij , (47b)

+ § dSﬂUijUi, (4.29
Egs.(4.5 and(4.6) can be rewritten as
oi=(\up+«C)4,; +2uu; and k=\N+pu,
! ! ! (4.2b i = ko (Ui=W)), (4.8a

where$dS represents the integral along the boundary of the 3i;=(\U;+«C)&j+2uUj, (4.8b
cell andn is its normal vector.

The dissipation of energy arises from the non-vanishingvith the free boundary condition
relative velocities of neighboring elements in a material, and

then the time derivativ& can also be represented as a func-

tion of them. As is well knownE can be written in a form  Therefore,U; satisfies the balanced equations of an ordinary
similar to the energy due to certain symmetr[84]. We  g|astic material without dissipation.
have We expect that the state of the water bonds in a mixture
1 5 can be represented ly; , i.e., the stress excluding the dis-
E=— j dx dy{ K'U2 +2M’( Uy — = Uy, 5ik) + ké(U—W)Z} sipative force, rather than by the str@ss itself becauser;;
2 is a function of the straimi;; . For this reason we introduce
o o the breaking condition by using; in the following analysis.
=_f dx dy{[—(f{j,j+k§(ui—Wi)]ui—ké(ui—Wi)Wi} The propagation of a crack in the Kelvin model has been
investigated by many people®1-25,28. Although the

njEiJ:O. (48@'

) stress field diverges at a crack tip in the continuous Kelvin
- % dsnojju (438 model, it is possible that the divergenceaf is suppressed
by the advance of a crack. We calculate the elastic field
to the second order, where around a crack tip for a straight crack which propagates sta-

tionarily in an infinite system. Because near the tip of a
gi’jz)\'u”(sij +2,U«'Uij and «'=N+u'. (4.3b propagating crack there is little slip, as the simulations in the
next section indicate, we can assumae=0, and then
Although the constantg’, w’, andk;, are generally inde- W;(x,y)=0 in Eq. (4.8). Although our model is incomplete
pendent ofx, u, andk,, we assume they take simple forms in the sense that the divergence of the stress can not be
with one relaxation timer, writing gi’jzﬂggij /at, or removed in continuous models of a linear elastic material,

equivalently, we expect that the following discussions are valid.
We consider a straight crack with velocity that coin-
k'=7k, p'=7u, and ky=r7k,. (4.9  cides with the semi-infinite part of the axis satisfyingx

_ . _ _ <vt in the two-dimensional plane. The stress field satisfies
Equations(4.2), (4.3), and(4.4) yield the time evolution  the stress-free boundary conditions on the crack surface, and

equation ofu(x,y), the displacemeni vanishes a$y|— . We define the mov-
ing coordinates £,y) as é=x—vt and assume reflection
1+ T% [oij.;— ka(U;— W) ]=0, (4.5) Eymmetry on the axis. The boundary conditions are given
y
and the free boundary condition, 2yy=0 ony=0, £&<0
J = =
1+ ’T_) a'ijanO. (46) Uy 0 on y 0’ §>0
ot (4.9
As mentioned above, the shrinking r&enly appears in the 34=0 ony=0
free boundary condition.
Except for the effect of shrinking and slip, the above Uj—0 for |y|—oo.

equations are essentially the same as the Kelvin model, pro-
posed for viscoelastic solids. Because the existence of a bot- The stress field under the above boundary conditions can
tom causes a screening effect through the tépm, the  be obtained by the Wiener-Hopf method. Fortunately, this
elastic field decays exponentially in the range of the thick-problem reduces to the following solved problem for the
ness of a layer, i.e., the unit length in E@.5. Here the mode I type of a crack. We consider a stationary crack along
stress in the material is (d7d/Jt) oj; by adding the dissipa- the negativex axis in completely linear elastic material with-
tive force. With the definitions out contraction, where we include the inertial term with the
mass density. When a uniform pressure* is added on the
1+ri)ui, WiE( 1+7i)wi (479  Surface of the crack from time=0, the stress fields? is

Ui= ot given by the equations
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52u° We see that the streds,, diverges in inverse proportion to
Uﬂ'jzp_z' and U?js)\uﬂ 8ij +2,uuﬂ (4.10  the square root of the distance near the tip.
ot Solving Eq. (4.7 in the moving systené=x—vt, we
et
and the boundary conditions g
0 = — * = 1 * ’
oyy=—0" 0 ony=0, x<0 ayy(g,O):EL dg' 3y, (& 0 €€, for £>0.
up=0 ony=0, x>0 (4.18
(4.11
o _ and the following equation is obtained by substituting Eq.
0xy=0 ony=0 (4.13 into this equation:
u’—0 for |y|—oe. .
1=-0 Im3%-9 .

These become identical to the previous equations when we yy(§,00=«C) — ;Jafoi d i+l e =+l

apply the Laplace transformations on time,
Ui(x,y,n)=f dtu’(x,y,t)e " (4.123
0
and

Ef}(x,y,n)zfmdtoﬂ(x,y,t)fe*”t, (4.12h
0

and make the replacemenigp=k,, oc* =«Cn, 2”-:2%

+ «kCéj; andx—¢. Here n can be taken equal to 1 because

the correspondence holds for any
Using the analytical solution§32] of Egs. (4.10 and

(4.11), we shall consider the stress in front of the crack, i.e.,
2y(£,0), whereé>0. The above replacements give the so-

lution of our problem as

1 (=0 -
Eyy(§,0)=i<C{ - ;j o dZIm30(—)e ¢+ 1],
(4.13
| ke
“ N+2u
(4.19

F.(0) 1)
Fo (0 ’

whereF ,(¢) is an analytical function in the region Re-

—a such that

o =£<
and X (g’)—g

Fi(O)—¢ Y2 for [{|— (4.19
and
2p(N+p)
Fi0)=\/—. 4.1
(0) \/Q(HZM)Z (4.16

Because Inio(—g) approaches—F, (0)/\/¢ as |{| in-
creases, it can be approximated in the regi@i<1l around
the crack tip by the equation

s

F.(0) (=
Eyy(-f,O)zKC( (O)J' dz ¢~ (e té4q
0

=kC

(4.17)

F+<0>+1>
Jré )

(4.19

We first examine the behavior ef,, in the regionaé
>1 far away from the tip. Because the integral in E419
can be approximated as

fooOidglmEO(—Z) o it

a—0i TV§+1

[ [Ca

~|mi°(—a) oo
- wva+l &’

Imio(—g—a)
~Nta)+l ©

zgl et

(4.20

oy, decays exponentially to the uniform tension as

D
oyy(£,0=kC Ee*a@r 1| for aé>1, (4.213
where
_ Imio(—a) (4.218
 m(rva+l)” '

The characteristic length of the decayHé« with the origi-
nal scale, which is of the same order as the thickiéd$sr
an ordinary elastic material.

In the regionaé<<1 near the tip, we approximate the

integral with the asymptotic form of IB°(— ¢) for large ¢
as

1 (==0 Im39(—¢)
_ TN 2l adE
7)o ¥ vir T ©
* F.(0)

=)o Yamirnm®

=2F;—\/_(W0)ef’”erfe< \/:%) (4.223
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” —t2 1 —x2
erfax)=| dte "=_—e for x—oo,
X

2X
(4.22h
NE
and erf¢0)= > (4.229
and then we obtain the equations
( F.(0) FIG. 5. The two-dimensional model. The blank triangles repre-
+
«C +1] é>v sent a crack.
Jmé
ayy(£,0)= for aé<1. viscosity of the water iss~1 mn¥/s, we obtainT~R?/v
F.(0) ~0.25 s andrv/R~0.02<1. This rough estimate suggests
«xC Jv +1] <V the possibility that the above continuous approximation is

4.23 imperfect in the case of a relatively thin layer.

Groisman and Kaplan reported the interesting experimen-
With the original scale againy;; is almost proportional to tal results that the propagation speed exhibits a wide disper-
VHTE in the middle region fromrv to H/« around the crack ~Sion even among cracks growing at the same time, although
tip, as is the case for the streSg . However,o;; is bounded the speed of each individually is almost constant on time. It
at the tip by the proportional value tH/7v. is a future problem to u_nderstand the relation of the disper-

Thus, the stress excluding the dissipative force, irg.,  S1O7 1© the inhomogeneity of materials.

is kept from diverging by the movement of the crack tip.
Therefore, we can introduce a critical valag, as a material V. PATTERNS OF CRACKS

parameter again and assume the breaking condition at the tip ) o
Cracks appear one after another with shrinking, and

lim oyy(£,00=0p=xCy, (4.24 spread over the system to create a two-dimensional pattern.
£-0+ In this section, we report on a study of the formation of crack
patterns using numerical simulations of the two-dimensional
where the constarC,, represents the shrinking rate corre- model introduced in the preceding section. We make the
sponding to the critical value. For a stationary propagatinthatural extension of both the breaking condition and the slip
crack, we find the velocity by substitutingo,,(£,0) into  condition employed in the one-dimensional model by using

the above equation in E@4.23 as the energy densities defined in the microscopic cells of the
) lattice in the simulations. In the two-dimensional model, the

Ve F+(0)2( ) ﬂ (4.2 former is simp!er than the critical stress condition b_ecause i_t

Ch—C) 7 neglects the direction of both the stress and the microscopic

crack surfaces. In addition, the slip condition implicitly as-

Although this equation is not valid near the sound velocitysumes a sufficiently short period of slip in comparison to the
because we have neglected inertia, we expect that a materi@laxation time of the elastic field because of the balance
cracks at a shrinking rate belowC;, due to inhomogeneity. between the frictional force and elastic force. We report the
Thus, Eq.(4.29 explains why the propagation velocity ob- results of our simulations after describing the discrete
served in experiments is very small compared to the sounghethod and these extended conditions.
velocity. In addition, it suggests the proportionality relation  As is the case with most fingering patterns, the growing of
between the thickness and the propagating speed, whiddtacks is influenced strongly by the anisotropy of the system.
should be experimentally observable. We used random latticd83,34] in our simulations to con-

Next we note the validity of Eq(4.25 for very slow  sider uniform and isotropic systems in a statistical sense.
speeds. Although the divergenceaf, is suppressed by the ~ Many fracture models employ a network of springs or
advance of a crack, as we see in 423, the size of the elastic beams to model an elastic materifB5—
screening region is approximately. Because particles of 40,14,15,8,1D However, it is generally difficult to calculate
size R=0.01~1 mm are used in experiments, the abovethe elastic constants for an elastic material modeled by such
breaking condition(4.24) is available for velocitiesv lattices. Therefore, instead of such networks, we consider
>R/7, where the continuous approximation is valid. Foreach triangular cell in a random lattice as a tile of the elastic
very slow velocitiessv <R, for example, it may be possible material with uniform deformation. A fracture is realized by
for the defects in a material to arrest the growing of cracksremoving any cell whose energy density exceeds a critical

The speed of a real crack measues2 mm/min for the  value, as we explain below.
thickness of a layer of coffee powddf=6 mm, as ob- We construct a two-dimensional model, as is illustrated in
served in experiment®]. Although we have not yet speci- Fig. 5. Each site of the lattice is connected to an element on
fied the origin of the relaxation, we attempt to estimate thethe bottom with a vertical spring similar to that used in the
relaxation timer arising from the viscosity of the water in one-dimensional model. Figure 6 displays a part of the ran-
the bonds among particles. Supposing that the diameter of dom lattice which represents a horizontal elastic plane. The
particle of the coffee powder is aboB®~0.5 mm and the random lattice is composed of random points to form a
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1 .
Ug,r;): - ?eijkx(”)Uglk) s (54)
(m) 1 (1)) (i) K
Uy’ =5 &ily™ Uy” = XU, (5.9
where
FIG. 6. A part of a random lattice.
o : : Tee OV T LT ey (56
Voronoi division of them. We number the sites and the tri- =e€px Uy Ta=5[T], xW=xP—x", (5.6

angular cells in the lattice and express the area of the
Voronoi cell around thenth site asV,, (n=1,2,3...,N)
and the area of theth triangle asT,, (m=1,2,3 ... Ny).

The displacement of theth siteu(™(t) is obtained from
the UM (t) by the definition(4.78. A simple Euler method
gives the following equation with discrete tinde:

and €;; is Eddington’se. These equations are easily ob-
tained from the first order Taylor expansions oK™
=U(x(™,t) in the triangle. Thus we can calculate the energy
(5.2 on the random lattice and obtal™ from its mini-
mum.
A fracture is represented by the removal of triangle cells,
UM (t+At) =uM(t)+ E[U(n)(t)_u(n)(t)]_ (5.1) npt by the breaking of bonds,.in thi_s model. This gives a
T direct extension from the one-dimensional model, although it
neglects the microscopic direction of the stress and the
BecauseU(t) satisfies the balanced equation of an ordi-cracking in a triangle cell. We calculate the elastic energy
nary elastic material at any time, it minimizes the enefgy density of themth triangular celle™ from the true displace-
defined by Eq(4.1) through the replacements—U andw ~ mentsu™, and assume a critical value for the breaking,
—W. E consists of the energies of both the vertical springs""h'ChZ'S represented by the corresponding shrinking @afe
and the horizontal elastic plain. We calculate the latter byAS<C/2. Thus, the breaking condition is given by
summation of the energies of the triangular cells in the ran-
dom lattice, where thenth triangular cell is assumed to con-
sist of a linear elastic material with uniform strain tensor
U{™. Thus, we obtain the equations (5.7)

1
elm= > kC2=The mth triangle cell is removed,

I N where
E:; g™+ > Ve, (5.29
1 n=1

2

~ 1 1
efm= EK(U|(|m)+C)2+M( Ul - §U|(|m)‘5jk) ;

1 1 2
e&m’z§K<uf.m>+C>Z+M(U§L“)—guﬁ’“)éjk) NGE:]

(5.2p and uf® is calculated fromu(™ using the method explained
above forU{ .
1 The slip condition for the elements on the bottom is also
E(Z”)Ezkz(u(n)—w(“)){ (5.20 similar to that in the one-dimensional model. We introduce
the maximum frictional force as a constant and assume the

") - _ balance of the fictional force against the sum of the elastic
where U™ and W™ represent the displacement of thth  force and the dissipative force, i.ék,(1+ 7d/dt)(u—w)]

site and the slip displacement of th¢h element along the —k,|U—W|. Therefore, the slip condition for theth ele-
bottom, respectively. Although the rule of repeated indices is

. .~ n)
applied toj, k, andl, as usual, the summations ovarandn ment can be written by US”@ as
are expressed by the symb®| whereX |, represents a sum-
mation that excludes broken triangle cells.

The quantityel™ is the elastic energy of theth triangle
cell which is calculated fronu{[” . For the following expla-
nation, we express the vertices of theth triangle asn
=1,2,3 and their initial equilibrium positions as(™
=(xM,y(My, as is shown in Fig. 6. Assuming uniform de-
formation in the triangle, the strain tensbka")E%(Uffﬂ) The slip displacement™ is calculated fromwW( by the
+ U(km)) is given by the displacements of the vertit#§ as  definition (4.7a as

J
the equations

~ 1
eV = EKC§:>W(“) is moved along the force to the
- ~(n) 1 2
position wheree} =§KCS. (5.9
At
wW(t+At) =w(t)+ T[W(”)(t)—w(”)(t)].

1 -~
US(T):fEijky('”Uik) , (5.3 (5.10
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contraction ratio C/C,

FIG. 8. The change of the total energy with contraction ifor
=102, p=1, €;=0.5, and7=0.001 for the solid liner=0.01
for the dotted line, and=0.1 for the dot-dashed line.

(c) C=1.46 (d) €=10.00 Although the properties of the lattice influence the results,
R . we used an identical lattice in all of our simulations, except

FIG. 7. The time series of a crack pattern or-10V2, 4 the [ast in which we consider the effect of a random lattice.
=1, 7=0.01, andC;=0.5. The black area represents cracks. TheTo prepare the sites in the random lattice, we arranged points
gray scale in(@), (b), and(d) indicates the energy densities of the jn a triangular lattice with mesh size 0.01 inside a square
triangular cells of a lattice, and the dots (o) indicate slipping region 1x 1 and shifted the,y coordinates of each point by
elements. adding uniform random numbers within the rang®.005.

) . . . Because their distribution is almost uniform and random, we
~ We carried out the numerical simulations of the model byconnect them by Voronoi division to make the network of
increasing the shrinking rat@ in proportion to timet with @ {1 random lattice. Then the square region is extended to the
constant rateC. We repeated the following procedures atgjze x [, which is related to the original system sizeas
each time step:

1. The contraction rate increases &gt+ At)=C(t) k, L
+AtC. = \E—- (5.13
2. The displacement is calculated fronlJ, which is the

function minimizing the energys.2).

3. The slipw is calculated fronW, which is given by the
conditions(5.9) at all the sites.

4. If some triangular cell satisfies the breaking condition
(5.7), it is removed. Its energy is not included in subsequen
calculations.

If more than one cell satisfies the breaking condition at
step 4, we repeat steps 1-3 using a smaller time step.

In the above calculations, we can take the parameters

k,, Cp, andC to be 1 with loss of generality by scaling
space, time, energy, and the shrinking rate as follows:

K c \/? c \F
X— kZX, u—_Cp I(zu, W—Cy kZW,

(5.1))

We use the conjugate gradient metHdd] with a toler-
ance 10° to find the minimum points of functions on free
boundary conditions. The time stéyd is changed automati-
f:ally in the range to an upper bound 193-10 3. In our

1 5 Cp o
E—>§KCbE, t— Et, and C=C,C.

Here we write the scaled shrinking rate @s As a result,
three independent parameters remain explicitly in the equa-
tions,

M A_C PO
o TEE T and CS_Cb'

FIG. 9. The time development of cracks with fast relaxation.
C (5.12
b

M= . - . N .
L=10y2, u=1, €=0.5, 7=0.001, andC=1.54.
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FIG. 10. The change of the total number of broken triangular
cells for the simulations of Fig. 8.

simulations, at most one cell is removed in any given
timestep. In contrast, we note that in the model without a.
relaxation process, a crack propagates instantaneously at
fixed shrinking rate, because the breaking of a cell necessar- o A )
ily changes the balanced state of the elastic field and ofteRl€te at the shrinking rate ne@r=1. Here we see the white

causes a chain consisting of the breaking of many cells ocircular marks around the center of the crack cells, as shown
curring simultaneously. in Fig. 7(c). These represent the sticky regions without slip.

We show the typical development of a crack pattern inSimilar marks can be observed on the bottom of a container

P - ~ in actual experiments, as we mentioned in Sec. lll.
our rpodel n Flg'j’ where the parameters BFe_lo,‘/z ® Figure 8 graphs the development of the total endrg¥)
=1, 7=0.01, andC,=0.5, and the black area indicates the

removed triangular cells. The gray scale represents the e -r';[h S:”?km?nf‘ir the thv:/?ti casnetzry ?i'lr’] Ol'_? 1\;va\?dr Oi.tO(i)l.r i
ergy densitie$5.8) in Figs. 7a), 7(b), and 7d), and each dot € energy Increases contraction. However, 1t IS re

S - A o leased and dissipates due to successive breaking and be-
n F|g..7(c) 's a slipping element under th? c.ond|t|(fs19). comes almost constant with increasing shrinking rate. Our
C=1 (i.e.,C=C,) corresponds to the shrinking rate at the

first breaking for an infinite system. The first breaking in thesmulatlons were carried out unt=10. The crack pattems

simulations occurs slightly belo@=1 for most parameters Ch;rllgesdhrlggs V;/:g;g" becomes large, while the circular
because of the randomness in the lattice. At that time, no slifin 9 Y-

has yet begun in the most of the system, except near the For fast relaxation, new cracks grow from the lateral side
boundaries ' of another crack almost perpendicularly. Figure 9 displays a

After this, some crack tips grow simultaneously in the §napshot of a crack pattern for the very small relaxation time

whole system, and the crack pattern almost becomes conf=0-001. As7 becomes smaller, the cracks tend to propa-

FIG. 12. A final crack pattern on a sticky bottom= 2042,
=1.0, 7=0.01,C,=1.0, andC=10.

1

FIG. 11. The time development of cracks with slow relaxation. ~ FIG. 13. A final crack pattern on a slippery bottoin= 20,2,
L=10y2, u=1, €,=0.5, 7=0.2, andC=1.09. w=1.0, 7=0.01,C,=0.1, andC=10.
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FIG. 14. The change of the total number of broken triangular
cells forL =20y2, ©=1.0, 7=0.01, andC,=0.1, 0.2, 0.5, 0.7, 1.0.

gate faster and grow one at a time, in agreement with the o R R
assumption in the one-dimensional model. In Fig. 10, we FIG. 16. A crack pattern for smajk. L=10y2, #=0.02, C,
compare how the total number of broken triangular cells in-=0.5, 7=0.01, andC= 10.
creases with shrinking for=0.1, 0.01, and 0.001. The num- _ R ~
ber of broken cells is almost proportional to the total lengthtotal numbers of broken triangles &=10 for C;. They
of cracks. It increases like a step function for 0.001. This increase monotonously in this range with an almost constant
indicates that the cracks are formed one by one. rate. A

For slow relaxation, in contrast, the growing cracks from Next we change the elastic property with From the
fingering-type patterng35-3§, such as similar to those equations obrj; (4.23 and the crack spedd.29 in Sec. IV,
seem in viscous fingering. As is shown in Fig. 11, manywe expect that, ag becomes smaller, the stress, excluding
cracks tend to grow simultaneously from the center towardhe dissipative force, has a weaker concentration at a crack
the boundaries. They are accompanied by a series of tip splifip, and the cracking speed is smaller. Figure 16 shows a
tings and the total length of the cracks increases smoothl¥napshot of a crack pattern f@=0.02. We find that the
with contraction. Asr becomes Iarger, it takes more time to cracks become irregu|ar and ]agged lines and that they
complete the crack patterns because of the slower propaggropagate slowly. The crack patterns also reach completion
tion of cracks. . _ more and more slowly g& decreases, as is shown in Fig. 17.

We can see the influence of slip on the crack patterns by Al of the above simulations were executed on the same
changingC; with the other parameters fixed. Figures 12 andrandom lattice. For comparison, we also performed a simu-
13 are snapshots of a crack pattern after full shrinkidg: lation using a regular triangular lattice in the place of the
~10 for &,= 1.0 andC,=0.1, respectively. Figure 14 shows random lattice. Figure 18 shows the result using the same

the total number of broken triangular cells for the variousp"’lr."’lme'[er.S used in Fig. 7 except for the dlfference of _the
- o o lattices. It is clear that the anisotropy of the triangular lattice
values ofCs. This figure indicates that the crack patterns atig reflected in the direction of cracks.

C=10 are close to final states. As we expect, the final size of Thus, we can reproduce patterns similar to those of actual
a cell becomes larger with small@. Figure 15 plots the cracks using our two-dimensional model. The dependence of

6000 T T T T 3000

5000

2000

4000

3000 |

number
number

2000 1000

1000

0 . . . . y . . .
0.0 0.2 0.4 06 08 0 1 2 3 4 5
critical contraction ratio to slip C/C, contraction ratio C/C,
FIG. 15. The final number of broken triangles, where we plot  FIG. 17. The change of the total number of broken triangles for

the values a€=10 in Fig. 14 forC;. L=10y2, €,=0.5, 7=0.01, andx=0.02, 0.1, 1.0.
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alternative fragmentation condition. However, it predicts
qualitatively different results for the final size of a crack.
Although these results need more detailed considerations,
they suggest the possibility that dissipation in the bulk may
be important in cracking processes of these materials.

In Sec. IV, we extended the model to two dimensions and
introduced the relaxation of the elastic field to describe the
development of cracks. This is essentially the same as the
Kelvin model for viscoelastic materials. Because the stress
excluding the dissipative force does not diverge at the tip of
a propagating crack, we introduced a critical value as the
breaking condition in front of a moving crack. Assuming the
existence of a stationary propagating crack, we obtained an
estimation for the crack speed in closed form within a con-
tinuous theory. This estimation explains the very slow propa-
gation of actual cracks and predicts the proportionality rela-
tion between the crack speed and the thickness of a layer. It
is an open problem to understand the origin of the dissipation

_ _ we introduced intuitively and the role of inhomogeneity in
FIG. 18. A crack pattern on a regular triangular lattice for thethe stability of a crack

same parameters as in Figdy.

»

In Sec. V, we carried out numerical simulations of the
. L .two-dimensional model to investigate the formation of crack
the formation of cracks on the relax_a'uon time and the elast|. atterns. By using the energy density defined on the micro-
constants .ShOUId be cpmpared with actual experiments I(\Ecopic cells of a lattice, we introduced a simplified breaking
more detail. The exp_e_rlm_ental resul_ts qf Groisman and K5"condition from the direct extension of the one-dimensional
plan suggest a transition in the qu%"'ta“‘.’? hature of Palterng, o del. We used a random lattice to remove the anisotropy of
as the th|pk_r1ess is changed. This is pdifi) mentioned in the lattice and obtained patterns similar to those observed in
Sec. . Similar charlge_s of patterns are observed for SIOV&xperiments. We found that cracks grow in qualitative dif-
relaxation or small,u_ In our _5|mulat|on§._ However, our ferent ways depending on the ratio of the elastic constants
model d_oes not contain the thlcknéssaxp_llcnly because of and the relaxation time. It is important in the connection with
the scaling witfH, and we have no experimental data for thefingering patterns that for the slow relaxation crack patterns
are formed by a succession of tip-splittings rather than by

dependence of the other parameterstbrin addition, it is
side-branching. We need a better understanding of the role of

possible that the inhomogeneity in a material plays an im
portant role in this change because the size of a particle C"J\lﬂhomogeneity to explain the transition in the nature of pat-
terns as a function of the thickness reported in the experi-

become significantly large H is made sufficiently smalb].
Obtaining a more detailed understanding that address the?‘ﬁents

points is left as a future project. For the experimental results of Groisman and Kaplan,

which we mentioned in the point$)—(iii) in Sec. I, we be-
VI. CONCLUSIONS lieve the present results give qualitative explanations(ifor
yand (i) and a clue for(iii), although more considerations is

We studied the pattern formation of cracks induced b
Jrecessary.

slow desiccation in a thin layer. Assuming quasistatic an
uniform contraction in the layer, we constructed a simple
model in Sec. Il. It models the layer as a linear elastic plane
connected to elements on the bottom and considers the slip The paper of T. S. Komatsu and S. Sasa first motivated
with a constant frictional force. the author and is the starting point of this study. The author
In Sec. Ill, we considered the critical stress condition byhad fruitful discussions with T. Mizuguchi, A. Nishimoto,

introducing a critical value of the energy density. This modeland Y. Yamazaki, who are also co-workers on a project in-
explains the proportionality relation between the final size ofvolving an experimental study of fracture. The critical com-
a crack cell and the thickness of a layer and the experimentahents of S. Sasa and H. Nakanishi led to a reevaluation of
observations on the effect of slip. This proportionality rela-the study. G. C. Paquette is acknowledged for a conscien-
tion is not due to the simplicity of our model, but is a con- tious reading of the manuscript. Lastly, the author is grateful
sequence of a linear elastic theory and the critical stress cone T. Uezu, S. Tasaki, and the other members of our research
dition. We also considered the Griffith criterion as angroup.
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