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Fracture patterns induced by desiccation in a thin layer

So Kitsunezaki*
Department of Physics, Nara Women’s University, Nara 630-8506, Japan

~Received 28 May 1999!

We study a theoretical model of mud cracks, that is, the fracture patterns resulting from the contraction with
drying in a thin layer of a mixture of granules and water. In this model, we consider the slip on the bottom of
this layer and the relaxation of the elastic field that represents deformation of the layer. Analysis of the
one-dimensional model gives results for the crack size that are consistent with experiments. We propose an
analytical method of estimation for the growth velocity of a simple straight crack to explain the very slow
propagation observed in actual experiments. Numerical simulations reveal the dependence of qualitative nature
of the formation of crack patterns on material properties.@S1063-651X~99!05412-4#

PACS number~s!: 62.20.Mk, 46.35.1z, 46.50.1a, 47.54.1r
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I. INTRODUCTION

Many kinds of mixtures of granules and water, such
clay, contract upon desiccation and form cracks. These f
ture patterns are familiar to us as ordinary mud cracks. H
ever, the fundamental questions about these phenomena
not yet been answered theoretically. The problems wh
need to be addressed include determining the condition
der which fragmentation occurs, the dynamics displayed
cracks, and the patterns that grow.

In simple and traditional experiments on mud cracks
thin layer of a mixture in a rigid container with a horizont
bottom is prepared left to dry at room temperature@1–5#.
Typically, clay, soil, flour, granules of magnesium carbona
and alumina are used. In almost all cases, cracks extend
the surface to the bottom of the layer and propagate horiz
tally along a line, forming a quasi-two-dimensional structu
Typically we observe a tiling pattern composed of rectan
lar cells in which cracks mainly join in aT shape. Groisman
and Kaplan carried out more detail experiments with cof
powder and reported~i! that the size of a crack cell after fu
drying is nearly proportional to the thickness of the layer a
larger in the case of a ‘‘slippery’’ bottom,~ii ! that the veloc-
ity of a moving crack is almost independent of time for
given crack and very slow on the order of several millimet
per minute, but that it differs widely from one crack to a
other, and~iii ! that as the layer becomes thin, there is
transition to patterns which contain manyY-shaped joints
and unclosed cells owing to the arrest of cracks@2#.

Another experimental setup was used by Allain and Lim
@6#. This setup produces cracks that grow directionally
causing evaporation to proceed from one side of the c
tainer. In order to explain the experimental results, they c
sidered evaporation of water through an opening crack wh
modifies stress profiles around the crack. Komatsu and S
have proposed another theoretical model which takes
account the Griffith criterion@7#.

Fragmentation of coating or painting also arises from d
iccation. This has been studied theoretically by some peo
@8–10#. From the viewpoint that fractures are caused by sl
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contraction, these problems can be thought of as belong
to the same category as thermal cracks in glasses@11–16#
and the formation of joints in rocks brought by coolin
@17,18#. In addition, we note that mixtures of granular matt
and fluid have properties that vary greatly from that of co
plete elastic materials, in particular, dissipation and v
coelasticity. The propagation of cracks in such media
been investigated recently using developments in nonlin
physics@19–28#.

In this paper, we undertake a theoretical investigation
the experiments described above, in particular, the exp
ments by Groisman and Kaplan@2#. We treat such system a
consisting of fractures arising from quasistatic and unifo
contraction in thin layers of linear elastic material.

In Sec. II, we propose a one-dimensional model. O
model takes into account the slip displacement on the bot
of a container, because most of the experiments canno
assumed to obey a fixed boundary condition. We can inv
tigate the development of the size of a crack cell by apply
a fragmentation condition to the balanced states of the ela
field.

In Sec. III, we report the analytical results of our on
dimensional model. Here we consider both the critical str
condition and the Griffith criterion as the fragmentation co
dition @29,30#. We consider these two alternative criteria b
cause the nature of the breaking condition in mixtures
granules and water is not clear. The critical stress condi
predicts that the final size of a crack cell is proportional
the thickness of the layer and that, in the case of a slipp
bottom, it becomes much larger than the thickness. Th
predictions seem to be consistent with the experimental
sults. In contrast, we find that the Griffith criterion predicts
different relation between the final size of a cell and t
thickness.

In Sec. IV, we extend the model to two dimensions a
investigate the time development of a crack. In order to
scribe the relaxation process of the elastic field, we use
Kelvin model while taking into account the effect of th
bottom of the container. We assume the stress, exclud
dissipative force, to be constant in the front of a propagat
crack tip and evaluate the velocity of a simple straight cra
tip analytically. Our results indicate that cracks advance
very slow speed in comparison with the sound velocity.

In Sec. V, we report on the numerical simulations of o
model that reproduce fracture patterns similar to those in
6449 © 1999 The American Physical Society
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6450 PRE 60SO KITSUNEZAKI
experiments. The growth of the patterns exhibits qualitat
differences depending on the elastic constants and the re
ation time. As the relaxation time becomes smaller, in p
ticular, we observe the growth of fingering patterns with
splitting rather than side branching of cracks.

Finally, we conclude the paper with a summary of t
results and a discussion of the open problems in Sec. V

II. MODELING OF FRACTURE CAUSED
BY SLOW SHRINKING

We analyze the formation of cracks induced by desic
tion in terms of the following four processes:

1. The water in a mixture evaporates from the surface
layer.

2. Each part of the mixture shrinks upon desiccation.
3. Stress increases in the material because contractio

hindered near the bottom of a container.
4. Fracture arises under some fragmentation condition
In this section, we examine each process individually a

construct a one-dimensional model, where we introd
simple assumptions regarding the unclear properties
granular materials. Some similar models have been propo
previously @8,7#. One-dimensional models assume th
cracks are formed one at a time, each propagating alon
line and thereby dividing the system into two pieces se
rated by a boundary with one-dimensional structure. Us
this assumption, we can ignore the propagation of cracks
consider the development of patterns by using only the c
dition of separation.

1. From a microscopic viewpoint, water either exists
the inside of the particles of granular materials or acts
create bonds between the particles. Here, we can introd
the water content averaged over a much larger area than
of a single particle and measure the degree of drying. W
the thickness of a layerH is sufficiently thin and the charac
teristic time of desiccationTd is very large, the water conten
in the layer can be considered uniform. Assuming that wa
transfers diffusively in a layer, the sufficient condition he
is that H2/Td is much smaller than the diffusion constan
Therefore, we restrict our consideration to the case of
uniform water distribution and exclude the process of wa
transfer from the model.

2. The main cause of contraction is the shrinking of p
ticles in the mixture arising from desiccation. The water co
tent is considered to determine the shrinking rate in the c
of uniform contraction in which all the boundaries of th
mixture are stress-free. We refer to this shrinking rate
‘‘free shrinking rate’’ in the following discussions and th
concept is used in place of the concept of the water cont
This makes clear the relation between the present probl
and those involving fractures induced by other causes, s
as temperature gradient@11,12#, with slow contraction. We
note, however, that it is more difficult to measure the fr
shrinking rate than the water content experimentally and
thus necessary to know their relation to compare our the
with experiments on the time development of patterns.

The contraction force is thought to arise from the wa
bonds among particles. We estimate the Reynolds numbeRe
to consider the behavior of the water in a bond. The diam
of a particleR is generally about 0.1 mm, and the kinema
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viscosity of watern is about 1 mm2/s. Although the propa-
gation of a crack causes the displacement of surround
particles with opening the crack surfaces, the velocity of
displacement is smaller than the crack speed itself, excep
the microscopic region at the crack tip. Therefore, we e
mate the typical velocity of waterV in the bulk of a mixture
to be smaller than the crack speed. The crack speed has
measured as about 0.1 mm/s in experiments and it is
course, considerably faster than the shrinking speed of
horizontal boundary with desiccation, which is typical
about 10 mm/day. Thus, the Reynolds numberRe5RV/n is
estimated to be smaller than 1/100. We expect that the w
among the particles behaves like a viscous fluid and that
mixture displays strong dissipation.

If a material displays strong dissipation and shrinks q
sistatically, the elastic field is balanced to minimize the fr
energy, except during the time when cracks are propaga
We deal with balanced states for the present and return to
problem of relaxation in order to treat the development
cracks in Sec. IV. Because mixtures of granules and flu
have many unclear properties with respect to elasticity,
idealize them as linear elastic materials. When the f
volume-shrinking rateCV is uniform, it is well known that
the free energy density of a uniform and isotropic linear el
tic material is given in terms of the stress tensorui j in the
form @31#,

eV5
1

2
kV~ull 1CV!21mS uik2

1

3
ull d ikD 2

, ~2.1!

wherekV andm are the elastic constants and repeated in
ces indicate summation. The stress tensor is expressed

sVi j [
]eV

]ui j
5~lull 1kVCV!d i j 12mui j , ~2.2!

wherekV[l12m/3. As a result, the balanced equation
the elastic field]sVi j /]xj50 does not include the shrinkin
rateCV for linear elastic materials with uniform contractio
and it is the same as in the case of the elastic mate
without shrinking. The effect of contraction appears on
through the boundary conditions.

3. After the formation of cracks divides the system in
cells, each cell is independent of the others, because the
tical surfaces of cracks become stress-free boundaries. W
out considering the boundary conditions on the lateral si
of the container, we can simplify the problem by starti
with the initial condition that the system has stress-fr
boundaries on its lateral sides. In contrast to the lateral
the top surfaces, the bottom of a layer is not a stress-
boundary. The difference among the boundary conditio
produces strain with contraction and then stress. This is
cause of fracture.

We observe the slip of layers along the bottom in m
experiments. Thus, we introduce slip displacement with
frictional force into the model. Because the frictional force
caused by the water between the bottom of a layer and
container, it is considered to remain finite even in the limit
vanishing thickness of a layerH @2#. In order to understand
the effects of friction for crack patterns, we simplify th
maximum frictional force per unit area of the surface to
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PRE 60 6451FRACTURE PATTERNS INDUCED BY DESICCATION IN . . .
constant and independent ofH without making a distinction
between static and kinetic frictional effects.

4. Cracks propagate very slowly in a mixture of granu
and water. Because this propagation resembles the q
static growth of cracks, the first candidate of the fragmen
tion condition is the Griffith criterion applied to the fre
energy of the entire system.

However, we note that ordinary brittle materials bre
instantaneously, not quasistatically, in the situation that
stress increases without fixing the deformation of the syst
The situation is similar to that in a shrinking mixture. W
need to consider the possibility that cracks in a mixtu
propagate slowly owing to dissipation. Therefore, we co
sider two typical fragmentation conditions, the critical stre
condition and the Griffith criterion, in the first and the la
halves of Sec. III, respectively.

In the context of the critical stress condition, the fragme
tation condition is that the maximum principal stress exce
a material constant at breaking. This has also been use
many numerical models because of the technical advan
of the local condition. Our model introduces the critic
value for the energy density as an equivalent condition.
note that the energy of the system before the fragmentatio
higher than after the fragmentation because the critical va
is a material constant independent of the system size.

In contrast, using the Griffith criterion as an alternati
fragmentation condition stipulates that the energy chan
neither before nor after breaking. This condition is used
Komatsu and Sasa in their theory@7#.

With the above considerations, we construct a o
dimensional model, following the lead of Komatsu and Sa
@7#. As we show in Fig. 1, we consider a chain of springs
a distancea as the discrete model of the thin layer of a
elastic material, where we number the nodesi 52N,2N
11, . . . ,N21,N for a system of half-sizeLªaN. In order
to represent the vertical direction of a sufficiently thin lay
we introduce vertical springs with lengthH which connect
each node to an element on the bottom. The vector (ui ,v i)
represents the horizontal and vertical displacements of
i th node, andwi is the horizontal displacement of the el
ment on the bottom connected with the node. The shrink
of a material is modeled by decreasing the natural length
the springs. We assume an isotropic material with a lin
free shrinking rates, making the natural lengths of both th
horizontal and vertical springs to be 12s times the initial
lengths, i.e., (12s)a and (12s)H.

If the vertical springs are simple ordinary springs, line
response is lost under shearing strain. We therefore add
simple springs to the vertical direction which produce a ho
zontal force in the case thatuiÞwi to represent a linea
elastic material. This type of spring is used in the model
Hornig et al. @8#. The energy of the system is described b

FIG. 1. The one-dimensional model.
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E5
1

2 (
i 52N

N21

K1~ui 112ui1sa!2

1
1

2 (
i 52N

N

@K2~ui2wi !
21K28~v i1sH!2#, ~2.3!

whereK1 , K2, andK28 are the spring constants. Becausev i

is included in the last term independently of bothui andwi ,
it follows thatv i52sH in the balanced states, and then th
term vanishes. This indicates that the model neglects
horizontal stress arising from vertical contraction. Thus,
we need to do is minimize the energy~2.3! without the last
term in order to find the horizontal displacementsui andwi .
In the continuous limit,a→0, the above energy should b
described using an independent energy density forH, as in
the case of Eq.~2.1! for a linear elastic material. We scal
the space length by the thickness of a layerH and introduce
the space coordinatexªai/H. Through the transformation
to nondimensional variablesL→LH, ui→Hu(x), wi
→Hw(x), andE→H2E, the energy~2.3! becomes

E5E
2L

L

dx$e1~x!1e2~x!%, ~2.4a!

e1~x!5
1

2
k1~ux1s!2, ~2.4b!

e2~x!5
1

2
k2~u2w!2, ~2.4c!

and we know that bothk1ª(a/H)K1 andk2ª(H/a)K2 are
the independent constants ofH @7#.

We introduce the maximum frictional forceFs for the slip
of the elements on the bottom, as explained above. The
tical spring pulls thei th element along the bottom with th
force Fi5K2(ui2wi). Each element on the bottom remain
stationary if uFi u,Fs , and, if not, it slips to a position a
which uFi u5Fs is satisfied. The slip condition is expresse
by the energy density of a vertical spring through the follo
ing rule in the previous continuousa→0 limit:

e2~x!.
1

2
k1ss

2⇒w~x!5u~x!6
ss

q
. ~2.5!

Here the choice of the sign depends on the direction of
force. The constantsss andq are defined by the equations

1

2
k1ss

2[
Fs

2

2k2a2
and q[Ak2

k1
. ~2.6!

We note the constantq is of order 1, because its squa
represents a ratio of certain elastic constants that are
same order in ordinary materials. Neglecting the short p
ods during which the system experiences cracking and s
Eqs. ~2.4! and ~2.5! constitute the closed form of our one
dimensional model with the fragmentation condition given
the next section.
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III. ANALYSIS OF THE ONE-DIMENSIONAL MODEL

We here report analytical results of our one-dimensio
model for the typical two fragmentation conditions, i.e., t
critical stress condition and the Griffith condition.

A. The critical stress condition

The critical stress condition demands that the maxim
principal stress exceeds a material constant at the fragm
tation. In the case of this condition, we can generally de
onstrate that it is difficult to treat the bottom surface as
fixed boundary for a uniform and isotropic elastic materi
We first explain it before the analysis of the one-dimensio
model. Let us think of the layer of a linear elastic mater
contracting with a fixed boundary condition on the bottom
is shrinking more near the top surface, and the cross sec
assumes the form of a trapezoid, as we show schematic
in Fig. 2. We compare the stress at the following thr
points: ~A! the horizontal center of the cell near the botto
~B! the lateral point near the bottom, and~C! the horizontal
center above the bottom. The horizontal tensions atA andB
are the same because of the fixed boundary condition on
bottom. Although the stress atC is as horizontal as atA, the
strength is weaker.B is also pulled in the direction along th
lateral surface due to the deformation. UsingA, B, andC to
represent the respective strengths of the maximum princ
stresses at these three points, we find that they are relat
C,A,B. This inequality also holds even if the pointB is
shifted inward from the lateral surface because the st
field is continuous in the bulk. Since the critical stress co
dition is determined locally at each point, we expect gen
ally that fracture arises atB before eitherA or C. If the
contraction proceeds while the fixed boundary condition
the bottom is maintained, the lateral side breaks near
bottom before the division of the cell, and the fixed bound
condition cannot persist. In real experiments, the peeling
the slip of layers may occur on the bottom before the late
sides break. In any case, we need to consider the disp
ment of the layer with respect to the bottom to deal with t
problem correctly. In the following discussions, we consid
the slip of layers which is observed in most experiments

In our one-dimensional model, we break a spring when
energy exceeds a critical value. We assume that the co
sponding critical energy density is independent of bothL and
H. As mentioned above, this is equivalent to the critic
stress condition in one-dimensional models. Representing
critical energy density with the corresponding linear shrin
ing ratesb by k1sb

2/2, the fragmentation conditions are d
scribed by the rules

FIG. 2. The cross section of a shrinking cell of an elastic ma
rial.
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e1~x!>
1

2
k1sb

2⇒The horizontal spring is cut off;

the cell is divided. ~3.1!

e2~x!>
1

2
k1sb

2⇒The vertical spring is cut off;

the bottom of the layer breaks.
~3.2!

Here we apply the same condition to the vertical springs
order to enforce that the lateral side breaks before the d
sion of a cell under the fixed boundary condition.

We can easily determine the analytical solutions. T
functional variation of the energy~2.4! on u(x) is obtained
in the form

dE5E
2L

L

dx$2k1uxx1k2~u2w!%du1@k1~ux1s!du#2L
L ,

~3.3!

and we obtain both the balanced equation

uxx5q2~u2w! ~3.4a!

and the stress-free boundary condition

ux1s50 at x56L. ~3.4b!

First we assume the fixed boundary condition without s
on the bottom:w(x)50 for uxu<L. The solution of Eqs.
~3.4! is then

u~x!52
s

q

sinhqx

coshqL
. ~3.5!

The deformation almost only appears near the late
boundaries, because of exponential dumping. The ene
densities of horizontale1(x) and vertical springse2(x) are
maxima at the center of a cellx50 and at the lateral bound
ary x5L, respectively, and these points have the grea
possibility of breaking. Then energy densities are calcula
as

e1~0!5
1

2
k1s2S 12

1

coshqLD 2

~3.6a!

and

e2~L !5
1

2
k1s2~ tanhqL!2. ~3.6b!

Although they both increase with shrinking,e1(0) is always
less thane2(L).

If sb is smaller thanss , that is, if breaking occurs befor
slip, the breaking condition~3.2! for the vertical spring on
the lateral side is the first to be satisfied. To identify t
effect of slip, we consider the fragmentation of a cell wi
the assumption that neither the slip nor the breaking of
vertical springs occurs even with the fixed boundary con
tion. For the first breaking of the horizontal springs, we a

-
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ply the fragmentation condition~3.1! to Eq.~3.6a! and obtain
the relation between the system size and the shrinking r

qL5arccosh
s

s2sb
. ~3.7!

As indicated with the solid line in Fig. 3,qL drops rapidly at
s/sb.1 and then vanishes slowly ass increases further. Be
cause each breaking divides the system into rough hal
the size of a cell decreases with shrinking. The figure d
plays the typical development of the size of a cell with t
stairlike function of the dot-dashed line and the arrows. B
cause the system sizeL is scaled by the thicknessH, we see
that the system is divided into a size smaller thanH after
sufficient shrinking. However, when the sizeL becomes less
thanH, this model is not valid anymore. We should consid
a problem of elasticity in three dimensions.

If sb is larger thanss , the layer starts to slip from the
lateral sides whene2(L)5k1ss

2/2. The shrinking rate at tha
time is given by

s5
ss

tanhqL
. ~3.8!

We investigate this case next.
We suppose that the symmetrical slip from both late

sides is directed toward the center and only consider the
region x.0. The functionw(x) becomes finite in the slip
regionxs,x<L and remains zero elsewhere, where we
troducexs as the starting point of the slip region. The sl
displacementw(x)[w0(x) is expressed by the displaceme
u(x)[u0(x) as

w0~x!5H 0 0,x<xs

u0~x!1
ss

q
xs,x<L.

~3.9!

Equations~3.4! then take the form

u0xx5H q2u0~x! 0,x<xs

2qss xs,x<L,
~3.10a!

FIG. 3. The shrinking rate at the first breaking under the fix
boundary condition is plotted as a function of the system s
where the vertical axis representsqL scaled byH and the horizontal
is s scaled bysb or sG . The dotted line represents the result for t
Griffith criterion.
e,

s,
-

-

r

l
lf

-

boundary condition: u0x1s50 at x5L,
~3.10b!

and the matching conditions are

w0~x!, u0~x! and ]u0~x!/]x are continuous atx5xs .
~3.10c!

We derive the solutionu0(x) in each region and obtain

u0~x!5H A sinhqx 0<x,xs

FqssS L2
1

2
xD2sGx1B xs<x,L.

~3.11!

The three matching conditions give the integral constantA
andB and yield the equation to determinexs ,

q~L2xs!5
s

ss
2

1

tanhqxs
. ~3.12!

At xs5L, this reduces to Eq.~3.8!. This form can be ap-
proximated asL2xs.(s2ss)/qss for qxs@1 and asqxs
.(s/ss2qL)21 for qxs!1.

We calculate the energy densitye1(0) again and substi-
tute this into the breaking condition~3.1!. This gives the
equation

s

ss
2

1

sinhqxs
>

sb

ss
. ~3.13!

Eliminatingxs from Eqs.~3.12! and~3.13!, we obtain the
following relation between the system size and the shrink
rate at the first breaking:

qL5arcsinhS ss

s2sb
D1

s

ss
2A11S s2sb

ss
D 2

. ~3.14!

We see thatqL is a decreasing function ofs. It decreases
slowly to the limiting valuesb /ss after the rapid drop in the
rangesb<s&sb1ss .

Figure 4 exhibits two curves of the shrinking rates at t
start of slip~3.8! and at the first breaking~3.14!, where half
of the system sizeL is represented on the vertical axis as
Fig. 3. After full contraction, the final size of a cell is clos
to the asymptotic value of the curve defined by Eq.~3.14!,

d
,

FIG. 4. The shrinking rates at the start of slip and at the fi
breaking are plotted for the system size, as in Fig. 3.
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qL;sb /ss . The region without slip also becomes small
and its final size is given byqxs.ss /(s2sb), where we
assumeqxs!1 in Eq. ~3.12!. With the original scale, we
obtain

L.
H

q

sb

ss
and xs.

H

q

ss

s2sb
for s2sb*ss .

~3.15!

Thus,L andxs are proportional to the thickness of a layerH,
although there is the possibility for them to be modifi
throughss if the frictional force depends onH.

These proportionality relations are consequences of a
ear elastic theory and the critical stress condition. The ch
acteristic lengths in this problem are onlyL and H and our
model is consistent with a linear elastic theory with t
scaled spring constants in Eq.~2.4!.

The first equation of~3.15! is consistent with the experi
mental results of Groisman and Kaplan@2# for the final size
of a cell after full desiccation, as mentioned in Sec. I. T
assumptions used in this analysis are also consistent
those in their qualitative explanation, where they conside
the balance between the frictional force and elastic force@2#.
In addition, when we peel the layer of an actual mixture af
drying, we often observe a circular mark at the center of e
crack cell on the bottom of the container. Its size is appro
mately equal to the thickness of the layer. We can unders
these marks as the sticky regionuxu,xs .

B. The Griffith criterion

Next we apply the Griffith criterion@29# to the entire sys-
tem as the fragmentation condition in the place of the criti
stress condition. This was used by Komatsu and Sasa
different model@7#.

First we again assume the fixed boundary conditi
where neither the slip nor the breaking of the vertical sprin
occurs. The Griffith criterion introduces the creation ene
of a crack surface per unit areaG and assumes the crackin
condition that the sum of the creation energy and the ela
energy decreases due to breaking. We write the elastic
ergy of a system2L<x<L asE(2L). We consider the cas
in which the cell with size 2L ~the system size! is divided
into exact halves. The alternative fragmentation condition
Eq. ~3.1! is given by the equation

DE~2L ![E~2L !22E~L !>GH. ~3.16!

We calculate Eq.~2.4! by using Eq.~3.5! to obtain the
elastic energyE(2L) for the fixed boundary condition. With
the original scale, it is given by

E~L !5k1s2HLS 12
H

qL
tanh

qL

H D . ~3.17!

As a result, we obtain the following relation in the pla
of Eq. ~3.14! for the shrinking rate at the first breaking:

DẼ~L !5S sG

s D 2

and sG[A qG

k1H
. ~3.18!

Here,
,

n-
r-

e
ith
d

r
h

i-
nd

l
a

,
s
y

ic
n-

o

DẼ~L ![
qDE~L !

k1s2H2
52 tanh

qL

2H
2tanh

qL

H

5H 1 qL@H

1

4 S qL

H D 3

qL!H.
~3.19!

The corresponding curve is indicated with the dotted line
Fig. 3, where the shrinking rates is scaled bysG . This curve
agrees quite well with the solid line representing the previo
results~3.7!, so we again find that cells are divided into
size smaller thanH after breaking. We note, however, thatsG

depends on the thicknessH, although bothsb andsG repre-
sent the shrinking rate at the first breaking for an infin
system. Because the ratio of the surface energyG to the
elastic constant is a microscopic length for ordinary mate
als,sG is inferred to be very small. Therefore, with the Gri
fith criterion, we usually expect thatsG is smaller thanss and
no slip occurs before breaking.

Next we show that, even ifsG is larger thanss , the Grif-
fith criterion does not yield the proportionality relation of th
final size of a cell to the thickness of the layerH. Elastic
energy is consumed not only by the creation of the cra
surface but also by the friction due to slip on the bottom. W
again consider the breaking of the system (2L,x,L) into
exact halves. An alternative Griffith condition is given by

DEs~L ![Es~2L !22@Es8~L !1Ws#>GH, ~3.20!

whereEs(2L) and 2Es8(L) represent the elastic energies
the system before and after breaking, respectively, and 2Ws
is the work performed by the frictional force due to slip.

As the state just before breaking, we consider a cell w
symmetric slip regions. This state has been derived in E
~3.9!, ~3.11!, and ~3.12!. The elastic energyEs(2L) is ob-
tained by calculating Eq.~2.4! in the form

Es~2L !5
k1ss

2

q F1

3
q3~L2xs!

31S s

ss
D 2

qxs2
s

ss
G ,

~3.21!

where the width of the slip regionL2xs is determined as a
function of L ands/ss by Eq. ~3.12!.

In order to estimateWs andEs8(L), we need to investigate
the detailed process of fragmentation. Here we imitate
actual quasistatic fracture in two dimensions by using a
pothetical quasistatic process in the one-dimensional mo
We introduce a traction force on crack surfaces which p
vents the crack from opening and obtain the final state of
process with the stress-free boundaries by stipulating tha
strength vanishes quasistatically. The work of the hypoth
cal traction force is considered to be the opposite of
creation energy of the crack. Let us imagine the right h
0,x,L just after the breaking at the centerx50, where the
traction force works atx50 to the left. Because of the re
laxation of the traction, the slip regionxs,x,L before the
breaking vanishes immediately. As the traction decrease
new slip region is created in 0,x,xr on the side of the
crack. If the contraction ratios is much larger thanss , we
may assume thatxs is smaller thanxr at the end of this
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process, becauseqxs&1, and the new slip region expands
xr.L/2. The slip displacementw(x) in the state is given by
the initial condition~3.9! and the slip condition~2.5! as

w~x!5H w0~x! xr,x,L

u~x!2
ss

q
0,x,xr .

~3.22!

The solution of Eq.~3.4! is

u~x!5H u0~x!1C18 coshq~x2L ! xr,x,L

1

2
qssx

22sx1C28 0,x,xr ,

~3.23!

where the conditions of the continuity ofw(x), u(x), and
ux(x) at x5xr determine the constantsC18 andC28 and pro-
duce the equation forxr ,

q~L22xr !52 tanhq~L2xr !. ~3.24!

We calculate the elastic energy~2.4! from Eqs. ~3.22! and
~3.23! and obtain the energy at the end of this process,

2Es8~L !5
k1ss

2

q H 1

3
q3@xr

31~L2xr !
3#2qLJ . ~3.25!

Because slip occurs with a constant frictional force from
previous assumption, the workWs can be expressed by th
integral of the total distance of slip,

Ws5
Fs

a E
0

L

dxuw~x!2w0~x!u, ~3.26!

and it is calculated from Eqs.~2.6!, ~3.22!, and~3.23! as

2Ws5
k1ss

2

q F2

3
q3~xs

322xr
3!1q3Lxr

22S qL2
s

ss
Dq2xs

2G .
~3.27!

In order to know the scaling relation of the final size of
crack cell after full desiccation, we assumeqL@1 and the
limit of the full contraction:s/ss→`. Because Eqs.~3.12!
and~3.24! give the approximate equationsqxs.ss /s!1 and
xr.L/2, respectively, Eqs.~3.20!, ~3.21!, ~3.25!, and~3.27!
result in the equation

DEs~L !.
k1ss

2

6q
~qL!3. ~3.28!

With the original scaling, the Griffith criterion~3.20! gives
the scaling relation of the final size of a cell for the thickne
H,

qL*A3 6HS sG

ss
D 2/3

}H2/3, ~3.29!

where we usesG defined in Eq.~3.18!, and the condition
sG@ss is necessary from the assumptionqL@1. Thus, the
Griffith criterion gives the different scaling relation becau
e

s

of the dependence ofsG on H, although we obtained the
proportionality relation~3.15! under the critical stress cond
tion.

As a result, the critical stress condition and the Griffi
condition lead to different relations between the final size
a crack cell and the thickness of a layer. This is because
Griffith criterion depends on a microscopic characteris
length throughsG . The experimental results by Groisma
and Kaplan seem to support the results of the critical str
condition. Although the results should be discussed furth
of course, they suggest the possibility that the dissipation
the bulk can not be neglected for the fracture of a mixture
granules and water. This means that the cracking proce
are not quasistatic.

IV. DEVELOPMENT OF CRACKS IN TWO DIMENSIONS

The one-dimensional model we have discussed to
point idealizes the process of cracking, treating cracks
one-dimensional structures forming one at a time paralle
one another. In order to consider the development of cra
and their pattern formation, we must extend this model
two dimensions and include the relaxation process of
elastic field.

Although mixtures containing granular materials that a
rich with water generally possess viscoelasticity, visible fl
idity cannot be observed at the time of cracking after
evaporation of water with desiccation. Therefore, we assu
that only the relaxation of strain contributes to the dissipat
process in a linear elastic material. For simplicity, we assu
that the system has a single characteristic relaxation tim

In the one-dimensional model, the total energy~2.4! con-
sists of terms representing a one-dimensional linear ela
material and the vertical shearing strain, the both of wh
are quadratic in the displacements. Expanding the elastic
terial to the horizontalxy plain, we naturally obtain the ex
tended energy in two dimensions as

E5E dx dy$e1~x,y!1e2~x,y!%, ~4.1a!

e1~x,y![
1

2
k~ull 1C!21mS uik2

1

2
ull d ikD 2

, ~4.1b!

e2~x,y![
1

2
k2~u2w!2, ~4.1c!

where ui j [(ui , j1uj ,i)/2 and ui , j[]ui /]xj . In analogy to
the one-dimensional model, the two-dimensional vec
fields u(x,y) and w(x,y) represent the displacement of
layer from the initial position and the slip displacement on
bottom, respectively. The space coordinatesx andy and the
displacementsu(x,y) and w(x,y) are again scaled by th
thickness of a layer,H. The expression in Eq.~4.1b! is the
energy density of the two-dimensional linear elastic mate
with a uniform free surface-shrinking rateC.

The shrinking speedĊ can be neglected from the assum
tion of quasistatic contraction. The time derivative of E
~4.1! is given by
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Ė5E dx dy$@2s i j , j1k2~ui2wi !#u̇i2k2~ui2wi !ẇi%

1 R dSnjs i j u̇i , ~4.2a!

s i j [~lull 1kC!d i j 12mui j and k[l1m,
~4.2b!

whererdS represents the integral along the boundary of
cell andn is its normal vector.

The dissipation of energy arises from the non-vanish
relative velocities of neighboring elements in a material, a
then the time derivativeĖ can also be represented as a fun
tion of them. As is well known,Ė can be written in a form
similar to the energy due to certain symmetries@31#. We
have

Ė52E dx dyH k8u̇l l
2 12m8S u̇ik2

1

2
u̇l l d ikD 2

1k28~ u̇2ẇ!2J
52E dx dy$@2s i j , j8 1k28~ u̇i2ẇi !#u̇i2k28~ u̇i2ẇi !ẇi%

2 R dSnjs i j8 u̇i ~4.3a!

to the second order, where

s i j8 [l8u̇l l d i j 12m8u̇i j and k8[l81m8. ~4.3b!

Although the constantsk8, m8, and k28 are generally inde-
pendent ofk, m, andk2, we assume they take simple form
with one relaxation timet, writing s i j8 5t]s i j /]t, or
equivalently,

k85tk, m85tm, and k285tk2 . ~4.4!

Equations~4.2!, ~4.3!, and ~4.4! yield the time evolution
equation ofu(x,y),

S 11t
]

]t D @s i j , j2k2~ui2wi !#50, ~4.5!

and the free boundary condition,

S 11t
]

]t Ds i j nj50. ~4.6!

As mentioned above, the shrinking rateC only appears in the
free boundary condition.

Except for the effect of shrinking and slip, the abo
equations are essentially the same as the Kelvin model,
posed for viscoelastic solids. Because the existence of a
tom causes a screening effect through the termk2ui , the
elastic field decays exponentially in the range of the thi
ness of a layer, i.e., the unit length in Eq.~4.5!. Here the
stress in the material is (11t]/]t)s i j by adding the dissipa
tive force. With the definitions

Ui[S 11t
]

]t Dui , Wi[S 11t
]

]t Dwi ~4.7a!
e

g
d
-

o-
ot-

-

and

S i j [S 11t
]

]t Ds i j , ~4.7b!

Eqs.~4.5! and ~4.6! can be rewritten as

S i j , j5k2~Ui2Wi !, ~4.8a!

S i j 5~lUll 1kC!d i j 12mUi j , ~4.8b!

with the free boundary condition

njS i j 50. ~4.8c!

Therefore,Ui satisfies the balanced equations of an ordin
elastic material without dissipation.

We expect that the state of the water bonds in a mixt
can be represented bys i j , i.e., the stress excluding the dis
sipative force, rather than by the stressS i j itself becauses i j
is a function of the strainui j . For this reason we introduc
the breaking condition by usings i j in the following analysis.
The propagation of a crack in the Kelvin model has be
investigated by many peoples@21–25,28#. Although the
stress field diverges at a crack tip in the continuous Kel
model, it is possible that the divergence ofs i j is suppressed
by the advance of a crack. We calculate the elastic fi
around a crack tip for a straight crack which propagates
tionarily in an infinite system. Because near the tip of
propagating crack there is little slip, as the simulations in
next section indicate, we can assumew.0, and then
Wi(x,y)50 in Eq. ~4.8!. Although our model is incomplete
in the sense that the divergence of the stress can no
removed in continuous models of a linear elastic mater
we expect that the following discussions are valid.

We consider a straight crack with velocityv that coin-
cides with the semi-infinite part of thex axis satisfyingx
,vt in the two-dimensional plane. The stress field satisfi
the stress-free boundary conditions on the crack surface,
the displacementu vanishes asuyu→`. We define the mov-
ing coordinates (j,y) as j[x2vt and assume reflection
symmetry on thex axis. The boundary conditions are give
by

Syy50 on y50, j,0

Uy50 on y50, j.0

~4.9!

Sjy50 on y50

Ui→0 for uyu→`.

The stress field under the above boundary conditions
be obtained by the Wiener-Hopf method. Fortunately, t
problem reduces to the following solved problem for t
mode I type of a crack. We consider a stationary crack alo
the negativex axis in completely linear elastic material with
out contraction, where we include the inertial term with t
mass densityr. When a uniform pressures* is added on the
surface of the crack from timet50, the stress fieldui

0 is
given by the equations
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s i j , j
0 5r

]2ui
0

]t2
and s i j

0 [lull
0d i j 12mui j

0 ~4.10!

and the boundary conditions

syy
0 52s* Q~ t ! on y50, x,0

uy
050 on y50, x.0

~4.11!

sxy
0 50 on y50

ui
0→0 for uyu→`.

These become identical to the previous equations when
apply the Laplace transformations on time,

Ui~x,y,h!5E
0

`

dt ui
0~x,y,t !e2ht ~4.12a!

and

S i j
0 ~x,y,h!5E

0

`

dt s i j
0 ~x,y,t ! f e2ht, ~4.12b!

and make the replacementsh2r5k2 , s* 5kCh, S i j 5S i j
0

1kCd i j andx→j. Hereh can be taken equal to 1 becau
the correspondence holds for anyh.

Using the analytical solutions@32# of Eqs. ~4.10! and
~4.11!, we shall consider the stress in front of the crack, i
Syy(j,0), wherej.0. The above replacements give the s
lution of our problem as

Syy~j,0!5kCH 2
1

pEa20i

`20i

dz Im Ŝ0~2z!e2zj11J ,

~4.13!

a[A k2

l12m
and Ŝ0~z![

1

z S F1~0!

F1~z!
21D ,

~4.14!

whereF1(z) is an analytical function in the region Rez.
2a such that

F1~z!→z21/2 for uzu→` ~4.15!

and

F1~0!5A 2m~l1m!

a~l12m!2
. ~4.16!

Because ImŜ0(2z) approaches2F1(0)/Az as uzu in-
creases, it can be approximated in the regionaj!1 around
the crack tip by the equation

Syy~j,0!.kCS F1~0!

p E
0

`

dz z2(1/2)e2zj11D
5kCS F1~0!

Apj
11D . ~4.17!
e

.,
-

We see that the stressSyy diverges in inverse proportion to
the square root of the distance near the tip.

Solving Eq. ~4.7b! in the moving systemj5x2vt, we
get

syy~j,0!5
1

tvEj

`

dj8 Syy~j8,0!e~j2j8!/tv, for j.0.

~4.18!

and the following equation is obtained by substituting E
~4.13! into this equation:

syy~j,0!5kCH 2
1

pEa20i

`20i

dz
Im Ŝ0~2z!

tvz11
e2zj11J .

~4.19!

We first examine the behavior ofsyy in the regionaj
@1 far away from the tip. Because the integral in Eq.~4.19!
can be approximated as

E
a20i

`20i

dz
Im Ŝ0~2z!

tvz11
e2zj

5F E
0

`

dz
Im Ŝ0~2z2a!

tv~z1a!11
e2zjGe2aj

.
Im Ŝ0~2a!

tva11

e2aj

j
, ~4.20!

syy decays exponentially to the uniform tension as

syy~j,0!.kCS D

j
e2aj11D for aj@1, ~4.21a!

where

D[2
Im Ŝ0~2a!

p~tva11!
. ~4.21b!

The characteristic length of the decay isH/a with the origi-
nal scale, which is of the same order as the thicknessH for
an ordinary elastic material.

In the regionaj!1 near the tip, we approximate th

integral with the asymptotic form of ImŜ0(2z) for largez
as

2
1

pEa20i

`20i

dz
Im Ŝ0~2z!

tvz11
e2zj

.E
0

`

dz
F1~0!

p~tvz11!z1/2e2zj

5
2F1~0!

Aptv
ej/tverfcSA j

tv D , ~4.22a!
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erfc~x![E
x

`

dt e2t2.
1

2x
e2x2

for x→`,

~4.22b!

and erfc~0!5
Ap

2
, ~4.22c!

and then we obtain the equations

syy~j,0!.5 kCS F1~0!

Apj
11D j@tv

kCS F1~0!

Atv
11D j!tv

for aj!1.

~4.23!

With the original scale again,s i j is almost proportional to
AH/j in the middle region fromtv to H/a around the crack
tip, as is the case for the stressS i j . However,s i j is bounded
at the tip by the proportional value toAH/tv.

Thus, the stress excluding the dissipative force, i.e.,s i j ,
is kept from diverging by the movement of the crack t
Therefore, we can introduce a critical values th as a material
parameter again and assume the breaking condition at th

lim
j→01

syy~j,0!>s th[kCth , ~4.24!

where the constantCth represents the shrinking rate corr
sponding to the critical value. For a stationary propagat
crack, we find the velocityv by substitutingsyy(j,0) into
the above equation in Eq.~4.23! as

v5F1~0!2S C

Cth2CD 2 H

t
. ~4.25!

Although this equation is not valid near the sound veloc
because we have neglected inertia, we expect that a ma
cracks at a shrinking rateC belowCth due to inhomogeneity
Thus, Eq.~4.25! explains why the propagation velocity ob
served in experiments is very small compared to the so
velocity. In addition, it suggests the proportionality relati
between the thickness and the propagating speed, w
should be experimentally observable.

Next we note the validity of Eq.~4.25! for very slow
speeds. Although the divergence ofsyy is suppressed by th
advance of a crack, as we see in Eq.~4.23!, the size of the
screening region is approximatelytv. Because particles o
size R50.01;1 mm are used in experiments, the abo
breaking condition ~4.24! is available for velocitiesv
@R/t, where the continuous approximation is valid. F
very slow velocities,tv!R, for example, it may be possibl
for the defects in a material to arrest the growing of crac

The speed of a real crack measuresv&2 mm/min for the
thickness of a layer of coffee powder,H.6 mm, as ob-
served in experiments@2#. Although we have not yet spec
fied the origin of the relaxation, we attempt to estimate
relaxation timet arising from the viscosity of the water i
the bonds among particles. Supposing that the diameter
particle of the coffee powder is aboutR;0.5 mm and the
.

tip

g

rial

d

ch

.

e

f a

viscosity of the water isn;1 mm2/s, we obtaint;R2/n
;0.25 s andtv/R;0.02,1. This rough estimate sugges
the possibility that the above continuous approximation
imperfect in the case of a relatively thin layer.

Groisman and Kaplan reported the interesting experim
tal results that the propagation speed exhibits a wide dis
sion even among cracks growing at the same time, altho
the speed of each individually is almost constant on time
is a future problem to understand the relation of the disp
sion to the inhomogeneity of materials.

V. PATTERNS OF CRACKS

Cracks appear one after another with shrinking, a
spread over the system to create a two-dimensional pat
In this section, we report on a study of the formation of cra
patterns using numerical simulations of the two-dimensio
model introduced in the preceding section. We make
natural extension of both the breaking condition and the
condition employed in the one-dimensional model by us
the energy densities defined in the microscopic cells of
lattice in the simulations. In the two-dimensional model, t
former is simpler than the critical stress condition becaus
neglects the direction of both the stress and the microsc
crack surfaces. In addition, the slip condition implicitly a
sumes a sufficiently short period of slip in comparison to
relaxation time of the elastic field because of the bala
between the frictional force and elastic force. We report
results of our simulations after describing the discr
method and these extended conditions.

As is the case with most fingering patterns, the growing
cracks is influenced strongly by the anisotropy of the syste
We used random lattices@33,34# in our simulations to con-
sider uniform and isotropic systems in a statistical sense

Many fracture models employ a network of springs
elastic beams to model an elastic material@35–
40,14,15,8,10#. However, it is generally difficult to calculate
the elastic constants for an elastic material modeled by s
lattices. Therefore, instead of such networks, we cons
each triangular cell in a random lattice as a tile of the ela
material with uniform deformation. A fracture is realized b
removing any cell whose energy density exceeds a crit
value, as we explain below.

We construct a two-dimensional model, as is illustrated
Fig. 5. Each site of the lattice is connected to an elemen
the bottom with a vertical spring similar to that used in t
one-dimensional model. Figure 6 displays a part of the r
dom lattice which represents a horizontal elastic plane. T
random lattice is composed of random points to form

FIG. 5. The two-dimensional model. The blank triangles rep
sent a crack.
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Voronoi division of them. We number the sites and the
angular cells in the lattice and express the area of
Voronoi cell around thenth site asVn (n51,2,3, . . . ,N)
and the area of themth triangle asTm (m51,2,3, . . . ,NT).

The displacement of thenth siteu(n)(t) is obtained from
the U(n)(t) by the definition~4.7a!. A simple Euler method
gives the following equation with discrete timeDt:

u(n)~ t1Dt !5u(n)~ t !1
Dt

t
@U(n)~ t !2u(n)~ t !#. ~5.1!

BecauseU(t) satisfies the balanced equation of an or
nary elastic material at any time, it minimizes the energyẼ
defined by Eq.~4.1! through the replacementsu→U andw
→W. Ẽ consists of the energies of both the vertical sprin
and the horizontal elastic plain. We calculate the latter
summation of the energies of the triangular cells in the r
dom lattice, where themth triangular cell is assumed to con
sist of a linear elastic material with uniform strain tens
Ui j

(m) . Thus, we obtain the equations

Ẽ5 ( 8
m51

NT

Tmẽ1
(m)1 (

n51

N

Vnẽ2
(n) , ~5.2a!

ẽ1
(m)[

1

2
k~Ull

(m)1C!21mS U jk
(m)2

1

2
Ull

(m)d jkD 2

,

~5.2b!

ẽ2
(n)[

1

2
k2~U(n)2W(n)!2, ~5.2c!

whereU(n) and W(n) represent the displacement of thenth
site and the slip displacement of thenth element along the
bottom, respectively. Although the rule of repeated indice
applied toj, k, andl, as usual, the summations overm andn
are expressed by the symbol(, where(m8 represents a sum
mation that excludes broken triangle cells.

The quantityẽ1
(m) is the elastic energy of themth triangle

cell which is calculated fromUi j
(m) . For the following expla-

nation, we express the vertices of themth triangle asn
51,2,3 and their initial equilibrium positions asx(n)

[(x(n),y(n)), as is shown in Fig. 6. Assuming uniform de
formation in the triangle, the strain tensorU jk

(m)[ 1
2 (U j ,k

(m)

1Uk, j
(m)) is given by the displacements of the verticesU(n) as

the equations

Uxx
(m)5

1

T
e i jky( i j )Ux

(k) , ~5.3!

FIG. 6. A part of a random lattice.
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Uyy
(m)52

1

T
e i jkx( i j )Uy

(k) , ~5.4!

Uxy
(m)5

1

2T
e i jk@y( i j )Uy

(k)2x( i j )Ux
(k)#, ~5.5!

where

T[e i jkx( i )y( jk), Tm5
1

2
uTu, x( i j )[x( i )2x( j ), ~5.6!

and e i jk is Eddington’se. These equations are easily o
tained from the first order Taylor expansions ofU(n)

5U(x(n),t) in the triangle. Thus we can calculate the ener
~5.2! on the random lattice and obtainU(n) from its mini-
mum.

A fracture is represented by the removal of triangle ce
not by the breaking of bonds, in this model. This gives
direct extension from the one-dimensional model, althoug
neglects the microscopic direction of the stress and
cracking in a triangle cell. We calculate the elastic ene
density of themth triangular celle(m) from the true displace-
ments u(n), and assume a critical value for the breakin
which is represented by the corresponding shrinking rateCb

askCb
2/2. Thus, the breaking condition is given by

e1
(m)>

1

2
kCb

2⇒The mth triangle cell is removed,

~5.7!

where

e1
(m)[

1

2
k~ull

(m)1C!21mS ujk
(m)2

1

2
ull

(m)d jkD 2

, ~5.8!

andujk
(m) is calculated fromu(n) using the method explaine

above forU jk
(m) .

The slip condition for the elements on the bottom is a
similar to that in the one-dimensional model. We introdu
the maximum frictional force as a constant and assume
balance of the fictional force against the sum of the ela
force and the dissipative force, i.e.,uk2(11t]/]t)(u2w)u
5k2uU2Wu. Therefore, the slip condition for thenth ele-
ment can be written by usingẽ2

(n) as

ẽ2
(n)>

1

2
kCs

2⇒W(n) is moved along the force to the

position whereẽ2
(n)5

1

2
kCs

2 . ~5.9!

The slip displacementw(n) is calculated fromW(n) by the
definition ~4.7a! as

w(n)~ t1Dt !5w(n)~ t !1
Dt

t
@W(n)~ t !2w(n)~ t !#.

~5.10!
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We carried out the numerical simulations of the model
increasing the shrinking rateC in proportion to timet with a
constant rateĊ. We repeated the following procedures
each time step:

1. The contraction rate increases asC(t1Dt)5C(t)
1DtĊ.

2. The displacementu is calculated fromU, which is the
function minimizing the energy~5.2!.

3. The slipw is calculated fromW, which is given by the
conditions~5.9! at all the sites.

4. If some triangular cell satisfies the breaking conditi
~5.7!, it is removed. Its energy is not included in subsequ
calculations.

If more than one cell satisfies the breaking condition
step 4, we repeat steps 1–3 using a smaller time step.

In the above calculations, we can take the parameterk,
k2 , Cb , and Ċ to be 1 with loss of generality by scalin
space, time, energy, and the shrinking rate as follows:

x→Ak

k2
x, u→CbAk

k2
u, w→CbAk

k2
w,

~5.11!

E→ 1

2
kCb

2E, t→ Cb

Ċ
t, and C5CbĈ.

Here we write the scaled shrinking rate asĈ. As a result,
three independent parameters remain explicitly in the eq
tions,

m̂[
m

k
, t̂[

Ċ

Cb
t, and Ĉs[

Cs

Cb
. ~5.12!

FIG. 7. The time series of a crack pattern forL̂510A2, m̂

51, t̂50.01, andĈs50.5. The black area represents cracks. T
gray scale in~a!, ~b!, and ~d! indicates the energy densities of th
triangular cells of a lattice, and the dots in~c! indicate slipping
elements.
y

t

t

t

a-

Although the properties of the lattice influence the resu
we used an identical lattice in all of our simulations, exce
the last in which we consider the effect of a random latti
To prepare the sites in the random lattice, we arranged po
in a triangular lattice with mesh size 0.01 inside a squ
region 131 and shifted thex,y coordinates of each point b
adding uniform random numbers within the range60.005.
Because their distribution is almost uniform and random,
connect them by Voronoi division to make the network
the random lattice. Then the square region is extended to
size L̂3L̂, which is related to the original system sizeL as

L̂[Ak2

k

L

H
. ~5.13!

We use the conjugate gradient method@41# with a toler-
ance 1026 to find the minimum points of functions on fre
boundary conditions. The time stepDt is changed automati
cally in the range to an upper bound 102421023. In our

e

FIG. 8. The change of the total energy with contraction forL̂

510A2, m̂51, Ĉs50.5, andt̂50.001 for the solid line,t̂50.01

for the dotted line, andt̂50.1 for the dot-dashed line.

FIG. 9. The time development of cracks with fast relaxatio

L̂510A2, m̂51, Ĉs50.5, t̂50.001, andĈ51.54.
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simulations, at most one cell is removed in any giv
timestep. In contrast, we note that in the model withou
relaxation process, a crack propagates instantaneously
fixed shrinking rate, because the breaking of a cell neces
ily changes the balanced state of the elastic field and o
causes a chain consisting of the breaking of many cells
curring simultaneously.

We show the typical development of a crack pattern
our model in Fig. 7, where the parameters areL̂510A2, m̂

51, t̂50.01, andĈs50.5, and the black area indicates t
removed triangular cells. The gray scale represents the
ergy densities~5.8! in Figs. 7~a!, 7~b!, and 7~d!, and each dot
in Fig. 7~c! is a slipping element under the condition~5.9!.
Ĉ51 ~i.e., C5Cb) corresponds to the shrinking rate at t
first breaking for an infinite system. The first breaking in t
simulations occurs slightly belowĈ51 for most parameters
because of the randomness in the lattice. At that time, no
has yet begun in the most of the system, except near
boundaries.

After this, some crack tips grow simultaneously in t
whole system, and the crack pattern almost becomes c

FIG. 10. The change of the total number of broken triangu
cells for the simulations of Fig. 8.

FIG. 11. The time development of cracks with slow relaxatio

L̂510A2, m̂51, Ĉs50.5, t̂50.2, andĈ51.09.
a
t a
ar-
n

c-

n-

ip
he

m-

plete at the shrinking rate nearĈ51. Here we see the white
circular marks around the center of the crack cells, as sho
in Fig. 7~c!. These represent the sticky regions without sl
Similar marks can be observed on the bottom of a conta
in actual experiments, as we mentioned in Sec. III.

Figure 8 graphs the development of the total energy~4.1!
with shrinking for the three casest̂50.1, 0.01, and 0.001.
The energy increases with contraction. However, it is
leased and dissipates due to successive breaking and
comes almost constant with increasing shrinking rate. O
simulations were carried out untilĈ510. The crack patterns
changed little whenĈ becomes large, while the circula
marks shrank gradually.

For fast relaxation, new cracks grow from the lateral s
of another crack almost perpendicularly. Figure 9 display
snapshot of a crack pattern for the very small relaxation ti
t̂50.001. Ast becomes smaller, the cracks tend to prop

r

.

FIG. 12. A final crack pattern on a sticky bottom.L̂520A2,

m̂51.0, t̂50.01, Ĉs51.0, andĈ510.

FIG. 13. A final crack pattern on a slippery bottom.L̂520A2,

m̂51.0, t̂50.01, Ĉs50.1, andĈ510.



th
w
in
-
th

m

n
ar
p
th
to
ag

b

n

:

s
us

a

e

tant

ng
rack
s a

hey
tion
7.
me
u-

he
me
the
ice

tual
e of

lo for

la

.

6462 PRE 60SO KITSUNEZAKI
gate faster and grow one at a time, in agreement with
assumption in the one-dimensional model. In Fig. 10,
compare how the total number of broken triangular cells
creases with shrinking fort̂50.1, 0.01, and 0.001. The num
ber of broken cells is almost proportional to the total leng
of cracks. It increases like a step function fort̂50.001. This
indicates that the cracks are formed one by one.

For slow relaxation, in contrast, the growing cracks fro
fingering-type patterns@35–38#, such as similar to those
seem in viscous fingering. As is shown in Fig. 11, ma
cracks tend to grow simultaneously from the center tow
the boundaries. They are accompanied by a series of tip s
tings and the total length of the cracks increases smoo
with contraction. Ast becomes larger, it takes more time
complete the crack patterns because of the slower prop
tion of cracks.

We can see the influence of slip on the crack patterns

changingĈs with the other parameters fixed. Figures 12 a

13 are snapshots of a crack pattern after full shrinkingĈ

510 for Ĉs51.0 andĈs50.1, respectively. Figure 14 show
the total number of broken triangular cells for the vario

values ofĈs . This figure indicates that the crack patterns

Ĉ510 are close to final states. As we expect, the final siz

a cell becomes larger with smallerĈs . Figure 15 plots the

FIG. 15. The final number of broken triangles, where we p

the values atĈ510 in Fig. 14 forĈs .

FIG. 14. The change of the total number of broken triangu

cells for L̂520A2, m̂51.0, t̂50.01, andĈs50.1, 0.2, 0.5, 0.7, 1.0
e
e
-

y
d
lit-
ly

a-

y

d

t

of

total numbers of broken triangles atĈ510 for Ĉs . They
increase monotonously in this range with an almost cons
rate.

Next we change the elastic property withm̂. From the
equations ofs i j ~4.23! and the crack speed~4.25! in Sec. IV,
we expect that, asm̂ becomes smaller, the stress, excludi
the dissipative force, has a weaker concentration at a c
tip, and the cracking speed is smaller. Figure 16 show
snapshot of a crack pattern form̂50.02. We find that the
cracks become irregular and jagged lines and that t
propagate slowly. The crack patterns also reach comple
more and more slowly asm̂ decreases, as is shown in Fig. 1

All of the above simulations were executed on the sa
random lattice. For comparison, we also performed a sim
lation using a regular triangular lattice in the place of t
random lattice. Figure 18 shows the result using the sa
parameters used in Fig. 7 except for the difference of
lattices. It is clear that the anisotropy of the triangular latt
is reflected in the direction of cracks.

Thus, we can reproduce patterns similar to those of ac
cracks using our two-dimensional model. The dependenc

t

FIG. 16. A crack pattern for smallm̂. L̂510A2, m̂50.02, Ĉs

50.5, t̂50.01, andĈ510.

FIG. 17. The change of the total number of broken triangles

L̂510A2, Ĉs50.5, t̂50.01, andm̂50.02, 0.1, 1.0.

r
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the formation of cracks on the relaxation time and the ela
constants should be compared with actual experiment
more detail. The experimental results of Groisman and
plan suggest a transition in the qualitative nature of patte
as the thickness is changed. This is point~iii ! mentioned in
Sec. I. Similar changes of patterns are observed for s
relaxation or smallm̂ in our simulations. However, ou
model does not contain the thicknessH explicitly because of
the scaling withH, and we have no experimental data for t
dependence of the other parameters onH. In addition, it is
possible that the inhomogeneity in a material plays an
portant role in this change because the size of a particle
become significantly large ifH is made sufficiently small@5#.
Obtaining a more detailed understanding that address t
points is left as a future project.

VI. CONCLUSIONS

We studied the pattern formation of cracks induced
slow desiccation in a thin layer. Assuming quasistatic a
uniform contraction in the layer, we constructed a sim
model in Sec. II. It models the layer as a linear elastic pla
connected to elements on the bottom and considers the
with a constant frictional force.

In Sec. III, we considered the critical stress condition
introducing a critical value of the energy density. This mod
explains the proportionality relation between the final size
a crack cell and the thickness of a layer and the experime
observations on the effect of slip. This proportionality re
tion is not due to the simplicity of our model, but is a co
sequence of a linear elastic theory and the critical stress
dition. We also considered the Griffith criterion as

FIG. 18. A crack pattern on a regular triangular lattice for t
same parameters as in Fig. 7~d!.
ic
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alternative fragmentation condition. However, it predic
qualitatively different results for the final size of a crac
Although these results need more detailed considerati
they suggest the possibility that dissipation in the bulk m
be important in cracking processes of these materials.

In Sec. IV, we extended the model to two dimensions a
introduced the relaxation of the elastic field to describe
development of cracks. This is essentially the same as
Kelvin model for viscoelastic materials. Because the str
excluding the dissipative force does not diverge at the tip
a propagating crack, we introduced a critical value as
breaking condition in front of a moving crack. Assuming th
existence of a stationary propagating crack, we obtained
estimation for the crack speed in closed form within a co
tinuous theory. This estimation explains the very slow pro
gation of actual cracks and predicts the proportionality re
tion between the crack speed and the thickness of a laye
is an open problem to understand the origin of the dissipa
we introduced intuitively and the role of inhomogeneity
the stability of a crack.

In Sec. V, we carried out numerical simulations of t
two-dimensional model to investigate the formation of cra
patterns. By using the energy density defined on the mic
scopic cells of a lattice, we introduced a simplified breaki
condition from the direct extension of the one-dimensio
model. We used a random lattice to remove the anisotrop
the lattice and obtained patterns similar to those observe
experiments. We found that cracks grow in qualitative d
ferent ways depending on the ratio of the elastic consta
and the relaxation time. It is important in the connection w
fingering patterns that for the slow relaxation crack patte
are formed by a succession of tip-splittings rather than
side-branching. We need a better understanding of the ro
inhomogeneity to explain the transition in the nature of p
terns as a function of the thickness reported in the exp
ments.

For the experimental results of Groisman and Kapl
which we mentioned in the points~i!–~iii ! in Sec. I, we be-
lieve the present results give qualitative explanations for~i!
and ~ii ! and a clue for~iii !, although more considerations
necessary.
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