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Nonequilibrium noise in coupled phase oscillators
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The effect of nonequilibrium fluctuations on coupled phase oscillators is studied in a basic model. Its
extremely rich behavior, including first and second order phase transitions, time-periodic phases, multiple
anomalous hystereses, negative mobility, and other remarkable response properties, is unraveled by both
analytical and numerical calculatiorf$1063-651X99)01712-2

PACS numbsefs): 05.40—a, 05.60-k, 05.45.Xt, 87.10+e

I. INTRODUCTION AND MODEL are enhanced, for the particular cd3g=D;=:Q/2, which
is, in a sense, most different from purely equilibrium noise
Autonomous time-periodicity is one of the paradigms of(D;=0):
nonlinear nonequilibrium systems which has been observed
and studied in numerous physical, chemical, and biological D(6)=Q(1— cosh)/2=Q sir’(6/2). (3)
systemd 1]. Of particular interest are the collective proper-
ties that arise when a number of active oscillators are Incidentally, foro=0 we may also look atl) as XY-
coupled. In this context, synchronization and entrainmenspin-model[4] under far from equilibrium conditions. For
have been documented in great defajl The main purpose instance, it may be exposed to a strgbgt incoherentelec-
of this article is to highlight the surprising phenomena thattromagnetic irradiation, with the various effects of the
emerge as a collective property of such assemblies of activghoton-impacts(scattering, excitations of the host-crystal
oscillators, in particular autonomous rhythmicity, appearingions, etc) represented by the nonequilibrium fluctuatié@s
spontaneously as the result of the coupling of the separatduch like in equilibrium phase transitions, our extremely
units, and a wealth of anomalous response properties. simple model is expected to be of interest in many other
The phenomena we have in mind can be studied and ursontexts, corresponding to a “normal form” description, that
derstood in detail on a simple variant of Kuramoto’s modelsubsists after the irrelevant terms have been eliminated. It
for coupled phase oscillatofg], described in terms of phase has been chosen for its simplicity and analytic tractability,
variables#,= ¢,(t), i=1,... N: while the observed features appear to be quite general and

robust.
N

h=o=g J.Zl sin(6; = 6)) + &; @) Il. PHASE TRANSITIONS

A detailed analytic study ofl)—(3) becomes possible in
The first termo is the rotation frequency, corresponding the mean field approximation, which is realized in the ther-
either to the eigen-frequency of the individual elements, or tamodynamic limitN— < [2]. Each oscillatord,= 6 then sat-
the frequency in response to an external torque. The couplingfies a mean field equation of the form:
term with strengthK>0 is approximated by a sinus contri-
bution, which can be viewed as the lowest order term in a 9= w—K(csind—scosh)+ & (4)
Fourier expansion. Most of the results below refer to global
coupling (all N oscillators coupled to each othgbut simu-
lation results for nearest neighbor coupling on a two-
dimensional square-lattice will also be included. Finally, the,
noise terms&; = &;(t) in (1) are assumed to be Gaussian and
white with (&;(t))=0 and

c:=(cosh)y, s:=(sind). (5

Here,(f(6)) denotes the averag%}\'zlf(ej)/N in the limit
N—co, or, equivalently[2], the average with respect to the
the probability densityP(#6,t) that obeys the following
(E(DE (1)) =2D(8) 6, 8(t—t"). @ Fokker-Planck equatiofb] equivalent to(4):

) ) ) o ) AP(0,t)=d4{ — o+ K(csind—scosh)+(Q/4)sinb
Since the system is typically far from equilibrium, and since
the reduction to phase variablégequires a nonlinear trans- +QsinP(6/2)3,1P(6,t) (6)
formation and elimination of other fast variables, we assume
a state dependent “noise-strengt®{ ) [3]. Keeping again  with periodic boundary condition8( 8+ 2r,t) =P(6,t) and
only relevant lowest order terms in the Fourier expansionnormalizationf3"d¢P(6,t)=1. As far as analytic calcula-
we setD(0)=Dy—D; cosd (Dy=D,=0). Analytic calcu- tions are concerned, we will focus mainly on the long time
lations are much simplified, while the relevant phenomendehavior, assuming that a steady state regime is regshed
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perscript st From (4) and (6), one then finds for the mean
angular velocity the two fundamental relations:

(6)%'=w+Qs/4=27(w+Ks)PSY(0), 7)

where the order parametersands from (5) have now to be

evaluated self-consistently with respect to the steady state

solution PSY( ) of (6).
For =0, the equations of motiofl) are perfectly sym-
metric underd— — 6. Yet, a spontaneous collective motion

(6)s'#0 will set in when in(6) a solutions+ 0 appears. To

show that such a symmetry broken phase can indeed arise,

we first study the existence and stability of §¥@0 solution.
In this case ¢ =0 ands=0), the steady state solution (&)
takes the following closed analytical form:

PS{(@)=N[sin(0/2)] ¢tV B:=4K/Q, (8)

where N is a normalization constant ang>0 is assumed.
The resulting self-consistency equation foin (5) is found
to bec=(1+cB)(1—cpB) %, whence

c=[-(1-8"H=V(1-8"H% -4 ]2 (9)

A stability analysis shows that the solution with the minus
sign in (9) is the stable one. In particular, f@#8—o, one
findsc=—1 andPs{(#)=5(8— m), i.e., in this strong cou-
pling limit all the oscillators congregate at the center 7

of the interval 0,27]. With decreasing, the stable solution

the unstable oné.e., through a limit point bifurcationwhen
the root in (9) becomes imaginary, that is, at the critical
values:

B.=3+8~5.83, c.,=1—2~-0.41. (10

We conclude that only fo8= 3. there exists a solution with
s=0 and thus(#)%'=0. The exponent-(cB+1) in (8)
equalsy2~1.41 at criticality and increases with increasing
B. Especially, PS{(0)=0 for all B=8.. For 0<B8<p, a
solution withs=0 is excluded, implying spontaneous sym-
metry breaking and a spontaneous collective rota{igyft
=0. Similar phases have been predicted 69|, but the

NONEQUILIBRIUM NOISE IN COUPLED PHASE OSCILLATORS

FIG. 1. Steady state frequencis)s' as a function of B
=4K/Q for the dynamicg1-3 with w=0. Solid:N—« by solv-
ing (10). Dots: illustrative verification by direct simulations @f)

for N=1024. Coexisting negative solutioKig)— — () are omit-
ted. Inset: Details of the hysteresis. Ff<B<p. a (6)'=0

phase coexists with a time-periodic solution. There, the solid line
represents the time-averag{a@. Dashed: Extrema of the oscillat-
ing (). Dotted with arrows: Jumps dff).

=0 we conclude that the phase 0 must appear through an

abrupt change iPs'(6), i.e., a discontinuous transition. An

unfortunate consequence is that a perturbation analysis will

fail, hence an analytic treatment of this phase appears to be
difficult. We therefore finally turn to the numerical results
collected in Fig. 110]. In addition to our theoretical predic-

R . . . < ’ . !
c from (9) increases and disappears through a collision witﬁ“ons’ one finds that in the region<gB=fc, with fc

~5.86 as#0 solution exists, which ignumerically stable,
stationary, and—apart from the reflection-symmetry induced
degeneracy—unique. A8/ it loses its stability by a Hopf
bifurcation with the quite unexpected appearance of a time-
oscillatory behavior of é). Finally, at another critical value
Bi~5.90, the stable limit cycle suddenly disappegee-
sumably through a collision with an unstable limit cycle

The observed coexistence of stable solutions in the region

B:.<B<pB: implies hysteresis, with, upon increasity a
discontinuous(first ordey transition from the oscillatorys
#0 solution tos=0 at 8=, , and upon subsequently de-
creasingB, a discontinuous transition from tise=0 solution
back to a steady state solutiss0 at 3= .. Spontaneous
collective oscillations have been long knoywh?2,6,11,12

The distinguishing features of our modd) with «=0 are

quite remarkable property that the broken symmetry persistgs extreme simplicity and its symmetry under reflection and

for arbitrarily small couplingsK and/or arbitrarily strong
noiseQ has never been observed before.
To complement the picture, we first note that in the limit

B—0 Eq. (6) implies PSY(#)— &(#) and thuss—0 andc

— 1, reflecting the fact tha#=0 (modulo 27) is an absorb-
ing state for the uncoupled oscillatofK=w=0 in (4)].
Since there is no stabke=0 solution for smallbut finite) 8
values, one expects the appearance 8, c~1 phase in
this parameter region. Second, f&#0, «=0 Eq(7) im-
plies PS(0)=(27B) 1. Recalling thatPs{(0)=0 for s=w

discrete translation.

Ill. RESPONSE PROPERTIES

Returning to(7), we note another remarkable feature with
surprising consequences: sinségn({6)")=sign(s) (Eq.
(7) with @ =0), it follows that the direction of the spontane-
ous rotation is opposite to that of the symmetry breaking. For
example, fors>0 one expects front5) a majority of the
oscillators in the “left” part of the interval 0,27], while
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FIG. 2. Scaled response curves
[8] (6)/Q versusw/Q for =0
(@, B=3.4 (b), B=5.14 (¢), B
=5.16 (d), 8=5.84 (e), =5.89
(f), B=5.92(g), B=6.5(h). Solid
and dashed lines are analogous to

Fig. 1. For more details see main
text.

<€>St>0 implies that there is a net rotation towards thesharply peaked around a central valde PSY(6)— &(6

“right.” This raises the question as to whether an applied _ )
torque that concentraté®®(4) on one side of the interval

can in fact result in a overall rotation of the oscillators in the
other direction. The following simple argument shows that'"

). If furthermore|w|<Q_/4 then it follows from Eqs(5)
and(7) that the flux( 8)5'= 6= w+ Q sing/4 approaches zero
the steady state, se= sinf=—4w/Q. The symmetry

for sufficiently largeg this is indeed the case. In the limit of Preaking is thus, as expected, in the same directiom as

strong coupling,83— =, one expects thaPs'(#) becomes

(e.g.,0> for ©>0). Inserting thig— o result forsin the
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second equality i17), we conclude that for large but finije
0,1p

(0)>'=—27wBP*(0)w (11) (a)

implying [13] absolute(in contrast to differential negative
mobility [8]. Note that this it is not the result of a built-in
asymmetry; the oscillators asdwaysrotating opposite to the
torque, irrespective of its direction. In other words, the cou-
pling and noise in1) may indeed conspire such that a col-
lective rotation just opposite to the inborn-frequenrcyf the
separate oscillators emerges!

The analytically not tractable response behavior for
smaller 8 is an intricate story in itself and we can only
briefly sketch here the numerically observed wealth of bifur-
cations. The uncoupled cage=0 [Fig. 2(a)] is unspectacu-
lar with the exception of the square-root behavior abeut
=0. The latter turns into a normal hysteresis-lgbke in a
ferromagnetas soon ag>0, see Fig. ). The hysteresis-
loop grows and aB~ 3.33 a re-entrant Hopf-bifurcation into

an oscillatory long-time behavior o(fb) takes placdFig.
2(b)]. Upon a further increase ¢, the re-entrance points of
these oscillations move away to infinity, and the oscillations
then persist for arbitrary large values|af|. Upon increasing

B further, the Hopf-bifurcation points penetrate the hyster-
esis loop[Fig. 2(c)]. One of the branches develops a “dip” 0,041
[Fig. 2(c)] which at 8~5.15 touches the other branch and
then gives rise to a non-oscillatory gfipig. 2(d)], with, at

<6>/Q

0,08

0,04

<6>/Q

the outside end of the gap, the appearance of a new “small” 0.08[

hysteresis loop. The latter shrinks and finally disappears at o1 ) o

B~5.26. In its place an infinite-period bifurcation remains o/Q

[omitted in Figs. 2e)—2(h) in favor of the smallw-region), .

together with the “large” hysteresis from Fig(d®. In com- FIG. 3. Scaled response curvi] (6)/Q versusw/Q from

parison with the usual case in Figi, this hysteresis-loop numerical simulations of1-3) with nearest neighbor instead of
is anomaloug8] in that the direction of the discontinuous global coupling in(1) for a 64<64 square-lattice with periodic

jumps 0f<'0> are just opposite to the applied torque At boundary conditiongsee[7] for more computational detajls(a):
B=.~5.83 a new stable branch arises inside the anoma=*amPle of spontaneous collective rotati@t »=0) and hyster-
lous rclysteresis—loo[j:ig 2e)], in agreement with Eq10) esis for 8=3. (b): Absolute negative mobility fo3=8. While

. ) ! : . o those qualitative features are the same as for global coupling, the
It quickly grows beyond the loopFig. 2(f)], while the loop

. ” - . . quantitative details are different.
shrinks to zero aB= 8.~5.90, leaving behind a symmetric
pair of anomalous loopgFig. 2g)] together with a small  pecieq with a hysteresis-loop in response to finitdFig.

region of negative absolute mobility abowi=0. The 3] as well as absolute negative mobility for stronger cou-

hysteresis-loops subsequently shrink and disappeag at pling [Fig. 3(b)]. We conclude that those phenomena are
~6.05, resulting in an extended zone of absolute negativgyite robust.

mobility [Fig. 2h)] as predicted by Eq(11). With further In summary, our mode(l) with =0 provides a ex-
increasingB the absolute values dff)/Q decrease but the tremely simple example of a pure noise-induced phase tran-
negative mobility around =0 subsists as well as the infinite sition [9] with—for the first time—a fully analytically trac-
period bifurcation into an oscillatory solution for large table symmetric phas€Eqgs. (8)—(10)). In particular, no
completing our picture of the surprisingly rich response be-deterministic external forces are involved and—due to the

havior contained in the simple modgl). zeros of the noise amplitud®)—we are essentially dealing
with a zero temperature modého additive noise compo-
IV. GENERALIZATIONS AND CONCLUSION nen. It therefore seems a good candidate for becoming a

prototype model for phase transitions induced by nonequilib-
All the results so far refer to global coupling in EQ). rium fluctuations. Also, to the best of our knowledge, its
The extension to finite range interactions is clearly of centramost striking features have not been observed before in such
importance but very difficult to handle analytically. Numeri- a context, namelysee Fig. 1 a spontaneously broken sym-
cally, a similar behavior as for global coupling is observedmetry for arbitrarily weak coupling and a discontinuous tran-
for nearest neighbor interaction on, for example, a squarsition with a permanently time-dependent oscillatory phase.
lattice ind=2, cf. Fig. 3. In particular, the salient features While spontaneous symmetry breaking is a familiar phenom-
are clearly reproduced, namely a spontaneous symmetignon also at equilibrium, spontaneous collective rotations
breaking for v=0 and moderate-to-weak coupling, con- would contradict the second law of thermodynamics and are
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therefore a distinct nonequilibrium feature. The response be- ACKNOWLEDGMENTS
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