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Nonequilibrium noise in coupled phase oscillators
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The effect of nonequilibrium fluctuations on coupled phase oscillators is studied in a basic model. Its
extremely rich behavior, including first and second order phase transitions, time-periodic phases, multiple
anomalous hystereses, negative mobility, and other remarkable response properties, is unraveled by both
analytical and numerical calculations.@S1063-651X~99!01712-2#

PACS number~s!: 05.40.2a, 05.60.2k, 05.45.Xt, 87.10.1e
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I. INTRODUCTION AND MODEL

Autonomous time-periodicity is one of the paradigms
nonlinear nonequilibrium systems which has been obser
and studied in numerous physical, chemical, and biolog
systems@1#. Of particular interest are the collective prope
ties that arise when a number of active oscillators
coupled. In this context, synchronization and entrainm
have been documented in great detail@2#. The main purpose
of this article is to highlight the surprising phenomena th
emerge as a collective property of such assemblies of ac
oscillators, in particular autonomous rhythmicity, appear
spontaneously as the result of the coupling of the sepa
units, and a wealth of anomalous response properties.

The phenomena we have in mind can be studied and
derstood in detail on a simple variant of Kuramoto’s mod
for coupled phase oscillators@2#, described in terms of phas
variablesu i5u i(t), i 51, . . . ,N:

u̇ i5v2
K

N (
j 51

N

sin~u i2u j !1j i . ~1!

The first termv is the rotation frequency, correspondin
either to the eigen-frequency of the individual elements, o
the frequency in response to an external torque. The coup
term with strengthK.0 is approximated by a sinus contr
bution, which can be viewed as the lowest order term i
Fourier expansion. Most of the results below refer to glo
coupling ~all N oscillators coupled to each other!, but simu-
lation results for nearest neighbor coupling on a tw
dimensional square-lattice will also be included. Finally, t
noise termsj i5j i(t) in ~1! are assumed to be Gaussian a
white with ^j i(t)&50 and

^j i~ t !j j~ t8!&52D~u i !d i j d~ t2t8!. ~2!

Since the system is typically far from equilibrium, and sin
the reduction to phase variablesu requires a nonlinear trans
formation and elimination of other fast variables, we assu
a state dependent ‘‘noise-strength’’D(u) @3#. Keeping again
only relevant lowest order terms in the Fourier expansi
we setD(u)5D02D1 cosu (D0>D1>0). Analytic calcu-
lations are much simplified, while the relevant phenome
PRE 601063-651X/99/60~6!/6402~5!/$15.00
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are enhanced, for the particular caseD05D15:Q/2, which
is, in a sense, most different from purely equilibrium noi
(D150):

D~u!5Q~12 cosu!/25Q sin2~u/2!. ~3!

Incidentally, for v50 we may also look at~1! as XY-
spin-model@4# under far from equilibrium conditions. Fo
instance, it may be exposed to a strong~but incoherent! elec-
tromagnetic irradiation, with the various effects of th
photon-impacts~scattering, excitations of the host-cryst
ions, etc.! represented by the nonequilibrium fluctuations~2!.
Much like in equilibrium phase transitions, our extreme
simple model is expected to be of interest in many ot
contexts, corresponding to a ‘‘normal form’’ description, th
subsists after the irrelevant terms have been eliminated
has been chosen for its simplicity and analytic tractabili
while the observed features appear to be quite general
robust.

II. PHASE TRANSITIONS

A detailed analytic study of~1!–~3! becomes possible in
the mean field approximation, which is realized in the th
modynamic limitN→` @2#. Each oscillatoru i5u then sat-
isfies a mean field equation of the form:

u̇5v2K~c sinu2s cosu!1j ~4!

cª^cosu&, sª^sinu&. ~5!

Here, ^ f (u)& denotes the averageS j 51
N f (u j )/N in the limit

N→`, or, equivalently@2#, the average with respect to th
the probability densityP(u,t) that obeys the following
Fokker-Planck equation@5# equivalent to~4!:

] tP~u,t !5]u$2v1K~c sinu2s cosu!1~Q/4!sinu

1Q sin2~u/2!]u%P~u,t ! ~6!

with periodic boundary conditionsP(u12p,t)5P(u,t) and
normalization*0

2pduP(u,t)51. As far as analytic calcula
tions are concerned, we will focus mainly on the long tim
behavior, assuming that a steady state regime is reached~su-
6402 © 1999 The American Physical Society



n

ta

n

ri

us

it

al

g

-

is

i

n

will
be

ts
-

ed

e-

ion

-

nd

th

-
For

line

-
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perscript st!. From ~4! and ~6!, one then finds for the mea
angular velocity the two fundamental relations:

^u̇&st5v1Qs/452p~v1Ks!Pst~0!, ~7!

where the order parametersc ands from ~5! have now to be
evaluated self-consistently with respect to the steady s
solutionPst(u) of ~6!.

For v50, the equations of motion~1! are perfectly sym-
metric underu°2u. Yet, a spontaneous collective motio

^u̇&stÞ0 will set in when in~6! a solutionsÞ0 appears. To
show that such a symmetry broken phase can indeed a
we first study the existence and stability of thes50 solution.
In this case (v50 ands50), the steady state solution of~6!
takes the following closed analytical form:

Pst~u!5N @sin~u/2!#2(cb11), bª4K/Q, ~8!

whereN is a normalization constant andb.0 is assumed.
The resulting self-consistency equation forc in ~5! is found
to bec5(11cb)(12cb)21, whence

c5@2~12b21!6A~12b21!224b21#/2. ~9!

A stability analysis shows that the solution with the min
sign in ~9! is the stable one. In particular, forb→`, one
finds c521 andPst(u)5d(u2p), i.e., in this strong cou-
pling limit all the oscillators congregate at the centeru5p
of the interval@0,2p#. With decreasingb, the stable solution
c from ~9! increases and disappears through a collision w
the unstable one~i.e., through a limit point bifurcation! when
the root in ~9! becomes imaginary, that is, at the critic
values:

bc531A8'5.83, cc512A2'20.41. ~10!

We conclude that only forb>bc there exists a solution with
s50 and thus^u̇&st50. The exponent2(cb11) in ~8!
equalsA2'1.41 at criticality and increases with increasin
b. Especially,Pst(0)50 for all b>bc . For 0,b,bc a
solution with s50 is excluded, implying spontaneous sym
metry breaking and a spontaneous collective rotation^u̇&st

50. Similar phases have been predicted in@6–9#, but the
quite remarkable property that the broken symmetry pers
for arbitrarily small couplingsK and/or arbitrarily strong
noiseQ has never been observed before.

To complement the picture, we first note that in the lim
b→0 Eq. ~6! implies Pst(u)→d(u) and thuss→0 and c
→1, reflecting the fact thatu50 ~modulo 2p) is an absorb-
ing state for the uncoupled oscillators@K5v50 in ~4!#.
Since there is no stables50 solution for small~but finite! b
values, one expects the appearance of asÞ0, c'1 phase in
this parameter region. Second, fors5” 0, v50 Eq.~7! im-
plies Pst(0)5(2pb)21. Recalling thatPst(0)50 for s5v
te

se,

h

ts

t

50 we conclude that the phasesÞ0 must appear through a
abrupt change inPst(u), i.e., a discontinuous transition. An
unfortunate consequence is that a perturbation analysis
fail, hence an analytic treatment of this phase appears to
difficult. We therefore finally turn to the numerical resul
collected in Fig. 1@10#. In addition to our theoretical predic
tions, one finds that in the region 0,b,bc8 , with bc8
'5.86 as5” 0 solution exists, which is~numerically! stable,
stationary, and—apart from the reflection-symmetry induc
degeneracy—unique. Atbc8 it loses its stability by a Hopf
bifurcation with the quite unexpected appearance of a tim
oscillatory behavior of̂ u̇&. Finally, at another critical value
bc9'5.90, the stable limit cycle suddenly disappears~pre-
sumably through a collision with an unstable limit cycle!.
The observed coexistence of stable solutions in the reg
bc,b,bc9 implies hysteresis, with, upon increasingb, a
discontinuous~first order! transition from the oscillatorys
Þ0 solution tos50 at b5bc9 , and upon subsequently de
creasingb, a discontinuous transition from thes50 solution
back to a steady state solutionsÞ0 at b5bc . Spontaneous
collective oscillations have been long known@1,2,6,11,12#.
The distinguishing features of our model~1! with v50 are
its extreme simplicity and its symmetry under reflection a
discrete translation.

III. RESPONSE PROPERTIES

Returning to~7!, we note another remarkable feature wi
surprising consequences: sincesign(^u̇&st)5sign(s) „Eq.
~7! with v50…, it follows that the direction of the spontane
ous rotation is opposite to that of the symmetry breaking.
example, fors.0 one expects from~5! a majority of the
oscillators in the ‘‘left’’ part of the interval@0,2p#, while

FIG. 1. Steady state frequencŷu̇&st as a function of b
54K/Q for the dynamics~1–3! with v50. Solid:N→` by solv-
ing ~10!. Dots: illustrative verification by direct simulations of~1!

for N51024. Coexisting negative solutions^u̇&°2^u̇& are omit-

ted. Inset: Details of the hysteresis. Forbc8,b,bc9 a ^u̇&st50
phase coexists with a time-periodic solution. There, the solid

represents the time-averaged^u̇&. Dashed: Extrema of the oscillat

ing ^u̇&. Dotted with arrows: Jumps of^u̇&.
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FIG. 2. Scaled response curve

@8# ^u̇&/Q versusv/Q for b50
~a!, b53.4 ~b!, b55.14 ~c!, b
55.16 ~d!, b55.84 ~e!, b55.89
~f!, b55.92 ~g!, b56.5 ~h!. Solid
and dashed lines are analogous
Fig. 1. For more details see mai
text.
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^u̇&st.0 implies that there is a net rotation towards t
‘‘right.’’ This raises the question as to whether an appli
torque that concentratesPst(u) on one side of the interva
can in fact result in a overall rotation of the oscillators in t
other direction. The following simple argument shows th
for sufficiently largeb this is indeed the case. In the limit o
strong coupling,b→`, one expects thatPst(u) becomes
t

sharply peaked around a central valueū, Pst(u)→d(u

2 ū). If furthermoreuvu,Q/4 then it follows from Eqs.~5!

and~7! that the flux^u̇&st5uG 5v1Q sinū/4 approaches zero

in the steady state, sos5 sinū524v/Q. The symmetry
breaking is thus, as expected, in the same direction av

~e.g.,ū.p for v.0). Inserting thisb→` result fors in the
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second equality in~7!, we conclude that for large but finiteb

^u̇&st522pbPst~0!v ~11!

implying @13# absolute~in contrast to differential! negative
mobility @8#. Note that this it is not the result of a built-i
asymmetry; the oscillators arealwaysrotating opposite to the
torque, irrespective of its direction. In other words, the co
pling and noise in~1! may indeed conspire such that a co
lective rotation just opposite to the inborn-frequencyv of the
separate oscillators emerges!

The analytically not tractable response behavior
smaller b is an intricate story in itself and we can on
briefly sketch here the numerically observed wealth of bif
cations. The uncoupled caseb50 @Fig. 2~a!# is unspectacu-
lar with the exception of the square-root behavior abouv
50. The latter turns into a normal hysteresis-loop~like in a
ferromagnet! as soon asb.0, see Fig. 2~b!. The hysteresis-
loop grows and atb'3.33 a re-entrant Hopf-bifurcation int
an oscillatory long-time behavior of̂u̇& takes place@Fig.
2~b!#. Upon a further increase ofb, the re-entrance points o
these oscillations move away to infinity, and the oscillatio
then persist for arbitrary large values ofuvu. Upon increasing
b further, the Hopf-bifurcation points penetrate the hyst
esis loop@Fig. 2~c!#. One of the branches develops a ‘‘dip
@Fig. 2~c!# which at b'5.15 touches the other branch an
then gives rise to a non-oscillatory gap@Fig. 2~d!#, with, at
the outside end of the gap, the appearance of a new ‘‘sm
hysteresis loop. The latter shrinks and finally disappear
b'5.26. In its place an infinite-period bifurcation remai
@omitted in Figs. 2~e!–2~h! in favor of the smallv-region#,
together with the ‘‘large’’ hysteresis from Fig. 2~d!. In com-
parison with the usual case in Fig. 2~b!, this hysteresis-loop
is anomalous@8# in that the direction of the discontinuou
jumps of ^u̇& are just opposite to the applied torquev. At
b5bc'5.83 a new stable branch arises inside the ano
lous hysteresis-loop@Fig. 2~e!#, in agreement with Eq.~10!.
It quickly grows beyond the loop@Fig. 2~f!#, while the loop
shrinks to zero atb5bc9'5.90, leaving behind a symmetri
pair of anomalous loops@Fig. 2~g!# together with a small
region of negative absolute mobility aboutv50. The
hysteresis-loops subsequently shrink and disappear ab
'6.05, resulting in an extended zone of absolute nega
mobility @Fig. 2~h!# as predicted by Eq.~11!. With further
increasingb the absolute values of^u̇&/Q decrease but the
negative mobility aroundv50 subsists as well as the infinit
period bifurcation into an oscillatory solution for largev,
completing our picture of the surprisingly rich response
havior contained in the simple model~1!.

IV. GENERALIZATIONS AND CONCLUSION

All the results so far refer to global coupling in Eq.~1!.
The extension to finite range interactions is clearly of cen
importance but very difficult to handle analytically. Nume
cally, a similar behavior as for global coupling is observ
for nearest neighbor interaction on, for example, a squ
lattice in d52, cf. Fig. 3. In particular, the salient feature
are clearly reproduced, namely a spontaneous symm
breaking for v50 and moderate-to-weak coupling, co
-
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nected with a hysteresis-loop in response to finitev @Fig.
3~a!#, as well as absolute negative mobility for stronger co
pling @Fig. 3~b!#. We conclude that those phenomena a
quite robust.

In summary, our model~1! with v50 provides a ex-
tremely simple example of a pure noise-induced phase t
sition @9# with—for the first time—a fully analytically trac-
table symmetric phase~Eqs. ~8!–~10!!. In particular, no
deterministic external forces are involved and—due to
zeros of the noise amplitude~3!—we are essentially dealing
with a zero temperature model~no additive noise compo
nent!. It therefore seems a good candidate for becomin
prototype model for phase transitions induced by nonequi
rium fluctuations. Also, to the best of our knowledge,
most striking features have not been observed before in s
a context, namely~see Fig. 1! a spontaneously broken sym
metry for arbitrarily weak coupling and a discontinuous tra
sition with a permanently time-dependent oscillatory pha
While spontaneous symmetry breaking is a familiar pheno
enon also at equilibrium, spontaneous collective rotatio
would contradict the second law of thermodynamics and

FIG. 3. Scaled response curves@8# ^u̇&/Q versusv/Q from
numerical simulations of~1–3! with nearest neighbor instead o
global coupling in ~1! for a 64364 square-lattice with periodic
boundary conditions~see@7# for more computational details!. ~a!:
Example of spontaneous collective rotation~at v50) and hyster-
esis for b53. ~b!: Absolute negative mobility forb58. While
those qualitative features are the same as for global coupling,
quantitative details are different.
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therefore a distinct nonequilibrium feature. The response
havior of our model~1! in the presence of a torquev com-
prises a whole wealth of interesting novel phenomena~Fig.
2! together with some previously observed effects in coup
phase oscillators@11# and other models of collective phe
nomena@6–8,12#. The particular appeal of our system is i
archetypal simplicity, analytic tractability, and extreme ric
ness in behavior.
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